Enable f16 and f128 on targets that were fixed in LLVM21
LLVM21 fixed the new float types on a number of targets:
* SystemZ gained f16 support https://github.com/llvm/llvm-project/pull/109164
* Hexagon now uses soft f16 to avoid recursion bugs https://github.com/llvm/llvm-project/pull/130977
* Mips now correctly handles f128 (actually since LLVM20) https://github.com/llvm/llvm-project/pull/117525
* f128 is now correctly aligned when passing the stack on x86 https://github.com/llvm/llvm-project/pull/138092
Thus, enable the types on relevant targets for LLVM > 21.0.0.
NVPTX also gained handling of f128 as a storage type, but it lacks support for basic math operations so is still disabled here.
try-job: dist-i586-gnu-i586-i686-musl
try-job: dist-i686-linux
try-job: dist-i686-msvc
try-job: dist-s390x-linux
try-job: dist-various-1
try-job: dist-various-2
try-job: dist-x86_64-linux
try-job: i686-gnu-1
try-job: i686-gnu-2
try-job: i686-msvc-1
try-job: i686-msvc-2
try-job: test-various
musl does not implement the symbols required by std for f128 maths.
Disable the associated cfg for all musl targets and adjust the tests
accordingly.
Signed-off-by: Jens Reidel <adrian@travitia.xyz>
This check was added unconditionally in c51b229140 ("Disable f16 on
Aarch64 without `neon`") and reverted in 4a8d35709e ("Revert "Disable
`f16` on Aarch64 without `neon`"") since it did not fail in Rust's
build. However, it is still possible to hit this crash if using LLVM 19
built with assertions, so disable the type conditionally based on
version here.
Note that for these builds, a similar patch is needed in the build
script for `compiler-builtins` since it does not yet use
`cfg(target_has_reliable_f16)` (hopefully to be resolved in the near
future).
Report: https://www.github.com/rust-lang/rust/pull/139276#issuecomment-3014781652
Original LLVM issue: https://www.github.com/llvm/llvm-project/issues/129394
Normally LLVM and rustc agree about what features are implied by
target-cpu, but for NVPTX, LLVM considers sm_* and ptx* features to be
exclusive, which makes sense for codegen purposes. But in Rust, we want
to think of them as:
sm_{sver} means that the target supports the hardware features of sver
ptx{pver} means the driver supports PTX ISA pver
Intrinsics usually require a minimum sm_{sver} and ptx{pver}.
Prior to this commit, -Ctarget-cpu=sm_70 would activate only sm_70 and
ptx60 (the minimum PTX version that supports sm_70, which maximizes
driver compatibility). With this commit, it also activates all the
implied target features (sm_20, ..., sm_62; ptx32, ..., ptx50).
Add target features for sm_* and ptx*, both of which form a partial
order, but cannot be combined to a single partial order. These mirror
the LLVM target features, but we do not provide LLVM target
processors (which imply both an sm_* and ptx* feature).
Add some documentation for the nvptx target.
Add the AVX10 target features
Parent #138843
Adds the `avx10_target_feature` feature gate, and `avx10.1` and `avx10.2` target features.
It is confirmed that Intel is dropping AVX10/256 (see [this comment](https://github.com/rust-lang/rust/issues/111137#issuecomment-2795442288)), so this should be safe to implement now.
The LLVM fix for llvm/llvm-project#135394 was merged, and has been backported to LLVM20, and the patch has also been propagated to rustc in #140502
`@rustbot` label O-x86_64 O-x86_32 A-target-feature A-SIMD
This has been disabled due to an LLVM misoptimization with `powi.f16`
[1]. This was fixed upstream and the fix is included in LLVM20, so tests
no longer need to be disabled.
`f16` still remains disabled on MinGW due to the ABI issue.
[1]: https://github.com/llvm/llvm-project/issues/98665
Support for `f16` and `f128` is varied across targets, backends, and
backend versions. Eventually we would like to reach a point where all
backends support these approximately equally, but until then we have to
work around some of these nuances of support being observable.
Introduce the `cfg_target_has_reliable_f16_f128` internal feature, which
provides the following new configuration gates:
* `cfg(target_has_reliable_f16)`
* `cfg(target_has_reliable_f16_math)`
* `cfg(target_has_reliable_f128)`
* `cfg(target_has_reliable_f128_math)`
`reliable_f16` and `reliable_f128` indicate that basic arithmetic for
the type works correctly. The `_math` versions indicate that anything
relying on `libm` works correctly, since sometimes this hits a separate
class of codegen bugs.
These options match configuration set by the build script at [1]. The
logic for LLVM support is duplicated as-is from the same script. There
are a few possible updates that will come as a follow up.
The config introduced here is not planned to ever become stable, it is
only intended to replace the build scripts for `std` tests and
`compiler-builtins` that don't have any way to configure based on the
codegen backend.
MCP: https://github.com/rust-lang/compiler-team/issues/866
Closes: https://github.com/rust-lang/compiler-team/issues/866
[1]: 555e1d0386/library/std/build.rs (L84-L186)
Add the new `amx` target features and the `movrs` target feature
Adds 5 new `amx` target features included in LLVM20. These are guarded under `x86_amx_intrinsics` (#126622)
- `amx-avx512`
- `amx-fp8`
- `amx-movrs`
- `amx-tf32`
- `amx-transpose`
Adds the `movrs` target feature (from #137976).
`@rustbot` label O-x86_64 O-x86_32 T-compiler A-target-feature
r? `@Amanieu`
Currently it is called twice, once with `allow_unstable` set to true and
once with it set to false. This results in some duplicated work. Most
notably, for the LLVM backend, `LLVMRustHasFeature` is called twice for
every feature, and it's moderately slow. For very short running
compilations on platforms with many features (e.g. a `check` build of
hello-world on x86) this is a significant fraction of runtime.
This commit changes `target_features_cfg` so it is only called once, and
it now returns a pair of feature sets. This halves the number of
`LLVMRustHasFeature` calls.
`rustc_codegen_llvm` relied on `Deref` impls where `Deref::Target` was
or contained an extern type - in my experimental implementation of
rust-lang/rfcs#3729, this isn't possible as the `Target` associated
type's `?Sized` bound cannot be relaxed backwards compatibly (unless we
come up with some way of doing this).
In later pull requests with the rust-lang/rfcs#3729 implementation,
breakage like this could only occur for nightly users relying on the
`extern_types` feature.
Upstreaming this to avoid needing to keep carrying this patch locally,
and I think it'll necessarily need to change eventually.
Add support for wasm exception handling to Emscripten target
This is a draft because we need some additional setting for the Emscripten target to select between the old exception handling and the new exception handling. I don't know how to add a setting like that, would appreciate advice from Rust folks. We could maybe choose to use the new exception handling if `Ctarget-feature=+exception-handling` is passed? I tried this but I get errors from llvm so I'm not doing it right.