//@ add-core-stubs //@ compile-flags: -C opt-level=0 -C no-prepopulate-passes --target=x86_64-unknown-linux-gnu //@ needs-llvm-components: x86 #![crate_type = "lib"] #![feature(no_core, repr_simd)] #![no_core] extern crate minicore; use minicore::*; // With opaque ptrs in LLVM, `transmute` can load/store any `alloca` as any type, // without needing to pointercast, and SRoA will turn that into a `bitcast`. // Thus memory-to-memory transmutes don't need to generate them ourselves. // However, `bitcast`s and `ptrtoint`s and `inttoptr`s are still worth doing when // that allows us to avoid the `alloca`s entirely; see `rvalue_creates_operand`. // CHECK-LABEL: define{{.*}}i32 @f32_to_bits(float %x) // CHECK: %_0 = bitcast float %x to i32 // CHECK-NEXT: ret i32 %_0 #[no_mangle] pub fn f32_to_bits(x: f32) -> u32 { unsafe { mem::transmute(x) } } // CHECK-LABEL: define{{.*}}i8 @bool_to_byte(i1 zeroext %b) // CHECK: %_0 = zext i1 %b to i8 // CHECK-NEXT: ret i8 %_0 #[no_mangle] pub fn bool_to_byte(b: bool) -> u8 { unsafe { mem::transmute(b) } } // CHECK-LABEL: define{{.*}}zeroext i1 @byte_to_bool(i8{{.*}} %byte) // CHECK: %_0 = trunc{{( nuw)?}} i8 %byte to i1 // CHECK-NEXT: ret i1 %_0 #[no_mangle] pub unsafe fn byte_to_bool(byte: u8) -> bool { mem::transmute(byte) } // CHECK-LABEL: define{{.*}}ptr @ptr_to_ptr(ptr %p) // CHECK: ret ptr %p #[no_mangle] pub fn ptr_to_ptr(p: *mut u16) -> *mut u8 { unsafe { mem::transmute(p) } } // CHECK: define{{.*}}[[USIZE:i[0-9]+]] @ptr_to_int(ptr %p) // CHECK: %_0 = ptrtoint ptr %p to [[USIZE]] // CHECK-NEXT: ret [[USIZE]] %_0 #[no_mangle] pub fn ptr_to_int(p: *mut u16) -> usize { unsafe { mem::transmute(p) } } // CHECK: define{{.*}}ptr @int_to_ptr([[USIZE]] %i) // CHECK: %_0 = getelementptr i8, ptr null, [[USIZE]] %i // CHECK-NEXT: ret ptr %_0 #[no_mangle] pub fn int_to_ptr(i: usize) -> *mut u16 { unsafe { mem::transmute(i) } } // This is the one case where signedness matters to transmuting: // the LLVM type is `i8` here because of `repr(i8)`, // whereas below with the `repr(u8)` it's `i1` in LLVM instead. #[repr(i8)] pub enum FakeBoolSigned { False = 0, True = 1, } // CHECK-LABEL: define{{.*}}i8 @bool_to_fake_bool_signed(i1 zeroext %b) // CHECK: %_0 = zext i1 %b to i8 // CHECK-NEXT: ret i8 %_0 #[no_mangle] pub fn bool_to_fake_bool_signed(b: bool) -> FakeBoolSigned { unsafe { mem::transmute(b) } } // CHECK-LABEL: define{{.*}}i1 @fake_bool_signed_to_bool(i8 %b) // CHECK: %_0 = trunc nuw i8 %b to i1 // CHECK-NEXT: ret i1 %_0 #[no_mangle] pub fn fake_bool_signed_to_bool(b: FakeBoolSigned) -> bool { unsafe { mem::transmute(b) } } #[repr(u8)] pub enum FakeBoolUnsigned { False = 0, True = 1, } // CHECK-LABEL: define{{.*}}i1 @bool_to_fake_bool_unsigned(i1 zeroext %b) // CHECK: ret i1 %b #[no_mangle] pub fn bool_to_fake_bool_unsigned(b: bool) -> FakeBoolUnsigned { unsafe { mem::transmute(b) } } // CHECK-LABEL: define{{.*}}i1 @fake_bool_unsigned_to_bool(i1 zeroext %b) // CHECK: ret i1 %b #[no_mangle] pub fn fake_bool_unsigned_to_bool(b: FakeBoolUnsigned) -> bool { unsafe { mem::transmute(b) } } #[repr(simd)] struct S([i64; 1]); // CHECK-LABEL: define{{.*}}i64 @single_element_simd_to_scalar(<1 x i64> %b) // CHECK-NEXT: start: // CHECK-NEXT: %[[RET:.+]] = alloca [8 x i8] // CHECK-NEXT: store <1 x i64> %b, ptr %[[RET]] // CHECK-NEXT: %[[TEMP:.+]] = load i64, ptr %[[RET]] // CHECK-NEXT: ret i64 %[[TEMP]] #[no_mangle] #[cfg_attr(target_arch = "x86", target_feature(enable = "sse"))] pub extern "C" fn single_element_simd_to_scalar(b: S) -> i64 { unsafe { mem::transmute(b) } } // CHECK-LABEL: define{{.*}}<1 x i64> @scalar_to_single_element_simd(i64 %b) // CHECK-NEXT: start: // CHECK-NEXT: %[[RET:.+]] = alloca [8 x i8] // CHECK-NEXT: store i64 %b, ptr %[[RET]] // CHECK-NEXT: %[[TEMP:.+]] = load <1 x i64>, ptr %[[RET]] // CHECK-NEXT: ret <1 x i64> %[[TEMP]] #[no_mangle] #[cfg_attr(target_arch = "x86", target_feature(enable = "sse"))] pub extern "C" fn scalar_to_single_element_simd(b: i64) -> S { unsafe { mem::transmute(b) } }