use std::collections::VecDeque; use std::ffi::{CStr, CString}; use std::fmt::Write; use std::path::Path; use std::sync::Once; use std::{ptr, slice, str}; use libc::c_int; use rustc_codegen_ssa::base::wants_wasm_eh; use rustc_codegen_ssa::target_features::cfg_target_feature; use rustc_codegen_ssa::{TargetConfig, target_features}; use rustc_data_structures::fx::FxHashSet; use rustc_data_structures::small_c_str::SmallCStr; use rustc_fs_util::path_to_c_string; use rustc_middle::bug; use rustc_session::Session; use rustc_session::config::{PrintKind, PrintRequest}; use rustc_target::spec::{MergeFunctions, PanicStrategy, SmallDataThresholdSupport}; use smallvec::{SmallVec, smallvec}; use crate::back::write::create_informational_target_machine; use crate::{errors, llvm}; static INIT: Once = Once::new(); pub(crate) fn init(sess: &Session) { unsafe { // Before we touch LLVM, make sure that multithreading is enabled. if llvm::LLVMIsMultithreaded() != 1 { bug!("LLVM compiled without support for threads"); } INIT.call_once(|| { configure_llvm(sess); }); } } fn require_inited() { if !INIT.is_completed() { bug!("LLVM is not initialized"); } } unsafe fn configure_llvm(sess: &Session) { let n_args = sess.opts.cg.llvm_args.len() + sess.target.llvm_args.len(); let mut llvm_c_strs = Vec::with_capacity(n_args + 1); let mut llvm_args = Vec::with_capacity(n_args + 1); unsafe { llvm::LLVMRustInstallErrorHandlers(); } // On Windows, an LLVM assertion will open an Abort/Retry/Ignore dialog // box for the purpose of launching a debugger. However, on CI this will // cause it to hang until it times out, which can take several hours. if std::env::var_os("CI").is_some() { unsafe { llvm::LLVMRustDisableSystemDialogsOnCrash(); } } fn llvm_arg_to_arg_name(full_arg: &str) -> &str { full_arg.trim().split(|c: char| c == '=' || c.is_whitespace()).next().unwrap_or("") } let cg_opts = sess.opts.cg.llvm_args.iter().map(AsRef::as_ref); let tg_opts = sess.target.llvm_args.iter().map(AsRef::as_ref); let sess_args = cg_opts.chain(tg_opts); let user_specified_args: FxHashSet<_> = sess_args.clone().map(|s| llvm_arg_to_arg_name(s)).filter(|s| !s.is_empty()).collect(); { // This adds the given argument to LLVM. Unless `force` is true // user specified arguments are *not* overridden. let mut add = |arg: &str, force: bool| { if force || !user_specified_args.contains(llvm_arg_to_arg_name(arg)) { let s = CString::new(arg).unwrap(); llvm_args.push(s.as_ptr()); llvm_c_strs.push(s); } }; // Set the llvm "program name" to make usage and invalid argument messages more clear. add("rustc -Cllvm-args=\"...\" with", true); if sess.opts.unstable_opts.time_llvm_passes { add("-time-passes", false); } if sess.opts.unstable_opts.print_llvm_passes { add("-debug-pass=Structure", false); } if sess.target.generate_arange_section && !sess.opts.unstable_opts.no_generate_arange_section { add("-generate-arange-section", false); } match sess.opts.unstable_opts.merge_functions.unwrap_or(sess.target.merge_functions) { MergeFunctions::Disabled | MergeFunctions::Trampolines => {} MergeFunctions::Aliases => { add("-mergefunc-use-aliases", false); } } if wants_wasm_eh(sess) { add("-wasm-enable-eh", false); } if sess.target.os == "emscripten" && !sess.opts.unstable_opts.emscripten_wasm_eh && sess.panic_strategy() == PanicStrategy::Unwind { add("-enable-emscripten-cxx-exceptions", false); } // HACK(eddyb) LLVM inserts `llvm.assume` calls to preserve align attributes // during inlining. Unfortunately these may block other optimizations. add("-preserve-alignment-assumptions-during-inlining=false", false); // Use non-zero `import-instr-limit` multiplier for cold callsites. add("-import-cold-multiplier=0.1", false); if sess.print_llvm_stats() { add("-stats", false); } for arg in sess_args { add(&(*arg), true); } match ( sess.opts.unstable_opts.small_data_threshold, sess.target.small_data_threshold_support(), ) { // Set up the small-data optimization limit for architectures that use // an LLVM argument to control this. (Some(threshold), SmallDataThresholdSupport::LlvmArg(arg)) => { add(&format!("--{arg}={threshold}"), false) } _ => (), }; } if sess.opts.unstable_opts.llvm_time_trace { unsafe { llvm::LLVMRustTimeTraceProfilerInitialize() }; } rustc_llvm::initialize_available_targets(); unsafe { llvm::LLVMRustSetLLVMOptions(llvm_args.len() as c_int, llvm_args.as_ptr()) }; } pub(crate) fn time_trace_profiler_finish(file_name: &Path) { unsafe { let file_name = path_to_c_string(file_name); llvm::LLVMRustTimeTraceProfilerFinish(file_name.as_ptr()); } } enum TargetFeatureFoldStrength<'a> { // The feature is only tied when enabling the feature, disabling // this feature shouldn't disable the tied feature. EnableOnly(&'a str), // The feature is tied for both enabling and disabling this feature. Both(&'a str), } impl<'a> TargetFeatureFoldStrength<'a> { fn as_str(&self) -> &'a str { match self { TargetFeatureFoldStrength::EnableOnly(feat) => feat, TargetFeatureFoldStrength::Both(feat) => feat, } } } pub(crate) struct LLVMFeature<'a> { llvm_feature_name: &'a str, dependencies: SmallVec<[TargetFeatureFoldStrength<'a>; 1]>, } impl<'a> LLVMFeature<'a> { fn new(llvm_feature_name: &'a str) -> Self { Self { llvm_feature_name, dependencies: SmallVec::new() } } fn with_dependencies( llvm_feature_name: &'a str, dependencies: SmallVec<[TargetFeatureFoldStrength<'a>; 1]>, ) -> Self { Self { llvm_feature_name, dependencies } } } impl<'a> IntoIterator for LLVMFeature<'a> { type Item = &'a str; type IntoIter = impl Iterator; fn into_iter(self) -> Self::IntoIter { let dependencies = self.dependencies.into_iter().map(|feat| feat.as_str()); std::iter::once(self.llvm_feature_name).chain(dependencies) } } /// Convert a Rust feature name to an LLVM feature name. Returning `None` means the /// feature should be skipped, usually because it is not supported by the current /// LLVM version. /// /// WARNING: the features after applying `to_llvm_features` must be known /// to LLVM or the feature detection code will walk past the end of the feature /// array, leading to crashes. /// /// To find a list of LLVM's names, see llvm-project/llvm/lib/Target/{ARCH}/*.td /// where `{ARCH}` is the architecture name. Look for instances of `SubtargetFeature`. /// /// Check the current rustc fork of LLVM in the repo at /// . The commit in use can be found via the /// `llvm-project` submodule in Though note that /// Rust can also be build with an external precompiled version of LLVM which might lead to failures /// if the oldest tested / supported LLVM version doesn't yet support the relevant intrinsics. pub(crate) fn to_llvm_features<'a>(sess: &Session, s: &'a str) -> Option> { let arch = if sess.target.arch == "x86_64" { "x86" } else if sess.target.arch == "arm64ec" { "aarch64" } else if sess.target.arch == "sparc64" { "sparc" } else if sess.target.arch == "powerpc64" { "powerpc" } else { &*sess.target.arch }; match (arch, s) { ("x86", "sse4.2") => Some(LLVMFeature::with_dependencies( "sse4.2", smallvec![TargetFeatureFoldStrength::EnableOnly("crc32")], )), ("x86", "pclmulqdq") => Some(LLVMFeature::new("pclmul")), ("x86", "rdrand") => Some(LLVMFeature::new("rdrnd")), ("x86", "bmi1") => Some(LLVMFeature::new("bmi")), ("x86", "cmpxchg16b") => Some(LLVMFeature::new("cx16")), ("x86", "lahfsahf") => Some(LLVMFeature::new("sahf")), ("aarch64", "rcpc2") => Some(LLVMFeature::new("rcpc-immo")), ("aarch64", "dpb") => Some(LLVMFeature::new("ccpp")), ("aarch64", "dpb2") => Some(LLVMFeature::new("ccdp")), ("aarch64", "frintts") => Some(LLVMFeature::new("fptoint")), ("aarch64", "fcma") => Some(LLVMFeature::new("complxnum")), ("aarch64", "pmuv3") => Some(LLVMFeature::new("perfmon")), ("aarch64", "paca") => Some(LLVMFeature::new("pauth")), ("aarch64", "pacg") => Some(LLVMFeature::new("pauth")), // Before LLVM 20 those two features were packaged together as b16b16 ("aarch64", "sve-b16b16") if get_version().0 < 20 => Some(LLVMFeature::new("b16b16")), ("aarch64", "sme-b16b16") if get_version().0 < 20 => Some(LLVMFeature::new("b16b16")), ("aarch64", "flagm2") => Some(LLVMFeature::new("altnzcv")), // Rust ties fp and neon together. ("aarch64", "neon") => Some(LLVMFeature::with_dependencies( "neon", smallvec![TargetFeatureFoldStrength::Both("fp-armv8")], )), // In LLVM neon implicitly enables fp, but we manually enable // neon when a feature only implicitly enables fp ("aarch64", "fhm") => Some(LLVMFeature::new("fp16fml")), ("aarch64", "fp16") => Some(LLVMFeature::new("fullfp16")), // Filter out features that are not supported by the current LLVM version ("aarch64", "fpmr") => None, // only existed in 18 ("arm", "fp16") => Some(LLVMFeature::new("fullfp16")), // NVPTX targets added in LLVM 20 ("nvptx64", "sm_100") if get_version().0 < 20 => None, ("nvptx64", "sm_100a") if get_version().0 < 20 => None, ("nvptx64", "sm_101") if get_version().0 < 20 => None, ("nvptx64", "sm_101a") if get_version().0 < 20 => None, ("nvptx64", "sm_120") if get_version().0 < 20 => None, ("nvptx64", "sm_120a") if get_version().0 < 20 => None, ("nvptx64", "ptx86") if get_version().0 < 20 => None, ("nvptx64", "ptx87") if get_version().0 < 20 => None, // Filter out features that are not supported by the current LLVM version ("loongarch64", "div32" | "lam-bh" | "lamcas" | "ld-seq-sa" | "scq") if get_version().0 < 20 => { None } // Filter out features that are not supported by the current LLVM version ("riscv32" | "riscv64", "zacas") if get_version().0 < 20 => None, ( "s390x", "message-security-assist-extension12" | "concurrent-functions" | "miscellaneous-extensions-4" | "vector-enhancements-3" | "vector-packed-decimal-enhancement-3", ) if get_version().0 < 20 => None, // Enable the evex512 target feature if an avx512 target feature is enabled. ("x86", s) if s.starts_with("avx512") => Some(LLVMFeature::with_dependencies( s, smallvec![TargetFeatureFoldStrength::EnableOnly("evex512")], )), // Support for `wide-arithmetic` will first land in LLVM 20 as part of // llvm/llvm-project#111598 ("wasm32" | "wasm64", "wide-arithmetic") if get_version() < (20, 0, 0) => None, ("sparc", "leoncasa") => Some(LLVMFeature::new("hasleoncasa")), // In LLVM 19, there is no `v8plus` feature and `v9` means "SPARC-V9 instruction available and SPARC-V8+ ABI used". // https://github.com/llvm/llvm-project/blob/llvmorg-19.1.0/llvm/lib/Target/Sparc/MCTargetDesc/SparcELFObjectWriter.cpp#L27-L28 // Before LLVM 19, there was no `v8plus` feature and `v9` means "SPARC-V9 instruction available". // https://github.com/llvm/llvm-project/blob/llvmorg-18.1.0/llvm/lib/Target/Sparc/MCTargetDesc/SparcELFObjectWriter.cpp#L26 ("sparc", "v8plus") if get_version().0 == 19 => Some(LLVMFeature::new("v9")), ("powerpc", "power8-crypto") => Some(LLVMFeature::new("crypto")), // These new `amx` variants and `movrs` were introduced in LLVM20 ("x86", "amx-avx512" | "amx-fp8" | "amx-movrs" | "amx-tf32" | "amx-transpose") if get_version().0 < 20 => { None } ("x86", "movrs") if get_version().0 < 20 => None, ("x86", "avx10.1") => Some(LLVMFeature::new("avx10.1-512")), ("x86", "avx10.2") if get_version().0 < 20 => None, ("x86", "avx10.2") if get_version().0 >= 20 => Some(LLVMFeature::new("avx10.2-512")), ("x86", "apxf") => Some(LLVMFeature::with_dependencies( "egpr", smallvec![ TargetFeatureFoldStrength::Both("push2pop2"), TargetFeatureFoldStrength::Both("ppx"), TargetFeatureFoldStrength::Both("ndd"), TargetFeatureFoldStrength::Both("ccmp"), TargetFeatureFoldStrength::Both("cf"), TargetFeatureFoldStrength::Both("nf"), TargetFeatureFoldStrength::Both("zu"), ], )), (_, s) => Some(LLVMFeature::new(s)), } } /// Used to generate cfg variables and apply features. /// Must express features in the way Rust understands them. /// /// We do not have to worry about RUSTC_SPECIFIC_FEATURES here, those are handled outside codegen. pub(crate) fn target_config(sess: &Session) -> TargetConfig { let target_machine = create_informational_target_machine(sess, true); let (unstable_target_features, target_features) = cfg_target_feature(sess, |feature| { // This closure determines whether the target CPU has the feature according to LLVM. We do // *not* consider the `-Ctarget-feature`s here, as that will be handled later in // `cfg_target_feature`. if let Some(feat) = to_llvm_features(sess, feature) { // All the LLVM features this expands to must be enabled. for llvm_feature in feat { let cstr = SmallCStr::new(llvm_feature); // `LLVMRustHasFeature` is moderately expensive. On targets with many // features (e.g. x86) these calls take a non-trivial fraction of runtime // when compiling very small programs. if !unsafe { llvm::LLVMRustHasFeature(target_machine.raw(), cstr.as_ptr()) } { return false; } } true } else { false } }); let mut cfg = TargetConfig { target_features, unstable_target_features, has_reliable_f16: true, has_reliable_f16_math: true, has_reliable_f128: true, has_reliable_f128_math: true, }; update_target_reliable_float_cfg(sess, &mut cfg); cfg } /// Determine whether or not experimental float types are reliable based on known bugs. fn update_target_reliable_float_cfg(sess: &Session, cfg: &mut TargetConfig) { let target_arch = sess.target.arch.as_ref(); let target_os = sess.target.options.os.as_ref(); let target_env = sess.target.options.env.as_ref(); let target_abi = sess.target.options.abi.as_ref(); let target_pointer_width = sess.target.pointer_width; let version = get_version(); let lt_20_1_1 = version < (20, 1, 1); let lt_21_0_0 = version < (21, 0, 0); cfg.has_reliable_f16 = match (target_arch, target_os) { // LLVM crash without neon (fixed in llvm20) ("aarch64", _) if !cfg.target_features.iter().any(|f| f.as_str() == "neon") && lt_20_1_1 => { false } // Unsupported ("arm64ec", _) => false, // Selection failure (fixed in llvm21) ("s390x", _) if lt_21_0_0 => false, // MinGW ABI bugs ("x86_64", "windows") if target_env == "gnu" && target_abi != "llvm" => false, // Infinite recursion ("csky", _) => false, ("hexagon", _) if lt_21_0_0 => false, // (fixed in llvm21) ("powerpc" | "powerpc64", _) => false, ("sparc" | "sparc64", _) => false, ("wasm32" | "wasm64", _) => false, // `f16` support only requires that symbols converting to and from `f32` are available. We // provide these in `compiler-builtins`, so `f16` should be available on all platforms that // do not have other ABI issues or LLVM crashes. _ => true, }; cfg.has_reliable_f128 = match (target_arch, target_os) { // Unsupported ("arm64ec", _) => false, // Selection bug (fixed in llvm20) ("mips64" | "mips64r6", _) if lt_20_1_1 => false, // Selection bug . This issue is closed // but basic math still does not work. ("nvptx64", _) => false, // Unsupported https://github.com/llvm/llvm-project/issues/121122 ("amdgpu", _) => false, // ABI bugs et al. (full // list at ) ("powerpc" | "powerpc64", _) => false, // ABI unsupported ("sparc", _) => false, // Stack alignment bug . NB: tests may // not fail if our compiler-builtins is linked. (fixed in llvm21) ("x86", _) if lt_21_0_0 => false, // MinGW ABI bugs ("x86_64", "windows") if target_env == "gnu" && target_abi != "llvm" => false, // There are no known problems on other platforms, so the only requirement is that symbols // are available. `compiler-builtins` provides all symbols required for core `f128` // support, so this should work for everything else. _ => true, }; // Assume that working `f16` means working `f16` math for most platforms, since // operations just go through `f32`. cfg.has_reliable_f16_math = cfg.has_reliable_f16; cfg.has_reliable_f128_math = match (target_arch, target_os) { // LLVM lowers `fp128` math to `long double` symbols even on platforms where // `long double` is not IEEE binary128. See // . // // This rules out anything that doesn't have `long double` = `binary128`; <= 32 bits // (ld is `f64`), anything other than Linux (Windows and MacOS use `f64`), and `x86` // (ld is 80-bit extended precision). // // musl does not implement the symbols required for f128 math at all. _ if target_env == "musl" => false, ("x86_64", _) => false, (_, "linux") if target_pointer_width == 64 => true, _ => false, } && cfg.has_reliable_f128; } pub(crate) fn print_version() { let (major, minor, patch) = get_version(); println!("LLVM version: {major}.{minor}.{patch}"); } pub(crate) fn get_version() -> (u32, u32, u32) { // Can be called without initializing LLVM unsafe { (llvm::LLVMRustVersionMajor(), llvm::LLVMRustVersionMinor(), llvm::LLVMRustVersionPatch()) } } pub(crate) fn print_passes() { // Can be called without initializing LLVM unsafe { llvm::LLVMRustPrintPasses(); } } fn llvm_target_features(tm: &llvm::TargetMachine) -> Vec<(&str, &str)> { let len = unsafe { llvm::LLVMRustGetTargetFeaturesCount(tm) }; let mut ret = Vec::with_capacity(len); for i in 0..len { unsafe { let mut feature = ptr::null(); let mut desc = ptr::null(); llvm::LLVMRustGetTargetFeature(tm, i, &mut feature, &mut desc); if feature.is_null() || desc.is_null() { bug!("LLVM returned a `null` target feature string"); } let feature = CStr::from_ptr(feature).to_str().unwrap_or_else(|e| { bug!("LLVM returned a non-utf8 feature string: {}", e); }); let desc = CStr::from_ptr(desc).to_str().unwrap_or_else(|e| { bug!("LLVM returned a non-utf8 feature string: {}", e); }); ret.push((feature, desc)); } } ret } pub(crate) fn print(req: &PrintRequest, out: &mut String, sess: &Session) { require_inited(); let tm = create_informational_target_machine(sess, false); match req.kind { PrintKind::TargetCPUs => print_target_cpus(sess, tm.raw(), out), PrintKind::TargetFeatures => print_target_features(sess, tm.raw(), out), _ => bug!("rustc_codegen_llvm can't handle print request: {:?}", req), } } fn print_target_cpus(sess: &Session, tm: &llvm::TargetMachine, out: &mut String) { let cpu_names = llvm::build_string(|s| unsafe { llvm::LLVMRustPrintTargetCPUs(&tm, s); }) .unwrap(); struct Cpu<'a> { cpu_name: &'a str, remark: String, } // Compare CPU against current target to label the default. let target_cpu = handle_native(&sess.target.cpu); let make_remark = |cpu_name| { if cpu_name == target_cpu { // FIXME(#132514): This prints the LLVM target string, which can be // different from the Rust target string. Is that intended? let target = &sess.target.llvm_target; format!( " - This is the default target CPU for the current build target (currently {target})." ) } else { "".to_owned() } }; let mut cpus = cpu_names .lines() .map(|cpu_name| Cpu { cpu_name, remark: make_remark(cpu_name) }) .collect::>(); // Only print the "native" entry when host and target are the same arch, // since otherwise it could be wrong or misleading. if sess.host.arch == sess.target.arch { let host = get_host_cpu_name(); cpus.push_front(Cpu { cpu_name: "native", remark: format!(" - Select the CPU of the current host (currently {host})."), }); } let max_name_width = cpus.iter().map(|cpu| cpu.cpu_name.len()).max().unwrap_or(0); writeln!(out, "Available CPUs for this target:").unwrap(); for Cpu { cpu_name, remark } in cpus { // Only pad the CPU name if there's a remark to print after it. let width = if remark.is_empty() { 0 } else { max_name_width }; writeln!(out, " {cpu_name:::default(); let mut rustc_target_features = sess .target .rust_target_features() .iter() .filter_map(|(feature, gate, _implied)| { if !gate.in_cfg() { // Only list (experimentally) supported features. return None; } // LLVM asserts that these are sorted. LLVM and Rust both use byte comparison for these // strings. let llvm_feature = to_llvm_features(sess, *feature)?.llvm_feature_name; let desc = match llvm_target_features.binary_search_by_key(&llvm_feature, |(f, _d)| f).ok() { Some(index) => { known_llvm_target_features.insert(llvm_feature); llvm_target_features[index].1 } None => "", }; Some((*feature, desc)) }) .collect::>(); // Since we add this at the end ... rustc_target_features.extend_from_slice(&[( "crt-static", "Enables C Run-time Libraries to be statically linked", )]); // ... we need to sort the list again. rustc_target_features.sort(); llvm_target_features.retain(|(f, _d)| !known_llvm_target_features.contains(f)); let max_feature_len = llvm_target_features .iter() .chain(rustc_target_features.iter()) .map(|(feature, _desc)| feature.len()) .max() .unwrap_or(0); writeln!(out, "Features supported by rustc for this target:").unwrap(); for (feature, desc) in &rustc_target_features { writeln!(out, " {feature:max_feature_len$} - {desc}.").unwrap(); } writeln!(out, "\nCode-generation features supported by LLVM for this target:").unwrap(); for (feature, desc) in &llvm_target_features { writeln!(out, " {feature:max_feature_len$} - {desc}.").unwrap(); } if llvm_target_features.is_empty() { writeln!(out, " Target features listing is not supported by this LLVM version.") .unwrap(); } writeln!(out, "\nUse +feature to enable a feature, or -feature to disable it.").unwrap(); writeln!(out, "For example, rustc -C target-cpu=mycpu -C target-feature=+feature1,-feature2\n") .unwrap(); writeln!(out, "Code-generation features cannot be used in cfg or #[target_feature],").unwrap(); writeln!(out, "and may be renamed or removed in a future version of LLVM or rustc.\n").unwrap(); } /// Returns the host CPU name, according to LLVM. fn get_host_cpu_name() -> &'static str { let mut len = 0; // SAFETY: The underlying C++ global function returns a `StringRef` that // isn't tied to any particular backing buffer, so it must be 'static. let slice: &'static [u8] = unsafe { let ptr = llvm::LLVMRustGetHostCPUName(&mut len); assert!(!ptr.is_null()); slice::from_raw_parts(ptr, len) }; str::from_utf8(slice).expect("host CPU name should be UTF-8") } /// If the given string is `"native"`, returns the host CPU name according to /// LLVM. Otherwise, the string is returned as-is. fn handle_native(cpu_name: &str) -> &str { match cpu_name { "native" => get_host_cpu_name(), _ => cpu_name, } } pub(crate) fn target_cpu(sess: &Session) -> &str { let cpu_name = sess.opts.cg.target_cpu.as_deref().unwrap_or_else(|| &sess.target.cpu); handle_native(cpu_name) } /// The target features for compiler flags other than `-Ctarget-features`. fn llvm_features_by_flags(sess: &Session, features: &mut Vec) { target_features::retpoline_features_by_flags(sess, features); // -Zfixed-x18 if sess.opts.unstable_opts.fixed_x18 { if sess.target.arch != "aarch64" { sess.dcx().emit_fatal(errors::FixedX18InvalidArch { arch: &sess.target.arch }); } else { features.push("+reserve-x18".into()); } } } /// The list of LLVM features computed from CLI flags (`-Ctarget-cpu`, `-Ctarget-feature`, /// `--target` and similar). pub(crate) fn global_llvm_features( sess: &Session, diagnostics: bool, only_base_features: bool, ) -> Vec { // Features that come earlier are overridden by conflicting features later in the string. // Typically we'll want more explicit settings to override the implicit ones, so: // // * Features from -Ctarget-cpu=*; are overridden by [^1] // * Features implied by --target; are overridden by // * Features from -Ctarget-feature; are overridden by // * function specific features. // // [^1]: target-cpu=native is handled here, other target-cpu values are handled implicitly // through LLVM TargetMachine implementation. // // FIXME(nagisa): it isn't clear what's the best interaction between features implied by // `-Ctarget-cpu` and `--target` are. On one hand, you'd expect CLI arguments to always // override anything that's implicit, so e.g. when there's no `--target` flag, features implied // the host target are overridden by `-Ctarget-cpu=*`. On the other hand, what about when both // `--target` and `-Ctarget-cpu=*` are specified? Both then imply some target features and both // flags are specified by the user on the CLI. It isn't as clear-cut which order of precedence // should be taken in cases like these. let mut features = vec![]; // -Ctarget-cpu=native match sess.opts.cg.target_cpu { Some(ref s) if s == "native" => { // We have already figured out the actual CPU name with `LLVMRustGetHostCPUName` and set // that for LLVM, so the features implied by that CPU name will be available everywhere. // However, that is not sufficient: e.g. `skylake` alone is not sufficient to tell if // some of the instructions are available or not. So we have to also explicitly ask for // the exact set of features available on the host, and enable all of them. let features_string = unsafe { let ptr = llvm::LLVMGetHostCPUFeatures(); let features_string = if !ptr.is_null() { CStr::from_ptr(ptr) .to_str() .unwrap_or_else(|e| { bug!("LLVM returned a non-utf8 features string: {}", e); }) .to_owned() } else { bug!("could not allocate host CPU features, LLVM returned a `null` string"); }; llvm::LLVMDisposeMessage(ptr); features_string }; features.extend(features_string.split(',').map(String::from)); } Some(_) | None => {} }; // Features implied by an implicit or explicit `--target`. features.extend( sess.target .features .split(',') .filter(|v| !v.is_empty()) // Drop +v8plus feature introduced in LLVM 20. // (Hard-coded target features do not go through `to_llvm_feature` since they already // are LLVM feature names, hence we need a special case here.) .filter(|v| *v != "+v8plus" || get_version() >= (20, 0, 0)) .map(String::from), ); if wants_wasm_eh(sess) && sess.panic_strategy() == PanicStrategy::Unwind { features.push("+exception-handling".into()); } // -Ctarget-features if !only_base_features { target_features::flag_to_backend_features( sess, diagnostics, |feature| { to_llvm_features(sess, feature) .map(|f| SmallVec::<[&str; 2]>::from_iter(f.into_iter())) .unwrap_or_default() }, |feature, enable| { let enable_disable = if enable { '+' } else { '-' }; // We run through `to_llvm_features` when // passing requests down to LLVM. This means that all in-language // features also work on the command line instead of having two // different names when the LLVM name and the Rust name differ. let Some(llvm_feature) = to_llvm_features(sess, feature) else { return }; features.extend( std::iter::once(format!( "{}{}", enable_disable, llvm_feature.llvm_feature_name )) .chain(llvm_feature.dependencies.into_iter().filter_map( move |feat| match (enable, feat) { (_, TargetFeatureFoldStrength::Both(f)) | (true, TargetFeatureFoldStrength::EnableOnly(f)) => { Some(format!("{enable_disable}{f}")) } _ => None, }, )), ) }, ); } // We add this in the "base target" so that these show up in `sess.unstable_target_features`. llvm_features_by_flags(sess, &mut features); features } pub(crate) fn tune_cpu(sess: &Session) -> Option<&str> { let name = sess.opts.unstable_opts.tune_cpu.as_ref()?; Some(handle_native(name)) }