Add new `doc(attribute = "...")` attribute
Fixesrust-lang/rust#141123.
The implementation and purpose of this new `#[doc(attribute = "...")]` attribute is very close to `#[doc(keyword = "...")]`. Which means that luckily for us, most of the code needed was already in place and `@Noratrieb` nicely wrote a first draft that helped me implement this new attribute very fast.
Now with all this said, there is one thing I didn't do yet: adding a `rustdoc-js-std` test. I added GUI tests with search results for attributes so should be fine but I still plan on adding one for it once documentation for builtin attributes will be written into the core/std libs.
You can test it [here](https://rustdoc.crud.net/imperio/doc-attribute-attribute/foo/index.html).
cc `@Noratrieb` `@Veykril`
Experiment: Reborrow trait
Tracking issue: rust-lang/rust#145612
Starting off really small here: just introduce the unstable feature and the feature gate, and one of the two traits that the Reborrow experiment deals with.
### Cliff-notes explanation
The `Reborrow` trait is conceptually a close cousin of `Copy` with the exception that it disables the source (`self`) for the lifetime of the target / result of the reborrow action. It can be viewed as a method of `fn reborrow(self: Self<'a>) -> Self<'a>` with the compiler adding tracking of the resulting `Self<'a>` (or any value derived from it that retains the `'a` lifetime) to keep the `self` disabled for reads and writes.
No method is planned to be surfaced to the user, however, as reborrowing cannot be seen in code (except for method calls [`a.foo()` reborrows `a`] and explicit reborrows [`&*a`]) and thus triggering user-code in it could be viewed as "spooky action at a distance". Furthermore, the added compiler tracking cannot be seen on the method itself, violating the Golden Rule. Note that the userland "reborrow" method is not True Reborrowing, but rather a form of a "Fancy Deref":
```rust
fn reborrow(&'short self: Self<'long>) -> Self<'short>;
```
The lifetime shortening is the issue here: a reborrowed `Self` or any value derived from it is bound to the method that called `reborrow`, since `&'short` is effectively a local variable. True Reborrowing does not shorten the lifetime of the result.
To avoid having to introduce new kinds of references, new kinds of lifetime annotations, or a blessed trait method, no method will be introduced at all. Instead, the `Reborrow` trait is intended to be a derived trait that effectively reborrows each field individually; `Copy` fields end up just copying, while fields that themselves `Reborrow` get disabled in the source, usually leading to the source itself being disabled (some differences may appear with structs that contain multiple reborrowable fields). The goal of the experiment is to determine how the actual implementation here will shape out, and what the "bottom case" for the recursive / deriving `Reborrow` is.
`Reborrow` has a friend trait, `CoerceShared`, which is equivalent to a `&'a mut T -> &'a T` conversion. This is needed as a different trait and different operation due to the different semantics it enforces on the source: a `CoerceShared` operation only disables the source for writes / exclusive access for the lifetime of the result. That trait is not yet introduced in this PR, though there is no particular reason why it could not be introduced.
On E0277, point at type that doesn't implement bound
When encountering an unmet trait bound, point at local type that doesn't implement the trait:
```
error[E0277]: the trait bound `Bar<T>: Foo` is not satisfied
--> $DIR/issue-64855.rs:9:19
|
LL | pub struct Bar<T>(<Self as Foo>::Type) where Self: ;
| ^^^^^^^^^^^^^^^^^^^ unsatisfied trait bound
|
help: the trait `Foo` is not implemented for `Bar<T>`
--> $DIR/issue-64855.rs:9:1
|
LL | pub struct Bar<T>(<Self as Foo>::Type) where Self: ;
| ^^^^^^^^^^^^^^^^^
```
When encountering an unmet trait bound, point at local type that doesn't implement the trait:
```
error[E0277]: the trait bound `Bar<T>: Foo` is not satisfied
--> $DIR/issue-64855.rs:9:19
|
LL | pub struct Bar<T>(<Self as Foo>::Type) where Self: ;
| ^^^^^^^^^^^^^^^^^^^ unsatisfied trait bound
|
help: the trait `Foo` is not implemented for `Bar<T>`
--> $DIR/issue-64855.rs:9:1
|
LL | pub struct Bar<T>(<Self as Foo>::Type) where Self: ;
| ^^^^^^^^^^^^^^^^^
```
mention lint group in default level lint note
### Summary
This PR updates lint diagnostics so that default-level notes now mention the lint group they belong to, if any.
Fixes: rust-lang/rust#65464.
### Example
```rust
fn main() {
let x = 5;
}
```
Before:
```
= note: `#[warn(unused_variables)]` on by default
```
After:
```
= note: `#[warn(unused_variables)]` (part of `#[warn(unused)]`) on by default
```
### Unchanged Cases
Messages remain the same when the lint level is explicitly set, e.g.:
* Attribute on the lint `#[warn(unused_variables)]`:
```
note: the lint level is defined here
LL | #[warn(unused_variables)]
| ^^^^^^^^^^^^^^^^
```
* Attribute on the group `#[warn(unused)]:`:
```
= note: `#[warn(unused_variables)]` implied by `#[warn(unused)]`
```
* CLI option `-W unused`:
```
= note: `-W unused-variables` implied by `-W unused`
= help: to override `-W unused` add `#[allow(unused_variables)]`
```
* CLI option `-W unused-variables`:
```
= note: requested on the command line with `-W unused-variables`
```
Port must_use to the new target checking
This PR ports `must_use` to the new target checking logic
This also adds a tool-only suggestion to remove attributes on invalid targets, as to not immediately undo the work of https://github.com/rust-lang/rust/pull/145274
r? `@jdonszelmann`
Remove the `From` derive macro from prelude
The new `#[derive(From)]` functionality (implemented in https://github.com/rust-lang/rust/pull/144922) caused name resolution ambiguity issues (https://github.com/rust-lang/rust/issues/145524). The reproducer looks e.g. like this:
```rust
mod foo {
pub use derive_more::From;
}
use foo::*;
#[derive(From)] // ERROR: `From` is ambiguous
struct S(u32);
```
It's pretty unfortunate that it works like this, but I guess that there's not much to be done here, and we'll have to wait for the next edition to put the `From` macro into the prelude. That will probably require https://github.com/rust-lang/rust/pull/139493 to land.
I created a new module in core (and re-exported it in std) called `from`, where I re-exported the `From` macro. I *think* that since this is a new module, it should not have the same backwards incompatibility issue.
Happy to hear suggestions about the naming - maybe it would make sense as `core::macros::from::From`? But we already had a precedent in the `core::assert_matches` module, so I just followed suit.
Fixes: https://github.com/rust-lang/rust/issues/145524
r? ``@petrochenkov``
Remove the `#[no_sanitize]` attribute in favor of `#[sanitize(xyz = "on|off")]`
This came up during the sanitizer stabilization (rust-lang/rust#123617). Instead of a `#[no_sanitize(xyz)]` attribute, we would like to have a `#[sanitize(xyz = "on|off")]` attribute, which is more powerful and allows to be extended in the future (instead
of just focusing on turning sanitizers off). The implementation is done according to what was [discussed on Zulip](https://rust-lang.zulipchat.com/#narrow/channel/343119-project-exploit-mitigations/topic/Stabilize.20the.20.60no_sanitize.60.20attribute/with/495377292)).
The new attribute also works on modules, traits and impl items and thus enables usage as the following:
```rust
#[sanitize(address = "off")]
mod foo {
fn unsanitized(..) {}
#[sanitize(address = "on")]
fn sanitized(..) {}
}
trait MyTrait {
#[sanitize(address = "off")]
fn unsanitized_default(..) {}
}
#[sanitize(thread = "off")]
impl MyTrait for () {
...
}
```
r? ```@rcvalle```
This removes the #[no_sanitize] attribute, which was behind an unstable
feature named no_sanitize. Instead, we introduce the sanitize attribute
which is more powerful and allows to be extended in the future (instead
of just focusing on turning sanitizers off).
This also makes sanitize(kernel_address = ..) attribute work with
-Zsanitize=address
To do it the same as how clang disables address sanitizer, we now
disable ASAN on sanitize(kernel_address = "off") and KASAN on
sanitize(address = "off").
The same was added to clang in https://reviews.llvm.org/D44981.
This change implements the #[sanitize(..)] attribute, which opts to
replace the currently unstable #[no_sanitize]. Essentially the new
attribute works similar as #[no_sanitize], just with more flexible
options regarding where it is applied. E.g. it is possible to turn
a certain sanitizer either on or off:
`#[sanitize(address = "on|off")]`
This attribute now also applies to more places, e.g. it is possible
to turn off a sanitizer for an entire module or impl block:
```rust
\#[sanitize(address = "off")]
mod foo {
fn unsanitized(..) {}
#[sanitize(address = "on")]
fn sanitized(..) {}
}
\#[sanitize(thread = "off")]
impl MyTrait for () {
...
}
```
This attribute is enabled behind the unstable `sanitize` feature.
Implement declarative (`macro_rules!`) derive macros (RFC 3698)
This is a draft for review, and should not be merged yet.
This is layered atop https://github.com/rust-lang/rust/pull/145153 , and has
only two additional commits atop that. The first handles parsing and provides a
test for various parse errors. The second implements expansion and handles
application.
This implements RFC 3698, "Declarative (`macro_rules!`) derive macros".
Tracking issue: https://github.com/rust-lang/rust/issues/143549
This has one remaining issue, which I could use some help debugging: in
`tests/ui/macros/macro-rules-derive-error.rs`, the diagnostics for
`derive(fn_only)` (for a `fn_only` with no `derive` rules) and
`derive(ForwardReferencedDerive)` both get emitted twice, as a duplicate
diagnostic.
From what I can tell via adding some debugging code,
`unresolved_macro_suggestions` is getting called twice from
`finalize_macro_resolutions` for each of them, because
`self.single_segment_macro_resolutions` has two entries for the macro, with two
different `parent_scope` values. I'm not clear on why that happened; it doesn't
happen with the equivalent code using attrs.
I'd welcome any suggestions for fixing this.
Modify `AttributeTemplate` to support list of alternatives for list and name value attribute styles.
Suggestions now provide more correct suggested code:
```
error[E0805]: malformed `used` attribute input
--> $DIR/used_with_multi_args.rs:3:1
|
LL | #[used(compiler, linker)]
| ^^^^^^------------------^
| |
| expected a single argument here
|
help: try changing it to one of the following valid forms of the attribute
|
LL - #[used(compiler, linker)]
LL + #[used(compiler)]
|
LL - #[used(compiler, linker)]
LL + #[used(linker)]
|
LL - #[used(compiler, linker)]
LL + #[used]
|
```
instead of the prior "masking" of the lack of this feature by suggesting pipe-separated lists:
```
error[E0805]: malformed `used` attribute input
--> $DIR/used_with_multi_args.rs:3:1
|
LL | #[used(compiler, linker)]
| ^^^^^^------------------^
| |
| expected a single argument here
|
help: try changing it to one of the following valid forms of the attribute
|
LL - #[used(compiler, linker)]
LL + #[used(compiler|linker)]
|
LL - #[used(compiler, linker)]
LL + #[used]
|
```
Disabling loading of pretty printers in the debugger itself is more
reliable. Before this commit the .gdb_debug_scripts section couldn't be
included in dylibs or rlibs as otherwise there is no way to disable the
section anymore without recompiling the entire standard library.
Mitigate `#[align]` name resolution ambiguity regression with a rename
Mitigates beta regression rust-lang/rust#143834 after a beta backport.
### Background on the beta regression
The name resolution regression arises due to rust-lang/rust#142507 adding a new feature-gated built-in attribute named `#[align]`. However, unfortunately even [introducing new feature-gated unstable built-in attributes can break user code](https://www.github.com/rust-lang/rust/issues/134963) such as
```rs
macro_rules! align {
() => {
/* .. */
};
}
pub(crate) use align; // `use` here becomes ambiguous
```
### Mitigation approach
This PR renames `#[align]` to `#[rustc_align]` to mitigate the beta regression by:
1. Undoing the introduction of a new built-in attribute with a common name, i.e. `#[align]`.
2. Renaming `#[align]` to `#[rustc_align]`. The renamed attribute being `rustc_align` will not introduce new stable breakages, as attributes beginning with `rustc` are reserved and perma-unstable. This does mean existing nightly code using `fn_align` feature will additionally need to specify `#![feature(rustc_attrs)]`.
This PR is very much a short-term mitigation to alleviate time pressure from having to fully fix the current limitation of inevitable name resolution regressions that would arise from adding any built-in attributes. Long-term solutions are discussed in [#t-lang > namespacing macro attrs to reduce conflicts with new adds](https://rust-lang.zulipchat.com/#narrow/channel/213817-t-lang/topic/namespacing.20macro.20attrs.20to.20reduce.20conflicts.20with.20new.20adds/with/529249622).
### Alternative mitigation options
[Various mitigation options were considered during the compiler triage meeting](https://github.com/rust-lang/rust/issues/143834#issuecomment-3084415277), and those consideration are partly reproduced here:
- Reverting the PR doesn't seem very minimal/trivial, and carries risks of its own.
- Rename to a less-common but aim-to-stabilization name is itself not safe nor convenient, because (1) that risks introducing new regressions (i.e. ambiguity against the new name), and (2) lang would have to FCP the new name hastily for the mitigation to land timely and have a chance to be backported. This also makes the path towards stabilization annoying.
- Rename the attribute to a rustc attribute, which will be perma-unstable and does not cause new ambiguities in stable code.
- This alleviates the time pressure to address *this* regression, or for lang to have to rush an FCP for some new name that can still break user code.
- This avoids backing out a whole implementation.
### Review advice
This PR is best reviewed commit-by-commit.
- Commit 1 adds a test `tests/ui/attributes/fn-align-nameres-ambiguity-143834.rs` which demonstrates the current name resolution regression re. `align`. This test fails against current master.
- Commit 2 carries out the renames and test reblesses. Notably, commit 2 will cause `tests/ui/attributes/fn-align-nameres-ambiguity-143834.rs` to change from fail (nameres regression) to pass.
This PR, if the approach still seems acceptable, will need a beta-backport to address the beta regression.
From `#[align]` -> `#[rustc_align]`. Attributes starting with `rustc`
are always perma-unstable and feature-gated by `feature(rustc_attrs)`.
See regression RUST-143834.
For the underlying problem where even introducing new feature-gated
unstable built-in attributes can break user code such as
```rs
macro_rules! align {
() => {
/* .. */
};
}
pub(crate) use align; // `use` here becomes ambiguous
```
refer to RUST-134963.
Since the `#[align]` attribute is still feature-gated by
`feature(fn_align)`, we can rename it as a mitigation. Note that
`#[rustc_align]` will obviously mean that current unstable user code
using `feature(fn_aling)` will need additionally `feature(rustc_attrs)`,
but this is a short-term mitigation to buy time, and is expected to be
changed to a better name with less collision potential.
See
<https://rust-lang.zulipchat.com/#narrow/channel/238009-t-compiler.2Fmeetings/topic/.5Bweekly.5D.202025-07-17/near/529290371>
where mitigation options were considered.
Having multiple relaxed bounds like `?Sized + ?Iterator` is actually *fine*.
We actually want to reject *duplicate* relaxed bounds like `?Sized + ?Sized`
because these most certainly represent a user error.
Note that this doesn't mean that we accept more code because a bound like
`?Iterator` is still invalid as it's not relaxing a *default* trait and
the only way to define / use more default bounds is under the experimental
and internal feature `more_maybe_bounds` plus `lang_items` plus unstable
flag `-Zexperimental-default-bounds` (historical context: for the longest
time, bounds like `?Iterator` were actually allowed and lead to a hard
warning).
Ultimately, this simply *reframes* the diagnostic. The scope of
`more_maybe_bounds` / `-Zexperimental-default-bounds` remains unchanged
as well.
* The phrasing "only does something for" made sense back when this
diagnostic was a (hard) warning. Now however, it's simply a hard
error and thus completely rules out "doing something".
* The primary message was way too long
* The new wording more closely mirrors the wording we use for applying
other bound modifiers (like `const` and `async`) to incompatible
traits.
* "all other traits are not bound by default" is no longer accurate
under Sized Hierarchy. E.g., traits and assoc tys are (currently)
bounded by `MetaSized` by default but can't be relaxed using
`?MetaSized` (instead, you relax it by adding `PointeeSized`).
* I've decided against adding any diagnositic notes or suggestions
for now like "trait `Trait` can't be relaxed as it's not bound by
default" which would be incorrect for `MetaSized` and assoc tys
as mentioned above) or "consider changing `?MetaSized` to
`PointeeSized`" as the Sized Hierarchy impl is still WIP)