Change __rust_no_alloc_shim_is_unstable to be a function
This fixes a long sequence of issues:
1. A customer reported that building for Arm64EC was broken: #138541
2. This was caused by a bug in my original implementation of Arm64EC support, namely that only functions on Arm64EC need to be decorated with `#` but Rust was decorating statics as well.
3. Once I corrected Rust to only decorate functions, I started linking failures where the linker couldn't find statics exported by dylib dependencies. This was caused by the compiler not marking exported statics in the generated DEF file with `DATA`, thus they were being exported as functions not data.
4. Once I corrected the way that the DEF files were being emitted, the linker started failing saying that it couldn't find `__rust_no_alloc_shim_is_unstable`. This is because the MSVC linker requires the declarations of statics imported from other dylibs to be marked with `dllimport` (whereas it will happily link to functions imported from other dylibs whether they are marked `dllimport` or not).
5. I then made a change to ensure that `__rust_no_alloc_shim_is_unstable` was marked as `dllimport`, but the MSVC linker started emitting warnings that `__rust_no_alloc_shim_is_unstable` was marked as `dllimport` but was declared in an obj file. This is a harmless warning which is a performance hint: anything that's marked `dllimport` must be indirected via an `__imp` symbol so I added a linker arg in the target to suppress the warning.
6. A customer then reported a similar warning when using `lld-link` (<https://github.com/rust-lang/rust/pull/140176#issuecomment-2872448443>). I don't think it was an implementation difference between the two linkers but rather that, depending on the obj that the declaration versus uses of `__rust_no_alloc_shim_is_unstable` landed in we would get different warnings, so I suppressed that warning as well: #140954.
7. Another customer reported that they weren't using the Rust compiler to invoke the linker, thus these warnings were breaking their build: <https://github.com/rust-lang/rust/pull/140176#issuecomment-2881867433>. At that point, my original change was reverted (#141024) leaving Arm64EC broken yet again.
Taking a step back, a lot of these linker issues arise from the fact that `__rust_no_alloc_shim_is_unstable` is marked as `extern "Rust"` in the standard library and, therefore, assumed to be a foreign item from a different crate BUT the Rust compiler may choose to generate it either in the current crate, some other crate that will be statically linked in OR some other crate that will by dynamically imported.
Worse yet, it is impossible while building a given crate to know if `__rust_no_alloc_shim_is_unstable` will statically linked or dynamically imported: it might be that one of its dependent crates is the one with an allocator kind set and thus that crate (which is compiled later) will decide depending if it has any dylib dependencies or not to import `__rust_no_alloc_shim_is_unstable` or generate it. Thus, there is no way to know if the declaration of `__rust_no_alloc_shim_is_unstable` should be marked with `dllimport` or not.
There is a simple fix for all this: there is no reason `__rust_no_alloc_shim_is_unstable` must be a static. It needs to be some symbol that must be linked in; thus, it could easily be a function instead. As a function, there is no need to mark it as `dllimport` when dynamically imported which avoids the entire mess above.
There may be a perf hit for changing the `volatile load` to be a `tail call`, so I'm happy to change that part back (although I question what the codegen of a `volatile load` would look like, and if the backend is going to try to use load-acquire semantics).
Build with this change applied BEFORE #140176 was reverted to demonstrate that there are no linking issues with either MSVC or MinGW: <https://github.com/rust-lang/rust/actions/runs/15078657205>
Incidentally, I fixed `tests/run-make/no-alloc-shim` to work with MSVC as I needed it to be able to test locally (FYI for #128602)
r? `@bjorn3`
cc `@jieyouxu`
Sized Hierarchy: Part I
This patch implements the non-const parts of rust-lang/rfcs#3729. It introduces two new traits to the standard library, `MetaSized` and `PointeeSized`. See the RFC for the rationale behind these traits and to discuss whether this change makes sense in the abstract.
These traits are unstable (as is their constness), so users cannot refer to them without opting-in to `feature(sized_hierarchy)`. These traits are not behind `cfg`s as this would make implementation unfeasible, there would simply be too many `cfg`s required to add the necessary bounds everywhere. So, like `Sized`, these traits are automatically implemented by the compiler.
RFC 3729 describes changes which are necessary to preserve backwards compatibility given the introduction of these traits, which are implemented and as follows:
- `?Sized` is rewritten as `MetaSized`
- `MetaSized` is added as a default supertrait for all traits w/out an explicit sizedness supertrait already.
There are no edition migrations implemented in this, as these are primarily required for the constness parts of the RFC and prior to stabilisation of this (and so will come in follow-up PRs alongside the const parts). All diagnostic output should remain the same (showing `?Sized` even if the compiler sees `MetaSized`) unless the `sized_hierarchy` feature is enabled.
Due to the use of unstable extern types in the standard library and rustc, some bounds in both projects have had to be relaxed already - this is unfortunate but unavoidable so that these extern types can continue to be used where they were before. Performing these relaxations in the standard library and rustc are desirable longer-term anyway, but some bounds are not as relaxed as they ideally would be due to the inability to relax `Deref::Target` (this will be investigated separately).
It is hoped that this is implemented such that it could be merged and these traits could exist "under the hood" without that being observable to the user (other than in any performance impact this has on the compiler, etc). Some details might leak through due to the standard library relaxations, but this has not been observed in test output.
**Notes:**
- Any commits starting with "upstream:" can be ignored, as these correspond to other upstream PRs that this is based on which have yet to be merged.
- This best reviewed commit-by-commit. I've attempted to make the implementation easy to follow and keep similar changes and test output updates together.
- Each commit has a short description describing its purpose.
- This patch is large but it's primarily in the test suite.
- I've worked on the performance of this patch and a few optimisations are implemented so that the performance impact is neutral-to-minor.
- `PointeeSized` is a different name from the RFC just to make it more obvious that it is different from `std::ptr::Pointee` but all the names are yet to be bikeshed anyway.
- `@nikomatsakis` has confirmed [that this can proceed as an experiment from the t-lang side](https://rust-lang.zulipchat.com/#narrow/channel/435869-project-goals/topic/SVE.20and.20SME.20on.20AArch64.20.28goals.23270.29/near/506196491)
- FCP in https://github.com/rust-lang/rust/pull/137944#issuecomment-2912207485Fixesrust-lang/rust#79409.
r? `@ghost` (I'll discuss this with relevant teams to find a reviewer)
Apply ABI attributes on return types in `rustc_codegen_cranelift`
- The [x86-64 System V ABI standard](https://gitlab.com/x86-psABIs/x86-64-ABI/-/jobs/artifacts/master/raw/x86-64-ABI/abi.pdf?job=build) doesn't sign/zero-extend integer arguments or return types.
- But the de-facto standard as implemented by Clang and GCC is to sign/zero-extend arguments to 32 bits (but not return types).
- Additionally, Apple targets [sign/zero-extend both arguments and return values to 32 bits](https://developer.apple.com/documentation/xcode/writing-64-bit-intel-code-for-apple-platforms#Pass-arguments-to-functions-correctly).
- However, the `rustc_target` ABI adjustment code currently [unconditionally extends both arguments and return values to 32 bits](e703dff8fe/compiler/rustc_target/src/callconv/x86_64.rs (L240)) on all targets.
- This doesn't cause a miscompilation when compiling with LLVM as LLVM will ignore the `signext`/`zeroext` attribute when applied to return types on non-Apple x86-64 targets.
- Cranelift, however, does not have a similar special case, requiring `rustc` to set the argument extension attribute correctly.
- However, `rustc_codegen_cranelift` doesn't currently apply ABI attributes to return types at all, meaning `rustc_codegen_cranelift` will currently miscompile `i8`/`u8`/`i16`/`u16` returns on x86-64 Apple targets as those targets require sign/zero-extension of return types.
This PR fixes the bug(s) by making the `rustc_target` x86-64 System V ABI only mark return types as sign/zero-extended on Apple platforms, while also making `rustc_codegen_cranelift` apply ABI attributes to return types. The RISC-V and s390x C ABIs also require sign/zero extension of return types, so this will fix those targets when building with `rustc_codegen_cranelift` too.
r? `````@bjorn3`````
Move metadata object generation for dylibs to the linker code
This deduplicates some code between codegen backends and may in the future allow adding extra metadata that is only known at link time.
Prerequisite of https://github.com/rust-lang/rust/issues/96708.
Unimplement unsized_locals
Implements https://github.com/rust-lang/compiler-team/issues/630
Tracking issue here: https://github.com/rust-lang/rust/issues/111942
Note that this just removes the feature, not the implementation, and does not touch `unsized_fn_params`. This is because it is required to support `Box<dyn FnOnce()>: FnOnce()`.
There may be more that should be removed (possibly in follow up prs)
- the `forget_unsized` function and `forget` intrinsic.
- the `unsized_locals` test directory; I've just fixed up the tests for now
- various codegen support for unsized values and allocas
cc ``@JakobDegen`` ``@oli-obk`` ``@Noratrieb`` ``@programmerjake`` ``@bjorn3``
``@rustbot`` label F-unsized_locals
Fixesrust-lang/rust#79409
In PR 90877 T-lang decided not to remove `intrinsics::pref_align_of`.
However, the intrinsic and its supporting code
1. is a nightly feature, so can be removed at compiler/libs discretion
2. requires considerable effort in the compiler to support, as it
necessarily complicates every single site reasoning about alignment
3. has been justified based on relevance to codegen, but it is only a
requirement for C++ (not C, not Rust) stack frame layout for AIX,
in ways Rust would not consider even with increased C++ interop
4. is only used by rustc to overalign some globals, not correctness
5. can be adequately replaced by other rules for globals, as it mostly
affects alignments for a few types under 16 bytes of alignment
6. has only one clear benefactor: automating C -> Rust translation
for GNU extensions like `__alignof`
7. such code was likely intended to be `alignof` or `_Alignof`,
because the GNU extension is a "false friend" of the C keyword,
which makes the choice to support such a mapping very questionable
8. makes it easy to do incorrect codegen in the compiler by its mere
presence as usual Rust rules of alignment (e.g. `size == align * N`)
do not hold with preferred alignment
The implementation is clearly damaging the code quality of the compiler.
Thus it is within the compiler team's purview to simply rip it out.
If T-lang wishes to have this intrinsic restored for c2rust's benefit,
it would have to use a radically different implementation that somehow
does not cause internal incorrectness.
Until then, remove the intrinsic and its supporting code, as one tool
and an ill-considered GCC extension cannot justify risking correctness.
Because we touch a fair amount of the compiler to change this at all,
and unfortunately the duplication of AbiAndPrefAlign is deep-rooted,
we keep an "AbiAlign" type which we can wean code off later.
Replace ad-hoc ABI "adjustments" with an `AbiMap` to `CanonAbi`
Our `conv_from_spec_abi`, `adjust_abi`, and `is_abi_supported` combine to give us a very confusing way of reasoning about what _actual_ calling convention we want to lower our code to and whether we want to compile the resulting code at all. Instead of leaving this code as a miniature adventure game in which someone tries to combine stateful mutations into a Rube Goldberg machine that will let them escape the maze and arrive at the promised land of codegen, we let `AbiMap` devour this complexity. Once you have an `AbiMap`, you can answer which `ExternAbi`s will lower to what `CanonAbi`s (and whether they will lower at all).
Removed:
- `conv_from_spec_abi` replaced by `AbiMap::canonize_abi`
- `adjust_abi` replaced by same
- `Conv::PreserveAll` as unused
- `Conv::Cold` as unused
- `enum Conv` replaced by `enum CanonAbi`
target-spec.json changes:
- If you have a target-spec.json then now your "entry-abi" key will be specified in terms of one of the `"{abi}"` strings Rust recognizes, e.g.
```json
"entry-abi": "C",
"entry-abi": "win64",
"entry-abi": "aapcs",
```
Merge `compiler-builtins` as a Josh subtree
Use the Josh [1] utility to add `compiler-builtins` as a subtree, which
will allow us to stop using crates.io for updates. This is intended to
help resolve some problems when unstable features change and require
code changes in `compiler-builtins`, which sometimes gets trapped in a
bootstrap cycle.
This was done using `josh-filter` built from the r24.10.04 tag:
git fetch https://github.com/rust-lang/compiler-builtins.git 233434412fe7eced8f1ddbfeddabef1d55e493bd
josh-filter ":prefix=library/compiler-builtins" FETCH_HEAD
git merge --allow-unrelated FILTERED_HEAD
The HEAD in the `compiler-builtins` repository is 233434412f ("fix an if
statement that can be collapsed").
[1]: https://github.com/josh-project/josh
Implement the internal feature `cfg_target_has_reliable_f16_f128`
Support for `f16` and `f128` is varied across targets, backends, and backend versions. Eventually we would like to reach a point where all backends support these approximately equally, but until then we have to work around some of these nuances of support being observable.
Introduce the `cfg_target_has_reliable_f16_f128` internal feature, which provides the following new configuration gates:
* `cfg(target_has_reliable_f16)`
* `cfg(target_has_reliable_f16_math)`
* `cfg(target_has_reliable_f128)`
* `cfg(target_has_reliable_f128_math)`
`reliable_f16` and `reliable_f128` indicate that basic arithmetic for the type works correctly. The `_math` versions indicate that anything relying on `libm` works correctly, since sometimes this hits a separate class of codegen bugs.
These options match configuration set by the build script at [1]. The logic for LLVM support is duplicated as-is from the same script. There are a few possible updates that will come as a follow up.
The config introduced here is not planned to ever become stable, it is only intended to replace the build scripts for `std` tests and `compiler-builtins` that don't have any way to configure based on the codegen backend.
MCP: https://github.com/rust-lang/compiler-team/issues/866
Closes: https://github.com/rust-lang/compiler-team/issues/866
[1]: 555e1d0386/library/std/build.rs (L84-L186)
---
The second commit makes use of this config to replace `cfg_{f16,f128}{,_math}` in `library/`. I omitted providing a `cfg(bootstrap)` configuration to keep things simpler since the next beta branch is in two weeks.
try-job: aarch64-gnu
try-job: i686-msvc-1
try-job: test-various
try-job: x86_64-gnu
try-job: x86_64-msvc-ext2
Support for `f16` and `f128` is varied across targets, backends, and
backend versions. Eventually we would like to reach a point where all
backends support these approximately equally, but until then we have to
work around some of these nuances of support being observable.
Introduce the `cfg_target_has_reliable_f16_f128` internal feature, which
provides the following new configuration gates:
* `cfg(target_has_reliable_f16)`
* `cfg(target_has_reliable_f16_math)`
* `cfg(target_has_reliable_f128)`
* `cfg(target_has_reliable_f128_math)`
`reliable_f16` and `reliable_f128` indicate that basic arithmetic for
the type works correctly. The `_math` versions indicate that anything
relying on `libm` works correctly, since sometimes this hits a separate
class of codegen bugs.
These options match configuration set by the build script at [1]. The
logic for LLVM support is duplicated as-is from the same script. There
are a few possible updates that will come as a follow up.
The config introduced here is not planned to ever become stable, it is
only intended to replace the build scripts for `std` tests and
`compiler-builtins` that don't have any way to configure based on the
codegen backend.
MCP: https://github.com/rust-lang/compiler-team/issues/866
Closes: https://github.com/rust-lang/compiler-team/issues/866
[1]: 555e1d0386/library/std/build.rs (L84-L186)
make abi_unsupported_vector_types a hard error
Fixes https://github.com/rust-lang/rust/issues/116558 by completing the transition; see that issue for context. The lint was introduced with Rust 1.84 and this has been shown in cargo's future breakage reports since Rust 1.85, released 6 weeks ago, and so far we got 0 complaints by users. There's not even a backlink on the tracking issue. We did a [crater run](https://github.com/rust-lang/rust/pull/127731#issuecomment-2286736295) when the lint was originally added and found no breakage. So I don't think we need another crater run now, but I can do one if the team prefers that.
https://github.com/rust-lang/rust/issues/131800 is done, so for most current targets (in particular, all tier 1 and tier 2 targets) we have the information to implement this check (modulo the targets where we don't properly support SIMD vectors yet, see the sub-issues of https://github.com/rust-lang/rust/issues/116558). If a new target gets added in the future, it will default to reject all SIMD vector types until proper information is added, which is the default we want.
This will need approval by for `@rust-lang/lang.` Cc `@workingjubilee` `@veluca93`
try-job: test-various
try-job: armhf-gnu
try-job: dist-i586-gnu-i586-i686-musl
`hir::AssocItem` currently has a boolean `fn_has_self_parameter` field,
which is misplaced, because it's only relevant for associated fns, not
for associated consts or types. This commit moves it (and renames it) to
the `AssocKind::Fn` variant, where it belongs.
This requires introducing a new C-style enum, `AssocTag`, which is like
`AssocKind` but without the fields. This is because `AssocKind` values
are passed to various functions like `find_by_ident_and_kind` to
indicate what kind of associated item should be searched for, and having
to specify `has_self` isn't relevant there.
New methods:
- Predicates `AssocItem::is_fn` and `AssocItem::is_method`.
- `AssocItem::as_tag` which converts `AssocItem::kind` to `AssocTag`.
Removed `find_by_name_and_kinds`, which is unused.
`AssocItem::descr` can now distinguish between methods and associated
functions, which slightly improves some error messages.