use rustc_abi::{HasDataLayout, Size, TagEncoding, Variants}; use rustc_data_structures::fx::FxHashMap; use rustc_middle::mir::interpret::AllocId; use rustc_middle::mir::*; use rustc_middle::ty::util::IntTypeExt; use rustc_middle::ty::{self, AdtDef, Ty, TyCtxt}; use rustc_session::Session; use crate::patch::MirPatch; /// A pass that seeks to optimize unnecessary moves of large enum types, if there is a large /// enough discrepancy between them. /// /// i.e. If there are two variants: /// ``` /// enum Example { /// Small, /// Large([u32; 1024]), /// } /// ``` /// Instead of emitting moves of the large variant, perform a memcpy instead. /// Based off of [this HackMD](https://hackmd.io/@ft4bxUsFT5CEUBmRKYHr7w/rJM8BBPzD). /// /// In summary, what this does is at runtime determine which enum variant is active, /// and instead of copying all the bytes of the largest possible variant, /// copy only the bytes for the currently active variant. pub(super) struct EnumSizeOpt { pub(crate) discrepancy: u64, } impl<'tcx> crate::MirPass<'tcx> for EnumSizeOpt { fn is_enabled(&self, sess: &Session) -> bool { // There are some differences in behavior on wasm and ARM that are not properly // understood, so we conservatively treat this optimization as unsound: // https://github.com/rust-lang/rust/pull/85158#issuecomment-1101836457 sess.opts.unstable_opts.unsound_mir_opts || sess.mir_opt_level() >= 3 } fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) { // NOTE: This pass may produce different MIR based on the alignment of the target // platform, but it will still be valid. let mut alloc_cache = FxHashMap::default(); let typing_env = body.typing_env(tcx); let mut patch = MirPatch::new(body); for (block, data) in body.basic_blocks.as_mut().iter_enumerated_mut() { for (statement_index, st) in data.statements.iter_mut().enumerate() { let StatementKind::Assign(box ( lhs, Rvalue::Use(Operand::Copy(rhs) | Operand::Move(rhs)), )) = &st.kind else { continue; }; let location = Location { block, statement_index }; let ty = lhs.ty(&body.local_decls, tcx).ty; let Some((adt_def, num_variants, alloc_id)) = self.candidate(tcx, typing_env, ty, &mut alloc_cache) else { continue; }; let span = st.source_info.span; let tmp_ty = Ty::new_array(tcx, tcx.types.usize, num_variants as u64); let size_array_local = patch.new_temp(tmp_ty, span); let store_live = StatementKind::StorageLive(size_array_local); let place = Place::from(size_array_local); let constant_vals = ConstOperand { span, user_ty: None, const_: Const::Val( ConstValue::Indirect { alloc_id, offset: Size::ZERO }, tmp_ty, ), }; let rval = Rvalue::Use(Operand::Constant(Box::new(constant_vals))); let const_assign = StatementKind::Assign(Box::new((place, rval))); let discr_place = Place::from(patch.new_temp(adt_def.repr().discr_type().to_ty(tcx), span)); let store_discr = StatementKind::Assign(Box::new((discr_place, Rvalue::Discriminant(*rhs)))); let discr_cast_place = Place::from(patch.new_temp(tcx.types.usize, span)); let cast_discr = StatementKind::Assign(Box::new(( discr_cast_place, Rvalue::Cast(CastKind::IntToInt, Operand::Copy(discr_place), tcx.types.usize), ))); let size_place = Place::from(patch.new_temp(tcx.types.usize, span)); let store_size = StatementKind::Assign(Box::new(( size_place, Rvalue::Use(Operand::Copy(Place { local: size_array_local, projection: tcx.mk_place_elems(&[PlaceElem::Index(discr_cast_place.local)]), })), ))); let dst = Place::from(patch.new_temp(Ty::new_mut_ptr(tcx, ty), span)); let dst_ptr = StatementKind::Assign(Box::new((dst, Rvalue::RawPtr(RawPtrKind::Mut, *lhs)))); let dst_cast_ty = Ty::new_mut_ptr(tcx, tcx.types.u8); let dst_cast_place = Place::from(patch.new_temp(dst_cast_ty, span)); let dst_cast = StatementKind::Assign(Box::new(( dst_cast_place, Rvalue::Cast(CastKind::PtrToPtr, Operand::Copy(dst), dst_cast_ty), ))); let src = Place::from(patch.new_temp(Ty::new_imm_ptr(tcx, ty), span)); let src_ptr = StatementKind::Assign(Box::new((src, Rvalue::RawPtr(RawPtrKind::Const, *rhs)))); let src_cast_ty = Ty::new_imm_ptr(tcx, tcx.types.u8); let src_cast_place = Place::from(patch.new_temp(src_cast_ty, span)); let src_cast = StatementKind::Assign(Box::new(( src_cast_place, Rvalue::Cast(CastKind::PtrToPtr, Operand::Copy(src), src_cast_ty), ))); let deinit_old = StatementKind::Deinit(Box::new(dst)); let copy_bytes = StatementKind::Intrinsic(Box::new( NonDivergingIntrinsic::CopyNonOverlapping(CopyNonOverlapping { src: Operand::Copy(src_cast_place), dst: Operand::Copy(dst_cast_place), count: Operand::Copy(size_place), }), )); let store_dead = StatementKind::StorageDead(size_array_local); let stmts = [ store_live, const_assign, store_discr, cast_discr, store_size, dst_ptr, dst_cast, src_ptr, src_cast, deinit_old, copy_bytes, store_dead, ]; for stmt in stmts { patch.add_statement(location, stmt); } st.make_nop(); } } patch.apply(body); } fn is_required(&self) -> bool { false } } impl EnumSizeOpt { fn candidate<'tcx>( &self, tcx: TyCtxt<'tcx>, typing_env: ty::TypingEnv<'tcx>, ty: Ty<'tcx>, alloc_cache: &mut FxHashMap, AllocId>, ) -> Option<(AdtDef<'tcx>, usize, AllocId)> { let adt_def = match ty.kind() { ty::Adt(adt_def, _args) if adt_def.is_enum() => adt_def, _ => return None, }; let layout = tcx.layout_of(typing_env.as_query_input(ty)).ok()?; let variants = match &layout.variants { Variants::Single { .. } | Variants::Empty => return None, Variants::Multiple { tag_encoding: TagEncoding::Niche { .. }, .. } => return None, Variants::Multiple { variants, .. } if variants.len() <= 1 => return None, Variants::Multiple { variants, .. } => variants, }; let min = variants.iter().map(|v| v.size).min().unwrap(); let max = variants.iter().map(|v| v.size).max().unwrap(); if max.bytes() - min.bytes() < self.discrepancy { return None; } let num_discrs = adt_def.discriminants(tcx).count(); if variants.iter_enumerated().any(|(var_idx, _)| { let discr_for_var = adt_def.discriminant_for_variant(tcx, var_idx).val; (discr_for_var > usize::MAX as u128) || (discr_for_var as usize >= num_discrs) }) { return None; } if let Some(alloc_id) = alloc_cache.get(&ty) { return Some((*adt_def, num_discrs, *alloc_id)); } let data_layout = tcx.data_layout(); let ptr_sized_int = data_layout.ptr_sized_integer(); let target_bytes = ptr_sized_int.size().bytes() as usize; let mut data = vec![0; target_bytes * num_discrs]; // We use a macro because `$bytes` can be u32 or u64. macro_rules! encode_store { ($curr_idx: expr, $endian: expr, $bytes: expr) => { let bytes = match $endian { rustc_abi::Endian::Little => $bytes.to_le_bytes(), rustc_abi::Endian::Big => $bytes.to_be_bytes(), }; for (i, b) in bytes.into_iter().enumerate() { data[$curr_idx + i] = b; } }; } for (var_idx, layout) in variants.iter_enumerated() { let curr_idx = target_bytes * adt_def.discriminant_for_variant(tcx, var_idx).val as usize; let sz = layout.size; match ptr_sized_int { rustc_abi::Integer::I32 => { encode_store!(curr_idx, data_layout.endian, sz.bytes() as u32); } rustc_abi::Integer::I64 => { encode_store!(curr_idx, data_layout.endian, sz.bytes()); } _ => unreachable!(), }; } let alloc = interpret::Allocation::from_bytes( data, tcx.data_layout.ptr_sized_integer().align(&tcx.data_layout).abi, Mutability::Not, (), ); let alloc = tcx.reserve_and_set_memory_alloc(tcx.mk_const_alloc(alloc)); Some((*adt_def, num_discrs, *alloc_cache.entry(ty).or_insert(alloc))) } }