use crate::abi::call::{ArgAttribute, FnAbi, PassMode, Reg, RegKind}; use crate::abi::{ AddressSpace, Align, BackendRepr, Float, HasDataLayout, Pointer, TyAbiInterface, TyAndLayout, }; use crate::spec::HasTargetSpec; use crate::spec::abi::Abi as SpecAbi; #[derive(PartialEq)] pub(crate) enum Flavor { General, FastcallOrVectorcall, } pub(crate) struct X86Options { pub flavor: Flavor, pub regparm: Option, pub reg_struct_return: bool, } pub(crate) fn compute_abi_info<'a, Ty, C>(cx: &C, fn_abi: &mut FnAbi<'a, Ty>, opts: X86Options) where Ty: TyAbiInterface<'a, C> + Copy, C: HasDataLayout + HasTargetSpec, { if !fn_abi.ret.is_ignore() { if fn_abi.ret.layout.is_aggregate() && fn_abi.ret.layout.is_sized() { // Returning a structure. Most often, this will use // a hidden first argument. On some platforms, though, // small structs are returned as integers. // // Some links: // https://www.angelcode.com/dev/callconv/callconv.html // Clang's ABI handling is in lib/CodeGen/TargetInfo.cpp let t = cx.target_spec(); if t.abi_return_struct_as_int || opts.reg_struct_return { // According to Clang, everyone but MSVC returns single-element // float aggregates directly in a floating-point register. if !t.is_like_msvc && fn_abi.ret.layout.is_single_fp_element(cx) { match fn_abi.ret.layout.size.bytes() { 4 => fn_abi.ret.cast_to(Reg::f32()), 8 => fn_abi.ret.cast_to(Reg::f64()), _ => fn_abi.ret.make_indirect(), } } else { match fn_abi.ret.layout.size.bytes() { 1 => fn_abi.ret.cast_to(Reg::i8()), 2 => fn_abi.ret.cast_to(Reg::i16()), 4 => fn_abi.ret.cast_to(Reg::i32()), 8 => fn_abi.ret.cast_to(Reg::i64()), _ => fn_abi.ret.make_indirect(), } } } else { fn_abi.ret.make_indirect(); } } else { fn_abi.ret.extend_integer_width_to(32); } } for arg in fn_abi.args.iter_mut() { if arg.is_ignore() || !arg.layout.is_sized() { continue; } // FIXME: MSVC 2015+ will pass the first 3 vector arguments in [XYZ]MM0-2 // See https://reviews.llvm.org/D72114 for Clang behavior let t = cx.target_spec(); let align_4 = Align::from_bytes(4).unwrap(); let align_16 = Align::from_bytes(16).unwrap(); if t.is_like_msvc && arg.layout.is_adt() && let Some(max_repr_align) = arg.layout.max_repr_align && max_repr_align > align_4 { // MSVC has special rules for overaligned arguments: https://reviews.llvm.org/D72114. // Summarized here: // - Arguments with _requested_ alignment > 4 are passed indirectly. // - For backwards compatibility, arguments with natural alignment > 4 are still passed // on stack (via `byval`). For example, this includes `double`, `int64_t`, // and structs containing them, provided they lack an explicit alignment attribute. assert!( arg.layout.align.abi >= max_repr_align, "abi alignment {:?} less than requested alignment {max_repr_align:?}", arg.layout.align.abi, ); arg.make_indirect(); } else if arg.layout.is_aggregate() { // We need to compute the alignment of the `byval` argument. The rules can be found in // `X86_32ABIInfo::getTypeStackAlignInBytes` in Clang's `TargetInfo.cpp`. Summarized // here, they are: // // 1. If the natural alignment of the type is <= 4, the alignment is 4. // // 2. Otherwise, on Linux, the alignment of any vector type is the natural alignment. // This doesn't matter here because we only pass aggregates via `byval`, not vectors. // // 3. Otherwise, on Apple platforms, the alignment of anything that contains a vector // type is 16. // // 4. If none of these conditions are true, the alignment is 4. fn contains_vector<'a, Ty, C>(cx: &C, layout: TyAndLayout<'a, Ty>) -> bool where Ty: TyAbiInterface<'a, C> + Copy, { match layout.backend_repr { BackendRepr::Uninhabited | BackendRepr::Scalar(_) | BackendRepr::ScalarPair(..) => false, BackendRepr::Vector { .. } => true, BackendRepr::Memory { .. } => { for i in 0..layout.fields.count() { if contains_vector(cx, layout.field(cx, i)) { return true; } } false } } } let byval_align = if arg.layout.align.abi < align_4 { // (1.) align_4 } else if t.is_like_osx && contains_vector(cx, arg.layout) { // (3.) align_16 } else { // (4.) align_4 }; arg.pass_by_stack_offset(Some(byval_align)); } else { arg.extend_integer_width_to(32); } } fill_inregs(cx, fn_abi, opts, false); } pub(crate) fn fill_inregs<'a, Ty, C>( cx: &C, fn_abi: &mut FnAbi<'a, Ty>, opts: X86Options, rust_abi: bool, ) where Ty: TyAbiInterface<'a, C> + Copy, { if opts.flavor != Flavor::FastcallOrVectorcall && opts.regparm.is_none_or(|x| x == 0) { return; } // Mark arguments as InReg like clang does it, // so our fastcall/vectorcall is compatible with C/C++ fastcall/vectorcall. // Clang reference: lib/CodeGen/TargetInfo.cpp // See X86_32ABIInfo::shouldPrimitiveUseInReg(), X86_32ABIInfo::updateFreeRegs() // IsSoftFloatABI is only set to true on ARM platforms, // which in turn can't be x86? // 2 for fastcall/vectorcall, regparm limited by 3 otherwise let mut free_regs = opts.regparm.unwrap_or(2).into(); // For types generating PassMode::Cast, InRegs will not be set. // Maybe, this is a FIXME let has_casts = fn_abi.args.iter().any(|arg| matches!(arg.mode, PassMode::Cast { .. })); if has_casts && rust_abi { return; } for arg in fn_abi.args.iter_mut() { let attrs = match arg.mode { PassMode::Ignore | PassMode::Indirect { attrs: _, meta_attrs: None, on_stack: _ } => { continue; } PassMode::Direct(ref mut attrs) => attrs, PassMode::Pair(..) | PassMode::Indirect { attrs: _, meta_attrs: Some(_), on_stack: _ } | PassMode::Cast { .. } => { unreachable!("x86 shouldn't be passing arguments by {:?}", arg.mode) } }; // At this point we know this must be a primitive of sorts. let unit = arg.layout.homogeneous_aggregate(cx).unwrap().unit().unwrap(); assert_eq!(unit.size, arg.layout.size); if matches!(unit.kind, RegKind::Float | RegKind::Vector) { continue; } let size_in_regs = (arg.layout.size.bits() + 31) / 32; if size_in_regs == 0 { continue; } if size_in_regs > free_regs { break; } free_regs -= size_in_regs; if arg.layout.size.bits() <= 32 && unit.kind == RegKind::Integer { attrs.set(ArgAttribute::InReg); } if free_regs == 0 { break; } } } pub(crate) fn compute_rust_abi_info<'a, Ty, C>(cx: &C, fn_abi: &mut FnAbi<'a, Ty>, abi: SpecAbi) where Ty: TyAbiInterface<'a, C> + Copy, C: HasDataLayout + HasTargetSpec, { // Avoid returning floats in x87 registers on x86 as loading and storing from x87 // registers will quiet signalling NaNs. Also avoid using SSE registers since they // are not always available (depending on target features). if !fn_abi.ret.is_ignore() // Intrinsics themselves are not actual "real" functions, so theres no need to change their ABIs. && abi != SpecAbi::RustIntrinsic { let has_float = match fn_abi.ret.layout.backend_repr { BackendRepr::Scalar(s) => matches!(s.primitive(), Float(_)), BackendRepr::ScalarPair(s1, s2) => { matches!(s1.primitive(), Float(_)) || matches!(s2.primitive(), Float(_)) } _ => false, // anyway not passed via registers on x86 }; if has_float { if fn_abi.ret.layout.size <= Pointer(AddressSpace::DATA).size(cx) { // Same size or smaller than pointer, return in a register. fn_abi.ret.cast_to(Reg { kind: RegKind::Integer, size: fn_abi.ret.layout.size }); } else { // Larger than a pointer, return indirectly. fn_abi.ret.make_indirect(); } return; } } }