use rustc_abi::ExternAbi; use rustc_data_structures::stack::ensure_sufficient_stack; use rustc_errors::Applicability; use rustc_hir::LangItem; use rustc_hir::def::DefKind; use rustc_hir::def_id::CRATE_DEF_ID; use rustc_middle::span_bug; use rustc_middle::thir::visit::{self, Visitor}; use rustc_middle::thir::{BodyTy, Expr, ExprId, ExprKind, Thir}; use rustc_middle::ty::{self, Ty, TyCtxt}; use rustc_span::def_id::{DefId, LocalDefId}; use rustc_span::{DUMMY_SP, ErrorGuaranteed, Span}; pub(crate) fn check_tail_calls(tcx: TyCtxt<'_>, def: LocalDefId) -> Result<(), ErrorGuaranteed> { let (thir, expr) = tcx.thir_body(def)?; let thir = &thir.borrow(); // If `thir` is empty, a type error occurred, skip this body. if thir.exprs.is_empty() { return Ok(()); } let is_closure = matches!(tcx.def_kind(def), DefKind::Closure); let caller_ty = tcx.type_of(def).skip_binder(); let mut visitor = TailCallCkVisitor { tcx, thir, found_errors: Ok(()), // FIXME(#132279): we're clearly in a body here. typing_env: ty::TypingEnv::non_body_analysis(tcx, def), is_closure, caller_ty, }; visitor.visit_expr(&thir[expr]); visitor.found_errors } struct TailCallCkVisitor<'a, 'tcx> { tcx: TyCtxt<'tcx>, thir: &'a Thir<'tcx>, typing_env: ty::TypingEnv<'tcx>, /// Whatever the currently checked body is one of a closure is_closure: bool, /// The result of the checks, `Err(_)` if there was a problem with some /// tail call, `Ok(())` if all of them were fine. found_errors: Result<(), ErrorGuaranteed>, /// Type of the caller function. caller_ty: Ty<'tcx>, } impl<'tcx> TailCallCkVisitor<'_, 'tcx> { fn check_tail_call(&mut self, call: &Expr<'_>, expr: &Expr<'_>) { if self.is_closure { self.report_in_closure(expr); return; } let BodyTy::Fn(caller_sig) = self.thir.body_type else { span_bug!( call.span, "`become` outside of functions should have been disallowed by hir_typeck" ) }; // While the `caller_sig` does have its regions erased, it does not have its // binders anonymized. We call `erase_regions` once again to anonymize any binders // within the signature, such as in function pointer or `dyn Trait` args. let caller_sig = self.tcx.erase_regions(caller_sig); let ExprKind::Scope { value, .. } = call.kind else { span_bug!(call.span, "expected scope, found: {call:?}") }; let value = &self.thir[value]; if matches!( value.kind, ExprKind::Binary { .. } | ExprKind::Unary { .. } | ExprKind::AssignOp { .. } | ExprKind::Index { .. } ) { self.report_builtin_op(call, expr); return; } let ExprKind::Call { ty, fun, ref args, from_hir_call, fn_span } = value.kind else { self.report_non_call(value, expr); return; }; if !from_hir_call { self.report_op(ty, args, fn_span, expr); } if let &ty::FnDef(did, args) = ty.kind() { // Closures in thir look something akin to // `for<'a> extern "rust-call" fn(&'a [closure@...], ()) -> <[closure@...] as FnOnce<()>>::Output {<[closure@...] as Fn<()>>::call}` // So we have to check for them in this weird way... let parent = self.tcx.parent(did); if self.tcx.fn_trait_kind_from_def_id(parent).is_some() && let Some(this) = args.first() && let Some(this) = this.as_type() { if this.is_closure() { self.report_calling_closure(&self.thir[fun], args[1].as_type().unwrap(), expr); } else { // This can happen when tail calling `Box` that wraps a function self.report_nonfn_callee(fn_span, self.thir[fun].span, this); } // Tail calling is likely to cause unrelated errors (ABI, argument mismatches), // skip them, producing an error about calling a closure is enough. return; }; if self.tcx.intrinsic(did).is_some() { self.report_calling_intrinsic(expr); } } let (ty::FnDef(..) | ty::FnPtr(..)) = ty.kind() else { self.report_nonfn_callee(fn_span, self.thir[fun].span, ty); // `fn_sig` below panics otherwise return; }; // Erase regions since tail calls don't care about lifetimes let callee_sig = self.tcx.normalize_erasing_late_bound_regions(self.typing_env, ty.fn_sig(self.tcx)); if caller_sig.abi != callee_sig.abi { self.report_abi_mismatch(expr.span, caller_sig.abi, callee_sig.abi); } if caller_sig.inputs_and_output != callee_sig.inputs_and_output { if caller_sig.inputs() != callee_sig.inputs() { self.report_arguments_mismatch( expr.span, self.tcx.liberate_late_bound_regions( CRATE_DEF_ID.to_def_id(), self.caller_ty.fn_sig(self.tcx), ), self.tcx .liberate_late_bound_regions(CRATE_DEF_ID.to_def_id(), ty.fn_sig(self.tcx)), ); } // FIXME(explicit_tail_calls): this currently fails for cases where opaques are used. // e.g. // ``` // fn a() -> impl Sized { become b() } // ICE // fn b() -> u8 { 0 } // ``` // we should think what is the expected behavior here. // (we should probably just accept this by revealing opaques?) if caller_sig.output() != callee_sig.output() { span_bug!(expr.span, "hir typeck should have checked the return type already"); } } { // `#[track_caller]` affects the ABI of a function (by adding a location argument), // so a `track_caller` can only tail call other `track_caller` functions. // // The issue is however that we can't know if a function is `track_caller` or not at // this point (THIR can be polymorphic, we may have an unresolved trait function). // We could only allow functions that we *can* resolve and *are* `track_caller`, // but that would turn changing `track_caller`-ness into a breaking change, // which is probably undesirable. // // Also note that we don't check callee's `track_caller`-ness at all, mostly for the // reasons above, but also because we can always tailcall the shim we'd generate for // coercing the function to an `fn()` pointer. (although in that case the tailcall is // basically useless -- the shim calls the actual function, so tailcalling the shim is // equivalent to calling the function) let caller_needs_location = self.needs_location(self.caller_ty); if caller_needs_location { self.report_track_caller_caller(expr.span); } } if caller_sig.c_variadic { self.report_c_variadic_caller(expr.span); } if callee_sig.c_variadic { self.report_c_variadic_callee(expr.span); } } /// Returns true if function of type `ty` needs location argument /// (i.e. if a function is marked as `#[track_caller]`). /// /// Panics if the function's instance can't be immediately resolved. fn needs_location(&self, ty: Ty<'tcx>) -> bool { if let &ty::FnDef(did, substs) = ty.kind() { let instance = ty::Instance::expect_resolve(self.tcx, self.typing_env, did, substs, DUMMY_SP); instance.def.requires_caller_location(self.tcx) } else { false } } fn report_in_closure(&mut self, expr: &Expr<'_>) { let err = self.tcx.dcx().span_err(expr.span, "`become` is not allowed in closures"); self.found_errors = Err(err); } fn report_builtin_op(&mut self, value: &Expr<'_>, expr: &Expr<'_>) { let err = self .tcx .dcx() .struct_span_err(value.span, "`become` does not support operators") .with_note("using `become` on a builtin operator is not useful") .with_span_suggestion( value.span.until(expr.span), "try using `return` instead", "return ", Applicability::MachineApplicable, ) .emit(); self.found_errors = Err(err); } fn report_op(&mut self, fun_ty: Ty<'_>, args: &[ExprId], fn_span: Span, expr: &Expr<'_>) { let mut err = self.tcx.dcx().struct_span_err(fn_span, "`become` does not support operators"); if let &ty::FnDef(did, _substs) = fun_ty.kind() && let parent = self.tcx.parent(did) && matches!(self.tcx.def_kind(parent), DefKind::Trait) && let Some(method) = op_trait_as_method_name(self.tcx, parent) { match args { &[arg] => { let arg = &self.thir[arg]; err.multipart_suggestion( "try using the method directly", vec![ (fn_span.shrink_to_lo().until(arg.span), "(".to_owned()), (arg.span.shrink_to_hi(), format!(").{method}()")), ], Applicability::MaybeIncorrect, ); } &[lhs, rhs] => { let lhs = &self.thir[lhs]; let rhs = &self.thir[rhs]; err.multipart_suggestion( "try using the method directly", vec![ (lhs.span.shrink_to_lo(), format!("(")), (lhs.span.between(rhs.span), format!(").{method}(")), (rhs.span.between(expr.span.shrink_to_hi()), ")".to_owned()), ], Applicability::MaybeIncorrect, ); } _ => span_bug!(expr.span, "operator with more than 2 args? {args:?}"), } } self.found_errors = Err(err.emit()); } fn report_non_call(&mut self, value: &Expr<'_>, expr: &Expr<'_>) { let err = self .tcx .dcx() .struct_span_err(value.span, "`become` requires a function call") .with_span_note(value.span, "not a function call") .with_span_suggestion( value.span.until(expr.span), "try using `return` instead", "return ", Applicability::MaybeIncorrect, ) .emit(); self.found_errors = Err(err); } fn report_calling_closure(&mut self, fun: &Expr<'_>, tupled_args: Ty<'_>, expr: &Expr<'_>) { let underscored_args = match tupled_args.kind() { ty::Tuple(tys) if tys.is_empty() => "".to_owned(), ty::Tuple(tys) => std::iter::repeat("_, ").take(tys.len() - 1).chain(["_"]).collect(), _ => "_".to_owned(), }; let err = self .tcx .dcx() .struct_span_err(expr.span, "tail calling closures directly is not allowed") .with_multipart_suggestion( "try casting the closure to a function pointer type", vec![ (fun.span.shrink_to_lo(), "(".to_owned()), (fun.span.shrink_to_hi(), format!(" as fn({underscored_args}) -> _)")), ], Applicability::MaybeIncorrect, ) .emit(); self.found_errors = Err(err); } fn report_calling_intrinsic(&mut self, expr: &Expr<'_>) { let err = self .tcx .dcx() .struct_span_err(expr.span, "tail calling intrinsics is not allowed") .emit(); self.found_errors = Err(err); } fn report_nonfn_callee(&mut self, call_sp: Span, fun_sp: Span, ty: Ty<'_>) { let mut err = self .tcx .dcx() .struct_span_err( call_sp, "tail calls can only be performed with function definitions or pointers", ) .with_note(format!("callee has type `{ty}`")); let mut ty = ty; let mut refs = 0; while ty.is_box() || ty.is_ref() { ty = ty.builtin_deref(false).unwrap(); refs += 1; } if refs > 0 && ty.is_fn() { let thing = if ty.is_fn_ptr() { "pointer" } else { "definition" }; let derefs = std::iter::once('(').chain(std::iter::repeat_n('*', refs)).collect::(); err.multipart_suggestion( format!("consider dereferencing the expression to get a function {thing}"), vec![(fun_sp.shrink_to_lo(), derefs), (fun_sp.shrink_to_hi(), ")".to_owned())], Applicability::MachineApplicable, ); } let err = err.emit(); self.found_errors = Err(err); } fn report_abi_mismatch(&mut self, sp: Span, caller_abi: ExternAbi, callee_abi: ExternAbi) { let err = self .tcx .dcx() .struct_span_err(sp, "mismatched function ABIs") .with_note("`become` requires caller and callee to have the same ABI") .with_note(format!("caller ABI is `{caller_abi}`, while callee ABI is `{callee_abi}`")) .emit(); self.found_errors = Err(err); } fn report_arguments_mismatch( &mut self, sp: Span, caller_sig: ty::FnSig<'_>, callee_sig: ty::FnSig<'_>, ) { let err = self .tcx .dcx() .struct_span_err(sp, "mismatched signatures") .with_note("`become` requires caller and callee to have matching signatures") .with_note(format!("caller signature: `{caller_sig}`")) .with_note(format!("callee signature: `{callee_sig}`")) .emit(); self.found_errors = Err(err); } fn report_track_caller_caller(&mut self, sp: Span) { let err = self .tcx .dcx() .struct_span_err( sp, "a function marked with `#[track_caller]` cannot perform a tail-call", ) .emit(); self.found_errors = Err(err); } fn report_c_variadic_caller(&mut self, sp: Span) { let err = self .tcx .dcx() // FIXME(explicit_tail_calls): highlight the `...` .struct_span_err(sp, "tail-calls are not allowed in c-variadic functions") .emit(); self.found_errors = Err(err); } fn report_c_variadic_callee(&mut self, sp: Span) { let err = self .tcx .dcx() // FIXME(explicit_tail_calls): highlight the function or something... .struct_span_err(sp, "c-variadic functions can't be tail-called") .emit(); self.found_errors = Err(err); } } impl<'a, 'tcx> Visitor<'a, 'tcx> for TailCallCkVisitor<'a, 'tcx> { fn thir(&self) -> &'a Thir<'tcx> { &self.thir } fn visit_expr(&mut self, expr: &'a Expr<'tcx>) { ensure_sufficient_stack(|| { if let ExprKind::Become { value } = expr.kind { let call = &self.thir[value]; self.check_tail_call(call, expr); } visit::walk_expr(self, expr); }); } } fn op_trait_as_method_name(tcx: TyCtxt<'_>, trait_did: DefId) -> Option<&'static str> { let m = match tcx.as_lang_item(trait_did)? { LangItem::Add => "add", LangItem::Sub => "sub", LangItem::Mul => "mul", LangItem::Div => "div", LangItem::Rem => "rem", LangItem::Neg => "neg", LangItem::Not => "not", LangItem::BitXor => "bitxor", LangItem::BitAnd => "bitand", LangItem::BitOr => "bitor", LangItem::Shl => "shl", LangItem::Shr => "shr", LangItem::AddAssign => "add_assign", LangItem::SubAssign => "sub_assign", LangItem::MulAssign => "mul_assign", LangItem::DivAssign => "div_assign", LangItem::RemAssign => "rem_assign", LangItem::BitXorAssign => "bitxor_assign", LangItem::BitAndAssign => "bitand_assign", LangItem::BitOrAssign => "bitor_assign", LangItem::ShlAssign => "shl_assign", LangItem::ShrAssign => "shr_assign", LangItem::Index => "index", LangItem::IndexMut => "index_mut", _ => return None, }; Some(m) }