use std::f64::consts; #[allow(unused_macros)] macro_rules! assert_f64_biteq { ($left : expr, $right : expr) => { let l: &f64 = &$left; let r: &f64 = &$right; let lb = l.to_bits(); let rb = r.to_bits(); assert_eq!(lb, rb, "float {l} ({lb:#018x}) is not bitequal to {r} ({rb:#018x})"); }; } #[test] fn test_powf() { let nan: f64 = f64::NAN; let inf: f64 = f64::INFINITY; let neg_inf: f64 = f64::NEG_INFINITY; assert_eq!(1.0f64.powf(1.0), 1.0); assert_approx_eq!(3.4f64.powf(4.5), 246.408183); assert_approx_eq!(2.7f64.powf(-3.2), 0.041652); assert_approx_eq!((-3.1f64).powf(2.0), 9.61); assert_approx_eq!(5.9f64.powf(-2.0), 0.028727); assert_eq!(8.3f64.powf(0.0), 1.0); assert!(nan.powf(2.0).is_nan()); assert_eq!(inf.powf(2.0), inf); assert_eq!(neg_inf.powf(3.0), neg_inf); } #[test] fn test_exp() { assert_eq!(1.0, 0.0f64.exp()); assert_approx_eq!(2.718282, 1.0f64.exp()); assert_approx_eq!(148.413159, 5.0f64.exp()); let inf: f64 = f64::INFINITY; let neg_inf: f64 = f64::NEG_INFINITY; let nan: f64 = f64::NAN; assert_eq!(inf, inf.exp()); assert_eq!(0.0, neg_inf.exp()); assert!(nan.exp().is_nan()); } #[test] fn test_exp2() { assert_approx_eq!(32.0, 5.0f64.exp2()); assert_eq!(1.0, 0.0f64.exp2()); let inf: f64 = f64::INFINITY; let neg_inf: f64 = f64::NEG_INFINITY; let nan: f64 = f64::NAN; assert_eq!(inf, inf.exp2()); assert_eq!(0.0, neg_inf.exp2()); assert!(nan.exp2().is_nan()); } #[test] fn test_ln() { let nan: f64 = f64::NAN; let inf: f64 = f64::INFINITY; let neg_inf: f64 = f64::NEG_INFINITY; assert_approx_eq!(1.0f64.exp().ln(), 1.0); assert!(nan.ln().is_nan()); assert_eq!(inf.ln(), inf); assert!(neg_inf.ln().is_nan()); assert!((-2.3f64).ln().is_nan()); assert_eq!((-0.0f64).ln(), neg_inf); assert_eq!(0.0f64.ln(), neg_inf); assert_approx_eq!(4.0f64.ln(), 1.386294); } #[test] fn test_log() { let nan: f64 = f64::NAN; let inf: f64 = f64::INFINITY; let neg_inf: f64 = f64::NEG_INFINITY; assert_approx_eq!(10.0f64.log(10.0), 1.0); assert_approx_eq!(2.3f64.log(3.5), 0.664858); assert_approx_eq!(1.0f64.exp().log(1.0f64.exp()), 1.0); assert!(1.0f64.log(1.0).is_nan()); assert!(1.0f64.log(-13.9).is_nan()); assert!(nan.log(2.3).is_nan()); assert_eq!(inf.log(10.0), inf); assert!(neg_inf.log(8.8).is_nan()); assert!((-2.3f64).log(0.1).is_nan()); assert_eq!((-0.0f64).log(2.0), neg_inf); assert_eq!(0.0f64.log(7.0), neg_inf); } #[test] fn test_log2() { let nan: f64 = f64::NAN; let inf: f64 = f64::INFINITY; let neg_inf: f64 = f64::NEG_INFINITY; assert_approx_eq!(10.0f64.log2(), 3.321928); assert_approx_eq!(2.3f64.log2(), 1.201634); assert_approx_eq!(1.0f64.exp().log2(), 1.442695); assert!(nan.log2().is_nan()); assert_eq!(inf.log2(), inf); assert!(neg_inf.log2().is_nan()); assert!((-2.3f64).log2().is_nan()); assert_eq!((-0.0f64).log2(), neg_inf); assert_eq!(0.0f64.log2(), neg_inf); } #[test] fn test_log10() { let nan: f64 = f64::NAN; let inf: f64 = f64::INFINITY; let neg_inf: f64 = f64::NEG_INFINITY; assert_approx_eq!(10.0f64.log10(), 1.0); assert_approx_eq!(2.3f64.log10(), 0.361728); assert_approx_eq!(1.0f64.exp().log10(), 0.434294); assert_eq!(1.0f64.log10(), 0.0); assert!(nan.log10().is_nan()); assert_eq!(inf.log10(), inf); assert!(neg_inf.log10().is_nan()); assert!((-2.3f64).log10().is_nan()); assert_eq!((-0.0f64).log10(), neg_inf); assert_eq!(0.0f64.log10(), neg_inf); } #[test] fn test_asinh() { assert_eq!(0.0f64.asinh(), 0.0f64); assert_eq!((-0.0f64).asinh(), -0.0f64); let inf: f64 = f64::INFINITY; let neg_inf: f64 = f64::NEG_INFINITY; let nan: f64 = f64::NAN; assert_eq!(inf.asinh(), inf); assert_eq!(neg_inf.asinh(), neg_inf); assert!(nan.asinh().is_nan()); assert!((-0.0f64).asinh().is_sign_negative()); // issue 63271 assert_approx_eq!(2.0f64.asinh(), 1.443635475178810342493276740273105f64); assert_approx_eq!((-2.0f64).asinh(), -1.443635475178810342493276740273105f64); // regression test for the catastrophic cancellation fixed in 72486 assert_approx_eq!((-67452098.07139316f64).asinh(), -18.72007542627454439398548429400083); // test for low accuracy from issue 104548 assert_approx_eq!(60.0f64, 60.0f64.sinh().asinh()); // mul needed for approximate comparison to be meaningful assert_approx_eq!(1.0f64, 1e-15f64.sinh().asinh() * 1e15f64); } #[test] fn test_acosh() { assert_eq!(1.0f64.acosh(), 0.0f64); assert!(0.999f64.acosh().is_nan()); let inf: f64 = f64::INFINITY; let neg_inf: f64 = f64::NEG_INFINITY; let nan: f64 = f64::NAN; assert_eq!(inf.acosh(), inf); assert!(neg_inf.acosh().is_nan()); assert!(nan.acosh().is_nan()); assert_approx_eq!(2.0f64.acosh(), 1.31695789692481670862504634730796844f64); assert_approx_eq!(3.0f64.acosh(), 1.76274717403908605046521864995958461f64); // test for low accuracy from issue 104548 assert_approx_eq!(60.0f64, 60.0f64.cosh().acosh()); } #[test] fn test_atanh() { assert_eq!(0.0f64.atanh(), 0.0f64); assert_eq!((-0.0f64).atanh(), -0.0f64); let inf: f64 = f64::INFINITY; let neg_inf: f64 = f64::NEG_INFINITY; let nan: f64 = f64::NAN; assert_eq!(1.0f64.atanh(), inf); assert_eq!((-1.0f64).atanh(), neg_inf); assert!(2f64.atanh().atanh().is_nan()); assert!((-2f64).atanh().atanh().is_nan()); assert!(inf.atanh().is_nan()); assert!(neg_inf.atanh().is_nan()); assert!(nan.atanh().is_nan()); assert_approx_eq!(0.5f64.atanh(), 0.54930614433405484569762261846126285f64); assert_approx_eq!((-0.5f64).atanh(), -0.54930614433405484569762261846126285f64); } #[test] fn test_gamma() { // precision can differ between platforms assert_approx_eq!(1.0f64.gamma(), 1.0f64); assert_approx_eq!(2.0f64.gamma(), 1.0f64); assert_approx_eq!(3.0f64.gamma(), 2.0f64); assert_approx_eq!(4.0f64.gamma(), 6.0f64); assert_approx_eq!(5.0f64.gamma(), 24.0f64); assert_approx_eq!(0.5f64.gamma(), consts::PI.sqrt()); assert_approx_eq!((-0.5f64).gamma(), -2.0 * consts::PI.sqrt()); assert_eq!(0.0f64.gamma(), f64::INFINITY); assert_eq!((-0.0f64).gamma(), f64::NEG_INFINITY); assert!((-1.0f64).gamma().is_nan()); assert!((-2.0f64).gamma().is_nan()); assert!(f64::NAN.gamma().is_nan()); assert!(f64::NEG_INFINITY.gamma().is_nan()); assert_eq!(f64::INFINITY.gamma(), f64::INFINITY); assert_eq!(171.71f64.gamma(), f64::INFINITY); } #[test] fn test_ln_gamma() { assert_approx_eq!(1.0f64.ln_gamma().0, 0.0f64); assert_eq!(1.0f64.ln_gamma().1, 1); assert_approx_eq!(2.0f64.ln_gamma().0, 0.0f64); assert_eq!(2.0f64.ln_gamma().1, 1); assert_approx_eq!(3.0f64.ln_gamma().0, 2.0f64.ln()); assert_eq!(3.0f64.ln_gamma().1, 1); assert_approx_eq!((-0.5f64).ln_gamma().0, (2.0 * consts::PI.sqrt()).ln()); assert_eq!((-0.5f64).ln_gamma().1, -1); } #[test] fn test_real_consts() { let pi: f64 = consts::PI; let frac_pi_2: f64 = consts::FRAC_PI_2; let frac_pi_3: f64 = consts::FRAC_PI_3; let frac_pi_4: f64 = consts::FRAC_PI_4; let frac_pi_6: f64 = consts::FRAC_PI_6; let frac_pi_8: f64 = consts::FRAC_PI_8; let frac_1_pi: f64 = consts::FRAC_1_PI; let frac_2_pi: f64 = consts::FRAC_2_PI; let frac_2_sqrtpi: f64 = consts::FRAC_2_SQRT_PI; let sqrt2: f64 = consts::SQRT_2; let frac_1_sqrt2: f64 = consts::FRAC_1_SQRT_2; let e: f64 = consts::E; let log2_e: f64 = consts::LOG2_E; let log10_e: f64 = consts::LOG10_E; let ln_2: f64 = consts::LN_2; let ln_10: f64 = consts::LN_10; assert_approx_eq!(frac_pi_2, pi / 2f64); assert_approx_eq!(frac_pi_3, pi / 3f64); assert_approx_eq!(frac_pi_4, pi / 4f64); assert_approx_eq!(frac_pi_6, pi / 6f64); assert_approx_eq!(frac_pi_8, pi / 8f64); assert_approx_eq!(frac_1_pi, 1f64 / pi); assert_approx_eq!(frac_2_pi, 2f64 / pi); assert_approx_eq!(frac_2_sqrtpi, 2f64 / pi.sqrt()); assert_approx_eq!(sqrt2, 2f64.sqrt()); assert_approx_eq!(frac_1_sqrt2, 1f64 / 2f64.sqrt()); assert_approx_eq!(log2_e, e.log2()); assert_approx_eq!(log10_e, e.log10()); assert_approx_eq!(ln_2, 2f64.ln()); assert_approx_eq!(ln_10, 10f64.ln()); }