rustdoc: Erase `#![doc(document_private_items)]`
I just found out about the existence of `#![doc(document_private_items)]`. Apparently it was added by PR rust-lang/rust#50669 back in 2018 without any tests or docs as a replacement for some specific forms of the removed `#![doc(passes)]` / `#![doc(no_default_passes)]`.
However, rustc and rustdoc actually emit the deny-by-default lint `invalid_doc_attributes` for it (but if you allow it, the attribute does function)! To be more precise since PR rust-lang/rust#82708 (1.52, May 2021) which introduced lint `invalid_doc_attributes`, rust{,do}c has emitted a future-incompat warning for this attribute. And since PR rust-lang/rust#111505 (1.78, May 2024) that lint is deny by default. I presume nobody knew this attribute existed and thus it was never allowlisted.
Given the fact that since 2021 nobody has ever opened a ticket ([via](https://github.com/rust-lang/rust/issues?q=is%3Aissue+document_private_items)) complaining about the lint emission and the fact that GitHub code search doesn't yield any actual uses ([via](https://github.com/search?q=%2F%23%21%5C%5Bdoc%5C%28.*%3Fdocument_private_items%2F+language%3ARust&type=code&ref=advsearch)), I'm led to believe that nobody knows about and uses this attribute.
I don't find the existence of this attribute to be justified since in my view the flag `--document-private-items` is strictly superior: In most if not all cases, you don't want to "couple" your crate with this "mode" even if you gate it behind a cfg; instead, you most likely want to set this manually at invocation time, via a build config file like `.cargo/config.toml` or via a command runner like `just` I'd say.
Because of this I propose to wipe this attribute from existence. I don't believe it's worth cratering this (i.e., temporarily emitting a hard error for this attribute and running crater) given the fact that it's been undocumented since forever and led to a warning for years.
stop specializing on `Copy`
fixes https://github.com/rust-lang/rust/issues/132442
`std` specializes on `Copy` to optimize certain library functions such as `clone_from_slice`. This is unsound, however, as the `Copy` implementation may not be always applicable because of lifetime bounds, which specialization does not take into account; the result being that values are copied even though they are not `Copy`. For instance, this code:
```rust
struct SometimesCopy<'a>(&'a Cell<bool>);
impl<'a> Clone for SometimesCopy<'a> {
fn clone(&self) -> Self {
self.0.set(true);
Self(self.0)
}
}
impl Copy for SometimesCopy<'static> {}
let clone_called = Cell::new(false);
// As SometimesCopy<'clone_called> is not 'static, this must run `clone`,
// setting the value to `true`.
let _ = [SometimesCopy(&clone_called)].clone();
assert!(clone_called.get());
```
should not panic, but does ([playground](https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=6be7a48cad849d8bd064491616fdb43c)).
To solve this, this PR introduces a new `unsafe` trait: `TrivialClone`. This trait may be implemented whenever the `Clone` implementation is equivalent to copying the value (so e.g. `fn clone(&self) -> Self { *self }`). Because of lifetime erasure, there is no way for the `Clone` implementation to observe lifetime bounds, meaning that even if the `TrivialClone` has stricter bounds than the `Clone` implementation, its invariant still holds. Therefore, it is sound to specialize on `TrivialClone`.
I've changed all `Copy` specializations in the standard library to specialize on `TrivialClone` instead. Unfortunately, the unsound `#[rustc_unsafe_specialization_marker]` attribute on `Copy` cannot be removed in this PR as `hashbrown` still depends on it. I'll make a PR updating `hashbrown` once this lands.
With `Copy` no longer being considered for specialization, this change alone would result in the standard library optimizations not being applied for user types unaware of `TrivialClone`. To avoid this and restore the optimizations in most cases, I have changed the expansion of `#[derive(Clone)]`: Currently, whenever both `Clone` and `Copy` are derived, the `clone` method performs a copy of the value. With this PR, the derive macro also adds a `TrivialClone` implementation to make this case observable using specialization. I anticipate that most users will use `#[derive(Clone, Copy)]` whenever both are applicable, so most users will still profit from the library optimizations.
Unfortunately, Hyrum's law applies to this PR: there are some popular crates which rely on the precise specialization behaviour of `core` to implement "specialization at home", e.g. [`libAFL`](89cff63702/libafl_bolts/src/tuples.rs (L27-L49)). I have no remorse for breaking such horrible code, but perhaps we should open other, better ways to satisfy their needs – for example by dropping the `'static` bound on `TypeId::of`...
Remove `#[const_trait]`
Remove `#[const_trait]` since we now have `const trait`. Update all structured diagnostics that still suggested the attribute.
r? ```@rust-lang/project-const-traits```
Add LLVM realtime sanitizer
This is a new attempt at adding the [LLVM real-time sanitizer](https://clang.llvm.org/docs/RealtimeSanitizer.html) to rust.
Previously this was attempted in https://github.com/rust-lang/rfcs/pull/3766.
Since then the `sanitize` attribute was introduced in https://github.com/rust-lang/rust/pull/142681 and it is a lot more flexible than the old `no_santize` attribute. This allows adding real-time sanitizer without the need for a new attribute, like it was proposed in the RFC. Because i only add a new value to a existing command line flag and to a attribute i don't think an MCP is necessary.
Currently real-time santizer is usable in rust code with the [rtsan-standalone](https://crates.io/crates/rtsan-standalone) crate. This downloads or builds the sanitizer runtime and then links it into the rust binary.
The first commit adds support for more detailed sanitizer information.
The second commit then actually adds real-time sanitizer.
The third adds a warning against using real-time sanitizer with async functions, cloures and blocks because it doesn't behave as expected when used with async functions. I am not sure if this is actually wanted, so i kept it in a seperate commit.
The fourth commit adds the documentation for real-time sanitizer.
This implements a new unstable compiler flag `-Zannotate-moves` that makes
move and copy operations visible in profilers by creating synthetic debug
information. This is achieved with zero runtime cost by manipulating debug
info scopes to make moves/copies appear as calls to `compiler_move<T, SIZE>`
and `compiler_copy<T, SIZE>` marker functions in profiling tools.
This allows developers to identify expensive move/copy operations in their
code using standard profiling tools, without requiring specialized tooling
or runtime instrumentation.
The implementation works at codegen time. When processing MIR operands
(`Operand::Move` and `Operand::Copy`), the codegen creates an `OperandRef`
with an optional `move_annotation` field containing an `Instance` of the
appropriate profiling marker function. When storing the operand,
`store_with_annotation()` wraps the store operation in a synthetic debug
scope that makes it appear inlined from the marker.
Two marker functions (`compiler_move` and `compiler_copy`) are defined
in `library/core/src/profiling.rs`. These are never actually called -
they exist solely as debug info anchors.
Operations are only annotated if the type:
- Meets the size threshold (default: 65 bytes, configurable via
`-Zannotate-moves=SIZE`)
- Has a non-scalar backend representation (scalars use registers,
not memcpy)
This has a very small size impact on object file size. With the default
limit it's well under 0.1%, and even with a very small limit of 8 bytes
it's still ~1.5%. This could be enabled by default.
Change cfg_trace, cfg_attr_trace symbol values
For debugging - I ran into this working on `cfg` stuff in Clippy where I didn't notice the value was wrapped in `<>`, adding `_trace` makes it easier to spot
Implement pin-project in pattern matching for `&pin mut|const T`
This PR implements part of rust-lang/rust#130494. It supports pin-project in pattern matching for `&pin mut|const T`.
~Pin-projection by field access (i.e. `&pin mut|const place.field`) is not fully supported yet since pinned-borrow is not ready (rust-lang/rust#135731).~
CC ``````@traviscross``````
Mark desugared range expression spans with DesugaringKind::RangeExpr
This is a prerequisite to removing `QPath::LangItem` (rust-lang/rust#115178) because otherwise there would be no way to detect a range expression in the HIR.
There are some non-obvious Clippy changes so a Clippy team review would be good.
Where supported, VSX is a 64x128b register set which encompasses
both the floating point and vector registers.
In the type tests, xvsqrtdp is used as it is the only two-argument
vsx opcode supported by all targets on llvm. If you need to copy
a vsx register, the preferred way is "xxlor xt, xa, xa".
Validate CopyForDeref and DerefTemps better and remove them from runtime MIR
(split from my WIP rust-lang/rust#145344)
This PR:
- Removes `Rvalue::CopyForDeref` and `LocalInfo::DerefTemp` from runtime MIR
- Using a new mir pass `EraseDerefTemps`
- `CopyForDeref(x)` is turned into `Use(Copy(x))`
- `DerefTemp` is turned into `Boring`
- Not sure if this part is actually necessary, it made more sense in rust-lang/rust#145344 with `DerefTemp` storing actual data that I wanted to keep from having to be kept in sync with the rest of the body in runtime MIR
- Checks in validation that `CopyForDeref` and `DerefTemp` are only used together
- Removes special handling for `CopyForDeref` from many places
- Removes `CopyForDeref` from `custom_mir` reverting rust-lang/rust#111587
- In runtime MIR simple copies can be used instead
- In post cleanup analysis MIR it was already wrong to use due to the lack of support for creating `DerefTemp` locals
- Possibly this should be its own PR?
- Adds an argument to `deref_finder` to avoid creating new `DerefTemp`s and `CopyForDeref` in runtime MIR.
- Ideally we would just avoid making intermediate derefs instead of fixing it at the end of a pass / during shim building
- Removes some usages of `deref_finder` that I found out don't actually do anything
r? oli-obk
Prevent downstream `impl DerefMut for Pin<LocalType>`
The safety requirements for [`PinCoerceUnsized`](https://doc.rust-lang.org/stable/std/pin/trait.PinCoerceUnsized.html) are essentially that the type does not have a malicious `Deref` or `DerefMut` impl. However, the `Pin` type is fundamental, so the end-user can provide their own implementation of `DerefMut` for `Pin<&SomeLocalType>`, so it's possible for `Pin` to have a malicious `DerefMut` impl. This unsoundness is known as rust-lang/rust#85099.
Unfortunately, this means that the implementation of `PinCoerceUnsized` for `Pin` is currently unsound. To fix that, modify the impl so that it becomes impossible for downstream crates to provide their own implementation of `DerefMut` for `Pin` by abusing a hidden struct that is not fundamental.
This PR is a breaking change, but it fixesrust-lang/rust#85099. The PR supersedes rust-lang/rust#144896.
r? lcnr
Skip cleanups on unsupported targets
This commit is an update to the `AbortUnwindingCalls` MIR pass in the compiler. Specifically a new boolean is added for "can this target possibly unwind" and if that's `false` then terminators are all adjusted to be unreachable/not present. The end result is that this fixesrust-lang/rust#140293 for wasm targets.
The motivation for this PR is that currently on WebAssembly targets the usage of the `C-unwind` ABI can lead LLVM to either (a) emit exception-handling instructions or (b) hit a LLVM-ICE-style codegen error. WebAssembly as a base instruction set does not support unwinding at all, and a later proposal to WebAssembly, the exception-handling proposal, was what enabled this. This means that the current intent of WebAssembly targets is that they maintain the baseline of "don't emit exception-handling instructions unless enabled". The commit here is intended to restore this behavior by skipping these instructions even when `C-unwind` is present.
Exception-handling is a relatively tricky and also murky topic in WebAssembly, however. There are two sets of instructions LLVM can emit for WebAssembly exceptions, Rust's Emscripten target supports exceptions, WASI targets do not, the LLVM flags to enable this are not always obvious, and additionally this all touches on "changing exception-handling behavior should be a target-level concern, not a feature". Effectively WebAssembly's exception-handling integration into Rust is not finalized at this time. The best idea at this time is that a parallel set of targets will eventually be added which support exceptions, but it's not clear if/when to do this. In the meantime the goal is to keep existing targets working while still enabling experimentation with exception-handling with `-Zbuild-std` and various permutations of LLVM flags.
To that extent this commit does not blanket disable these landing pads and cleanup routines for WebAssembly but instead checks to see if panic=unwind is enabled or if `+exception-handling` is enabled. Tests are updated here as well to account for this where, by default, using a `C-unwind` ABI won't affect Rust codegen at all. If `+exception-handling` is enabled, however, then Rust codegen will look like native platforms where exceptions are caught and the program aborts. More-or-less I've done my best to keep exceptions working on wasm where it's possible to have them work, but turned them off where they're not supposed to be emitted.
Closesrust-lang/rust#140293
Reland "Add LSX accelerated implementation for source file analysis"
This patch introduces an LSX-optimized version of `analyze_source_file` for the `loongarch64` target. Similar to existing SSE2 implementation for x86, this version:
- Processes 16-byte chunks at a time using LSX vector intrinsics.
- Quickly identifies newlines in ASCII-only chunks.
- Falls back to the generic implementation when multi-byte UTF-8 characters are detected or in the tail portion.
Reland rust-lang/rust#145963
r? ``@lqd``
This patch introduces an LSX-optimized version of `analyze_source_file`
for the `loongarch64` target. Similar to existing SSE2 implementation
for x86, this version:
- Processes 16-byte chunks at a time using LSX vector intrinsics.
- Quickly identifies newlines in ASCII-only chunks.
- Falls back to the generic implementation when multi-byte UTF-8
characters are detected or in the tail portion.
Introduce CoerceShared lang item and trait, and basic Reborrow tests
Part of rust-lang/rust#145612: This introduces the `CoerceShared` trait which is the `Reborrow` equivalent of a `&mut T` -> `&T` coercion. The trait has a `Target` GAT which makes this (currently) unique in the `core/src/marker.rs`; I'm not sure if this can be considered problematic. Maybe this is not the way such things should be done at the marker trait level? Or maybe it is fine.
Improtantly, this PR introduces a battery of basic `Reborrow` and `CoerceShared` tests. These test the very basics of the feature; custom marker types intended to have exclusive semantics (`Custom<'a>(PhantomData<&'a mut ()>)`), custom exclusive reference wrappers, and standard library exclusive reference wrappers (`Pin<&mut T>` and `Option<&mut T>`). None of these of course work since the implementation for `Reborrow` and `CoerceShared` is entirely missing, but this is the first step towards making these work.
Future PRs will introduce more tests, such as "recursive" reborrowing (ie. reborrowing structs that contain multiple reborrowable fields) and checks around the lifetime semantics of reborrowing ie. that a reborrow produces a new type with the same lifetime as the original.