use rustc_hir::attrs::{AttributeKind, CoverageAttrKind}; use rustc_hir::find_attr; use rustc_index::bit_set::DenseBitSet; use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags; use rustc_middle::mir::coverage::{BasicCoverageBlock, CoverageIdsInfo, CoverageKind, MappingKind}; use rustc_middle::mir::{Body, Statement, StatementKind}; use rustc_middle::ty::{self, TyCtxt}; use rustc_middle::util::Providers; use rustc_span::def_id::LocalDefId; use tracing::trace; use crate::coverage::counters::node_flow::make_node_counters; use crate::coverage::counters::{CoverageCounters, transcribe_counters}; /// Registers query/hook implementations related to coverage. pub(crate) fn provide(providers: &mut Providers) { providers.hooks.is_eligible_for_coverage = is_eligible_for_coverage; providers.queries.coverage_attr_on = coverage_attr_on; providers.queries.coverage_ids_info = coverage_ids_info; } /// Hook implementation for [`TyCtxt::is_eligible_for_coverage`]. fn is_eligible_for_coverage(tcx: TyCtxt<'_>, def_id: LocalDefId) -> bool { // Only instrument functions, methods, and closures (not constants since they are evaluated // at compile time by Miri). // FIXME(#73156): Handle source code coverage in const eval, but note, if and when const // expressions get coverage spans, we will probably have to "carve out" space for const // expressions from coverage spans in enclosing MIR's, like we do for closures. (That might // be tricky if const expressions have no corresponding statements in the enclosing MIR. // Closures are carved out by their initial `Assign` statement.) if !tcx.def_kind(def_id).is_fn_like() { trace!("InstrumentCoverage skipped for {def_id:?} (not an fn-like)"); return false; } if tcx.codegen_fn_attrs(def_id).flags.contains(CodegenFnAttrFlags::NAKED) { trace!("InstrumentCoverage skipped for {def_id:?} (`#[naked]`)"); return false; } if !tcx.coverage_attr_on(def_id) { trace!("InstrumentCoverage skipped for {def_id:?} (`#[coverage(off)]`)"); return false; } true } /// Query implementation for `coverage_attr_on`. fn coverage_attr_on(tcx: TyCtxt<'_>, def_id: LocalDefId) -> bool { // Check for a `#[coverage(..)]` attribute on this def. if let Some(kind) = find_attr!(tcx.get_all_attrs(def_id), AttributeKind::Coverage(_sp, kind) => kind) { match kind { CoverageAttrKind::On => return true, CoverageAttrKind::Off => return false, } }; // Treat `#[automatically_derived]` as an implied `#[coverage(off)]`, on // the assumption that most users won't want coverage for derived impls. // // This affects not just the associated items of an impl block, but also // any closures and other nested functions within those associated items. if tcx.is_automatically_derived(def_id.to_def_id()) { return false; } // Check the parent def (and so on recursively) until we find an // enclosing attribute or reach the crate root. match tcx.opt_local_parent(def_id) { Some(parent) => tcx.coverage_attr_on(parent), // We reached the crate root without seeing a coverage attribute, so // allow coverage instrumentation by default. None => true, } } /// Query implementation for `coverage_ids_info`. fn coverage_ids_info<'tcx>( tcx: TyCtxt<'tcx>, instance_def: ty::InstanceKind<'tcx>, ) -> Option { let mir_body = tcx.instance_mir(instance_def); let fn_cov_info = mir_body.function_coverage_info.as_deref()?; // Scan through the final MIR to see which BCBs survived MIR opts. // Any BCB not in this set was optimized away. let mut bcbs_seen = DenseBitSet::new_empty(fn_cov_info.priority_list.len()); for kind in all_coverage_in_mir_body(mir_body) { match *kind { CoverageKind::VirtualCounter { bcb } => { bcbs_seen.insert(bcb); } _ => {} } } // Determine the set of BCBs that are referred to by mappings, and therefore // need a counter. Any node not in this set will only get a counter if it // is part of the counter expression for a node that is in the set. let mut bcb_needs_counter = DenseBitSet::::new_empty(fn_cov_info.priority_list.len()); for mapping in &fn_cov_info.mappings { match mapping.kind { MappingKind::Code { bcb } => { bcb_needs_counter.insert(bcb); } MappingKind::Branch { true_bcb, false_bcb } => { bcb_needs_counter.insert(true_bcb); bcb_needs_counter.insert(false_bcb); } } } // Clone the priority list so that we can re-sort it. let mut priority_list = fn_cov_info.priority_list.clone(); // The first ID in the priority list represents the synthetic "sink" node, // and must remain first so that it _never_ gets a physical counter. debug_assert_eq!(priority_list[0], priority_list.iter().copied().max().unwrap()); assert!(!bcbs_seen.contains(priority_list[0])); // Partition the priority list, so that unreachable nodes (removed by MIR opts) // are sorted later and therefore are _more_ likely to get a physical counter. // This is counter-intuitive, but it means that `transcribe_counters` can // easily skip those unused physical counters and replace them with zero. // (The original ordering remains in effect within both partitions.) priority_list[1..].sort_by_key(|&bcb| !bcbs_seen.contains(bcb)); let node_counters = make_node_counters(&fn_cov_info.node_flow_data, &priority_list); let coverage_counters = transcribe_counters(&node_counters, &bcb_needs_counter, &bcbs_seen); let CoverageCounters { phys_counter_for_node, next_counter_id, node_counters, expressions, .. } = coverage_counters; Some(CoverageIdsInfo { num_counters: next_counter_id.as_u32(), phys_counter_for_node, term_for_bcb: node_counters, expressions, }) } fn all_coverage_in_mir_body<'a, 'tcx>( body: &'a Body<'tcx>, ) -> impl Iterator { body.basic_blocks.iter().flat_map(|bb_data| &bb_data.statements).filter_map(|statement| { match statement.kind { StatementKind::Coverage(ref kind) if !is_inlined(body, statement) => Some(kind), _ => None, } }) } fn is_inlined(body: &Body<'_>, statement: &Statement<'_>) -> bool { let scope_data = &body.source_scopes[statement.source_info.scope]; scope_data.inlined.is_some() || scope_data.inlined_parent_scope.is_some() }