//! `x86` and `x86_64` intrinsics. use mem; use prelude::v1::*; #[macro_use] mod macros; types! { /// 64-bit wide integer vector type, x86-specific /// /// This type is the same as the `__m64` type defined by Intel, /// representing a 64-bit SIMD register. Usage of this type typically /// corresponds to the `mmx` target feature. /// /// Internally this type may be viewed as: /// /// * `i8x8` - eight `i8` variables packed together /// * `i16x4` - four `i16` variables packed together /// * `i32x2` - two `i32` variables packed together /// /// (as well as unsigned versions). Each intrinsic may interpret the /// internal bits differently, check the documentation of the intrinsic /// to see how it's being used. /// /// Note that this means that an instance of `__m64` typically just means /// a "bag of bits" which is left up to interpretation at the point of use. /// /// Most intrinsics using `__m64` are prefixed with `_mm_` and the /// integer types tend to correspond to suffixes like "pi8" or "pi32" (not /// to be confused with "epiXX", used for `__m128i`). /// /// # Examples /// /// ``` /// # #![feature(stdsimd, mmx_target_feature)] /// # #![cfg_attr(not(dox), no_std)] /// # #[cfg(not(dox))] /// # extern crate std as real_std; /// # #[cfg(not(dox))] /// # #[macro_use] /// # extern crate stdsimd as std; /// #[cfg(target_arch = "x86")] /// use std::arch::x86::*; /// #[cfg(target_arch = "x86_64")] /// use std::arch::x86_64::*; /// /// # fn main() { /// # #[target_feature(enable = "mmx")] /// # unsafe fn foo() { /// let all_bytes_zero = _mm_setzero_si64(); /// let all_bytes_one = _mm_set1_pi8(1); /// let two_i32 = _mm_set_pi32(1, 2); /// # } /// # if is_x86_feature_detected!("mmx") { unsafe { foo() } } /// # } /// ``` pub struct __m64(i64); /// 128-bit wide integer vector type, x86-specific /// /// This type is the same as the `__m128i` type defined by Intel, /// representing a 128-bit SIMD register. Usage of this type typically /// corresponds to the `sse` and up target features for x86/x86_64. /// /// Internally this type may be viewed as: /// /// * `i8x16` - sixteen `i8` variables packed together /// * `i16x8` - eight `i16` variables packed together /// * `i32x4` - four `i32` variables packed together /// * `i64x2` - two `i64` variables packed together /// /// (as well as unsigned versions). Each intrinsic may interpret the /// internal bits differently, check the documentation of the intrinsic /// to see how it's being used. /// /// Note that this means that an instance of `__m128i` typically just means /// a "bag of bits" which is left up to interpretation at the point of use. /// /// Most intrinsics using `__m128i` are prefixed with `_mm_` and the /// integer types tend to correspond to suffixes like "epi8" or "epi32". /// /// # Examples /// /// ``` /// # #![cfg_attr(not(dox), feature(stdsimd))] /// # #![cfg_attr(not(dox), no_std)] /// # #[cfg(not(dox))] /// # extern crate std as real_std; /// # #[cfg(not(dox))] /// # #[macro_use] /// # extern crate stdsimd as std; /// #[cfg(target_arch = "x86")] /// use std::arch::x86::*; /// #[cfg(target_arch = "x86_64")] /// use std::arch::x86_64::*; /// /// # fn main() { /// # #[target_feature(enable = "sse2")] /// # unsafe fn foo() { /// let all_bytes_zero = _mm_setzero_si128(); /// let all_bytes_one = _mm_set1_epi8(1); /// let four_i32 = _mm_set_epi32(1, 2, 3, 4); /// # } /// # if is_x86_feature_detected!("sse2") { unsafe { foo() } } /// # } /// ``` #[stable(feature = "simd_x86", since = "1.27.0")] pub struct __m128i(i64, i64); /// 128-bit wide set of four `f32` types, x86-specific /// /// This type is the same as the `__m128` type defined by Intel, /// representing a 128-bit SIMD register which internally is consisted of /// four packed `f32` instances. Usage of this type typically corresponds /// to the `sse` and up target features for x86/x86_64. /// /// Note that unlike `__m128i`, the integer version of the 128-bit /// registers, this `__m128` type has *one* interpretation. Each instance /// of `__m128` always corresponds to `f32x4`, or four `f32` types packed /// together. /// /// Most intrinsics using `__m128` are prefixed with `_mm_` and are /// suffixed with "ps" (or otherwise contain "ps"). Not to be confused with /// "pd" which is used for `__m128d`. /// /// # Examples /// /// ``` /// # #![cfg_attr(not(dox), feature(stdsimd))] /// # #![cfg_attr(not(dox), no_std)] /// # #[cfg(not(dox))] /// # extern crate std as real_std; /// # #[cfg(not(dox))] /// # #[macro_use] /// # extern crate stdsimd as std; /// #[cfg(target_arch = "x86")] /// use std::arch::x86::*; /// #[cfg(target_arch = "x86_64")] /// use std::arch::x86_64::*; /// /// # fn main() { /// # #[target_feature(enable = "sse")] /// # unsafe fn foo() { /// let four_zeros = _mm_setzero_ps(); /// let four_ones = _mm_set1_ps(1.0); /// let four_floats = _mm_set_ps(1.0, 2.0, 3.0, 4.0); /// # } /// # if is_x86_feature_detected!("sse") { unsafe { foo() } } /// # } /// ``` #[stable(feature = "simd_x86", since = "1.27.0")] pub struct __m128(f32, f32, f32, f32); /// 128-bit wide set of two `f64` types, x86-specific /// /// This type is the same as the `__m128d` type defined by Intel, /// representing a 128-bit SIMD register which internally is consisted of /// two packed `f64` instances. Usage of this type typically corresponds /// to the `sse` and up target features for x86/x86_64. /// /// Note that unlike `__m128i`, the integer version of the 128-bit /// registers, this `__m128d` type has *one* interpretation. Each instance /// of `__m128d` always corresponds to `f64x2`, or two `f64` types packed /// together. /// /// Most intrinsics using `__m128d` are prefixed with `_mm_` and are /// suffixed with "pd" (or otherwise contain "pd"). Not to be confused with /// "ps" which is used for `__m128`. /// /// # Examples /// /// ``` /// # #![cfg_attr(not(dox), feature(stdsimd))] /// # #![cfg_attr(not(dox), no_std)] /// # #[cfg(not(dox))] /// # extern crate std as real_std; /// # #[cfg(not(dox))] /// # #[macro_use] /// # extern crate stdsimd as std; /// #[cfg(target_arch = "x86")] /// use std::arch::x86::*; /// #[cfg(target_arch = "x86_64")] /// use std::arch::x86_64::*; /// /// # fn main() { /// # #[target_feature(enable = "sse")] /// # unsafe fn foo() { /// let two_zeros = _mm_setzero_pd(); /// let two_ones = _mm_set1_pd(1.0); /// let two_floats = _mm_set_pd(1.0, 2.0); /// # } /// # if is_x86_feature_detected!("sse") { unsafe { foo() } } /// # } /// ``` #[stable(feature = "simd_x86", since = "1.27.0")] pub struct __m128d(f64, f64); /// 256-bit wide integer vector type, x86-specific /// /// This type is the same as the `__m256i` type defined by Intel, /// representing a 256-bit SIMD register. Usage of this type typically /// corresponds to the `avx` and up target features for x86/x86_64. /// /// Internally this type may be viewed as: /// /// * `i8x32` - thirty two `i8` variables packed together /// * `i16x16` - sixteen `i16` variables packed together /// * `i32x8` - eight `i32` variables packed together /// * `i64x4` - four `i64` variables packed together /// /// (as well as unsigned versions). Each intrinsic may interpret the /// internal bits differently, check the documentation of the intrinsic /// to see how it's being used. /// /// Note that this means that an instance of `__m256i` typically just means /// a "bag of bits" which is left up to interpretation at the point of use. /// /// # Examples /// /// ``` /// # #![cfg_attr(not(dox), feature(stdsimd))] /// # #![cfg_attr(not(dox), no_std)] /// # #[cfg(not(dox))] /// # extern crate std as real_std; /// # #[cfg(not(dox))] /// # #[macro_use] /// # extern crate stdsimd as std; /// #[cfg(target_arch = "x86")] /// use std::arch::x86::*; /// #[cfg(target_arch = "x86_64")] /// use std::arch::x86_64::*; /// /// # fn main() { /// # #[target_feature(enable = "avx")] /// # unsafe fn foo() { /// let all_bytes_zero = _mm256_setzero_si256(); /// let all_bytes_one = _mm256_set1_epi8(1); /// let eight_i32 = _mm256_set_epi32(1, 2, 3, 4, 5, 6, 7, 8); /// # } /// # if is_x86_feature_detected!("avx") { unsafe { foo() } } /// # } /// ``` #[stable(feature = "simd_x86", since = "1.27.0")] pub struct __m256i(i64, i64, i64, i64); /// 256-bit wide set of eight `f32` types, x86-specific /// /// This type is the same as the `__m256` type defined by Intel, /// representing a 256-bit SIMD register which internally is consisted of /// eight packed `f32` instances. Usage of this type typically corresponds /// to the `avx` and up target features for x86/x86_64. /// /// Note that unlike `__m256i`, the integer version of the 256-bit /// registers, this `__m256` type has *one* interpretation. Each instance /// of `__m256` always corresponds to `f32x8`, or eight `f32` types packed /// together. /// /// Most intrinsics using `__m256` are prefixed with `_mm256_` and are /// suffixed with "ps" (or otherwise contain "ps"). Not to be confused with /// "pd" which is used for `__m256d`. /// /// # Examples /// /// ``` /// # #![cfg_attr(not(dox), feature(stdsimd))] /// # #![cfg_attr(not(dox), no_std)] /// # #[cfg(not(dox))] /// # extern crate std as real_std; /// # #[cfg(not(dox))] /// # #[macro_use] /// # extern crate stdsimd as std; /// #[cfg(target_arch = "x86")] /// use std::arch::x86::*; /// #[cfg(target_arch = "x86_64")] /// use std::arch::x86_64::*; /// /// # fn main() { /// # #[target_feature(enable = "avx")] /// # unsafe fn foo() { /// let eight_zeros = _mm256_setzero_ps(); /// let eight_ones = _mm256_set1_ps(1.0); /// let eight_floats = _mm256_set_ps(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); /// # } /// # if is_x86_feature_detected!("avx") { unsafe { foo() } } /// # } /// ``` #[stable(feature = "simd_x86", since = "1.27.0")] pub struct __m256(f32, f32, f32, f32, f32, f32, f32, f32); /// 256-bit wide set of four `f64` types, x86-specific /// /// This type is the same as the `__m256d` type defined by Intel, /// representing a 256-bit SIMD register which internally is consisted of /// four packed `f64` instances. Usage of this type typically corresponds /// to the `avx` and up target features for x86/x86_64. /// /// Note that unlike `__m256i`, the integer version of the 256-bit /// registers, this `__m256d` type has *one* interpretation. Each instance /// of `__m256d` always corresponds to `f64x4`, or four `f64` types packed /// together. /// /// Most intrinsics using `__m256d` are prefixed with `_mm256_` and are /// suffixed with "pd" (or otherwise contain "pd"). Not to be confused with /// "ps" which is used for `__m256`. /// /// # Examples /// /// ``` /// # #![cfg_attr(not(dox), feature(stdsimd))] /// # #![cfg_attr(not(dox), no_std)] /// # #[cfg(not(dox))] /// # extern crate std as real_std; /// # #[cfg(not(dox))] /// # #[macro_use] /// # extern crate stdsimd as std; /// #[cfg(target_arch = "x86")] /// use std::arch::x86::*; /// #[cfg(target_arch = "x86_64")] /// use std::arch::x86_64::*; /// /// # fn main() { /// # #[target_feature(enable = "avx")] /// # unsafe fn foo() { /// let four_zeros = _mm256_setzero_pd(); /// let four_ones = _mm256_set1_pd(1.0); /// let four_floats = _mm256_set_pd(1.0, 2.0, 3.0, 4.0); /// # } /// # if is_x86_feature_detected!("avx") { unsafe { foo() } } /// # } /// ``` #[stable(feature = "simd_x86", since = "1.27.0")] pub struct __m256d(f64, f64, f64, f64); } #[cfg(test)] mod test; #[cfg(test)] pub use self::test::*; #[allow(non_camel_case_types)] #[unstable(feature = "stdimd_internal", issue = "0")] pub(crate) trait m128iExt: Sized { fn as_m128i(self) -> __m128i; #[inline] fn as_u8x16(self) -> ::coresimd::simd::u8x16 { unsafe { mem::transmute(self.as_m128i()) } } #[inline] fn as_u16x8(self) -> ::coresimd::simd::u16x8 { unsafe { mem::transmute(self.as_m128i()) } } #[inline] fn as_u32x4(self) -> ::coresimd::simd::u32x4 { unsafe { mem::transmute(self.as_m128i()) } } #[inline] fn as_u64x2(self) -> ::coresimd::simd::u64x2 { unsafe { mem::transmute(self.as_m128i()) } } #[inline] fn as_i8x16(self) -> ::coresimd::simd::i8x16 { unsafe { mem::transmute(self.as_m128i()) } } #[inline] fn as_i16x8(self) -> ::coresimd::simd::i16x8 { unsafe { mem::transmute(self.as_m128i()) } } #[inline] fn as_i32x4(self) -> ::coresimd::simd::i32x4 { unsafe { mem::transmute(self.as_m128i()) } } #[inline] fn as_i64x2(self) -> ::coresimd::simd::i64x2 { unsafe { mem::transmute(self.as_m128i()) } } } impl m128iExt for __m128i { #[inline] fn as_m128i(self) -> Self { self } } #[allow(non_camel_case_types)] #[unstable(feature = "stdimd_internal", issue = "0")] pub(crate) trait m256iExt: Sized { fn as_m256i(self) -> __m256i; #[inline] fn as_u8x32(self) -> ::coresimd::simd::u8x32 { unsafe { mem::transmute(self.as_m256i()) } } #[inline] fn as_u16x16(self) -> ::coresimd::simd::u16x16 { unsafe { mem::transmute(self.as_m256i()) } } #[inline] fn as_u32x8(self) -> ::coresimd::simd::u32x8 { unsafe { mem::transmute(self.as_m256i()) } } #[inline] fn as_u64x4(self) -> ::coresimd::simd::u64x4 { unsafe { mem::transmute(self.as_m256i()) } } #[inline] fn as_i8x32(self) -> ::coresimd::simd::i8x32 { unsafe { mem::transmute(self.as_m256i()) } } #[inline] fn as_i16x16(self) -> ::coresimd::simd::i16x16 { unsafe { mem::transmute(self.as_m256i()) } } #[inline] fn as_i32x8(self) -> ::coresimd::simd::i32x8 { unsafe { mem::transmute(self.as_m256i()) } } #[inline] fn as_i64x4(self) -> ::coresimd::simd::i64x4 { unsafe { mem::transmute(self.as_m256i()) } } } impl m256iExt for __m256i { #[inline] fn as_m256i(self) -> Self { self } } mod eflags; pub use self::eflags::*; mod fxsr; pub use self::fxsr::*; mod bswap; pub use self::bswap::*; mod rdtsc; pub use self::rdtsc::*; mod cpuid; pub use self::cpuid::*; mod xsave; pub use self::xsave::*; mod sse; pub use self::sse::*; mod sse2; pub use self::sse2::*; mod sse3; pub use self::sse3::*; mod ssse3; pub use self::ssse3::*; mod sse41; pub use self::sse41::*; mod sse42; pub use self::sse42::*; mod avx; pub use self::avx::*; mod avx2; pub use self::avx2::*; mod fma; pub use self::fma::*; mod abm; pub use self::abm::*; mod bmi1; pub use self::bmi1::*; mod bmi2; pub use self::bmi2::*; #[cfg(not(stdsimd_intel_sde))] mod sse4a; #[cfg(not(stdsimd_intel_sde))] pub use self::sse4a::*; #[cfg(not(stdsimd_intel_sde))] mod tbm; #[cfg(not(stdsimd_intel_sde))] pub use self::tbm::*; mod mmx; pub use self::mmx::*; mod pclmulqdq; pub use self::pclmulqdq::*; mod aes; pub use self::aes::*; mod rdrand; pub use self::rdrand::*; mod sha; pub use self::sha::*;