Specifically, rename the `Const` struct as `ConstS` and re-introduce `Const` as
this:
```
pub struct Const<'tcx>(&'tcx Interned<ConstS>);
```
This now matches `Ty` and `Predicate` more closely, including using
pointer-based `eq` and `hash`.
Notable changes:
- `mk_const` now takes a `ConstS`.
- `Const` was copy, despite being 48 bytes. Now `ConstS` is not, so need a
we need separate arena for it, because we can't use the `Dropless` one any
more.
- Many `&'tcx Const<'tcx>`/`&Const<'tcx>` to `Const<'tcx>` changes
- Many `ct.ty` to `ct.ty()` and `ct.val` to `ct.val()` changes.
- Lots of tedious sigil fiddling.
Specifically, change `Region` from this:
```
pub type Region<'tcx> = &'tcx RegionKind;
```
to this:
```
pub struct Region<'tcx>(&'tcx Interned<RegionKind>);
```
This now matches `Ty` and `Predicate` more closely.
Things to note
- Regions have always been interned, but we haven't been using pointer-based
`Eq` and `Hash`. This is now happening.
- I chose to impl `Deref` for `Region` because it makes pattern matching a lot
nicer, and `Region` can be viewed as just a smart wrapper for `RegionKind`.
- Various methods are moved from `RegionKind` to `Region`.
- There is a lot of tedious sigil changes.
- A couple of types like `HighlightBuilder`, `RegionHighlightMode` now have a
`'tcx` lifetime because they hold a `Ty<'tcx>`, so they can call `mk_region`.
- A couple of test outputs change slightly, I'm not sure why, but the new
outputs are a little better.
by using an opaque type obligation to bubble up comparisons between opaque types and other types
Also uses proper obligation causes so that the body id works, because out of some reason nll uses body ids for logic instead of just diagnostics.
Instead of special-casing mutable pointers/references, we
now support general generic types (currently, we handle
`ty::Ref`, `ty::RawPtr`, and `ty::Adt`)
When a `ty::Adt` is involved, we show an additional note
explaining which of the type's generic parameters is
invariant (e.g. the `T` in `Cell<T>`). Currently, we don't
explain *why* a particular generic parameter ends up becoming
invariant. In the general case, this could require printing
a long 'backtrace' of types, so doing this would be
more suitable for a follow-up PR.
We still only handle the case where our variance switches
to `ty::Invariant`.
Remove `in_band_lifetimes` from `rustc_infer`
See #91867 for more information.
This crate actually had a typo `'ctx` in one of its functions:
```diff
-pub fn same_type_modulo_infer(a: Ty<'tcx>, b: Ty<'ctx>) -> bool {
+pub fn same_type_modulo_infer<'tcx>(a: Ty<'tcx>, b: Ty<'tcx>) -> bool {
```
Also, I wasn't entirely sure about the lifetimes in `suggest_new_region_bound`:
```diff
pub fn suggest_new_region_bound(
- tcx: TyCtxt<'tcx>,
+ tcx: TyCtxt<'_>,
err: &mut DiagnosticBuilder<'_>,
fn_returns: Vec<&rustc_hir::Ty<'_>>,
```
Should all of those lifetimes really be distinct?
This crate actually had a typo `'ctx` in one of its functions:
```diff
-pub fn same_type_modulo_infer(a: Ty<'tcx>, b: Ty<'ctx>) -> bool {
+pub fn same_type_modulo_infer<'tcx>(a: Ty<'tcx>, b: Ty<'tcx>) -> bool {
```
Be explicit about using Binder::dummy
This is somewhat of a late followup to the binder refactor PR. It removes `ToPredicate` and `ToPolyTraitImpls` that hide the use of `Binder::dummy`. While this does make code a bit more verbose, it allows us be more careful about where we create binders.
Another alternative here might be to add a new trait `ToBinder` or something with a `dummy()` fn. Which could still allow grepping but allows doing something like `trait_ref.dummy()` (but I also wonder if longer-term, it would be better to be even more explicit with a `bind_with_vars(ty::List::empty())` *but* that's not clear yet.
r? ``@nikomatsakis``
I didn't like the sub-unify code executing when a predicate was
ENQUEUED, that felt fragile. I would have preferred to move the
sub-unify code so that it only occurred during generalization, but
that impacted diagnostics, so having it also occur when we process
subtype predicates felt pretty reasonable. (I guess we only need one
or the other, but I kind of prefer both, since the generalizer
ultimately feels like the *right* place to guarantee the properties we
want.)
const_evaluatable_checked: fix occurs check
fixes#79615
this is kind of a hack because we use `TypeRelation` for both the `Generalizer` and the `ConstInferUnifier` but i am not sure if there is a useful way to disentangle this without unnecessarily duplicating some code.
The error in the added test is kind of unavoidable until we erase the unused substs of `ConstKind::Unevaluated`. We talked a bit about this in the cg lazy norm meeting (https://rust-lang.zulipchat.com/#narrow/stream/260443-project-const-generics/topic/lazy_normalization_consts)
Mostly to fix ui/issues/issue-37311-type-length-limit/issue-37311.rs.
Most parts of the compiler can handle deeply nested types with a lot
of duplicates just fine, but some parts still attempt to naively
traverse type tree.
Before such problems were caught by type length limit check,
but now these places will have to be changed to handle
duplicated types gracefully.