A lot of places had special handling just in case they would get an
allocator module even though most of these places could never get one or
would have a trivial implementation for the allocator module. Moving all
handling of the allocator module to a single place simplifies things a
fair bit.
Don't export them from cdylibs. There is no need to do so and it
complicates exported_non_generic_symbols. In addition the GCC backend
likely uses different symbols and may potentially not even need us to
explicitly tell it to export the symbols it needs.
Remove `LlvmArchiveBuilder` and supporting code/bindings
Switching over to the newer Rust-based `ArArchiveBuilder` happened in rust-lang/rust#128936, a year ago.
Per the comment in `new_archive_builder`, that seems like enough time to justify removing the older, unused `LlvmArchiveBuilder` implementation and its associated bindings.
Fixesrust-lang/rust#128955.
cg_llvm: Small cleanups to `owned_target_machine`
This PR contains a few tiny cleanups to the `owned_target_machine` code.
Each individual commit should be fairly straightforward.
As noted in the `ffi` module docs, passing pointer/length byte strings from
Rust to C++ is easier if we declare them as `*const c_uchar` on the Rust side,
but `const char *` (possibly signed) on the C++ side. This is allowed because
both pointer types are ABI-compatible, regardless of char signedness.
It used to be necessary on Apple platforms to ship with the App Store,
but XCode 15 has stopped embedding LLVM bitcode and the App Store no
longer accepts apps with bitcode embedded.
Rollup of 7 pull requests
Successful merges:
- rust-lang/rust#144072 (update `Atomic*::from_ptr` and `Atomic*::as_ptr` docs)
- rust-lang/rust#144151 (`tests/ui/issues/`: The Issues Strike Back [1/N])
- rust-lang/rust#144300 (Clippy fixes for miropt-test-tools)
- rust-lang/rust#144399 (Add a ratchet for moving all standard library tests to separate packages)
- rust-lang/rust#144472 (str: Mark unstable `round_char_boundary` feature functions as const)
- rust-lang/rust#144503 (Various refactors to the codegen coordinator code (part 3))
- rust-lang/rust#144530 (coverage: Infer `instances_used` from `pgo_func_name_var_map`)
r? `@ghost`
`@rustbot` modify labels: rollup
Nobody seems to actually use this, while still adding some extra
complexity to the already rather complex codegen coordinator code.
It is also not supported by any backend other than the LLVM backend.
Various refactors to the LTO handling code (part 2)
Continuing from https://github.com/rust-lang/rust/pull/143388 this removes a bit of dead code and moves the LTO symbol export calculation from individual backends to cg_ssa.
gpu offload host code generation
r? ghost
This will generate most of the host side code to use llvm's offload feature.
The first PR will only handle automatic mem-transfers to and from the device.
So if a user calls a kernel, we will copy inputs back and forth, but we won't do the actual kernel launch.
Before merging, we will use LLVM's Info infrastructure to verify that the memcopies match what openmp offloa generates in C++. `LIBOMPTARGET_INFO=-1 ./my_rust_binary` should print that a memcpy to and later from the device is happening.
A follow-up PR will generate the actual device-side kernel which will then do computations on the GPU.
A third PR will implement manual host2device and device2host functionality, but the goal is to minimize cases where a user has to overwrite our default handling due to performance issues.
I'm trying to get a full MVP out first, so this just recognizes GPU functions based on magic names. The final frontend will obviously move this over to use proper macros, like I'm already doing it for the autodiff work.
This work will also be compatible with std::autodiff, so one can differentiate GPU kernels.
Tracking:
- https://github.com/rust-lang/rust/issues/131513
Various refactors to the LTO handling code
In particular reducing the sharing of code paths between fat and thin-LTO and making the fat LTO implementation more self-contained. This also moves some autodiff handling out of cg_ssa into cg_llvm given that Enzyme only works with LLVM anyway and an implementation for another backend may do things entirely differently. This will also make it a bit easier to split LTO handling out of the coordinator thread main loop into a separate loop, which should reduce the complexity of the coordinator thread.
Most uses of it either contain a fat or thin lto module. Only
WorkItem::LTO could contain both, but splitting that enum variant
doesn't complicate things much.
There is no safety contract and I don't think any of them can actually
cause UB in more ways than passing malicious source code to rustc can.
While LtoModuleCodegen::optimize says that the returned ModuleCodegen
points into the LTO module, the LTO module has already been dropped by
the time this function returns, so if the returned ModuleCodegen indeed
points into the LTO module, we would have seen crashes on every LTO
compilation, which we don't. As such the comment is outdated.
Autodiff flags
Interestingly, it seems that some other projects have conflicts with exactly the same LLVM optimization passes as autodiff.
At least `LLVMRustOptimize` has exactly the flags that we need to disable problematic opt passes.
This PR enables us to compile code where users differentiate two identical functions in the same module. This has been especially common in test cases, but it's not impossible to encounter in the wild.
It also enables two new flags for testing/debugging. I consider writing an MCP to upgrade PrintPasses to be a standalone -Z flag, since it is *not* the same as `-Z print-llvm-passes`, which IMHO gives less useful output. A discussion can be found here: [#t-compiler/llvm > Print llvm passes. @ 💬](https://rust-lang.zulipchat.com/#narrow/channel/187780-t-compiler.2Fllvm/topic/Print.20llvm.20passes.2E/near/511533038)
Finally, it improves `PrintModBefore` and `PrintModAfter`. They used to work reliable, but now we just schedule enzyme as part of an existing ModulePassManager (MPM). Since Enzyme is last in the MPM scheduling, PrintModBefore became very inaccurate. It used to print the input module, which we gave to the Enzyme and was great to create llvm-ir reproducer. However, lately the MPM would run the whole `default<O3>` pipeline, which heavily modifies the llvm module, before we pass it to Enzyme. That made it impossible to use the flag to create llvm-ir reproducers for Enzyme bugs. We now schedule a PrintModule pass just before Enzyme, solving this problem.
Based on the PrintPass output, it also _seems_ like changing `registerEnzymeAndPassPipeline(PB, true);` to `registerEnzymeAndPassPipeline(PB, false);` has no effect. In theory, the bool should tell Enzyme to schedule some helpful passes in the PassBuilder. However, since it doesn't do anything and I'm not 100% sure anymore on whether we really need it, I'll just disable it for now and postpone investigations.
r? ``@oli-obk``
closes#139471
Tracking:
- https://github.com/rust-lang/rust/issues/124509