use std::num::FpCategory as Fp; use std::ops::{Add, Div, Mul, Rem, Sub}; trait TestableFloat { /// Set the default tolerance for float comparison based on the type. const APPROX: Self; const MIN_POSITIVE_NORMAL: Self; const MAX_SUBNORMAL: Self; } impl TestableFloat for f16 { const APPROX: Self = 1e-3; const MIN_POSITIVE_NORMAL: Self = Self::MIN_POSITIVE; const MAX_SUBNORMAL: Self = Self::MIN_POSITIVE.next_down(); } impl TestableFloat for f32 { const APPROX: Self = 1e-6; const MIN_POSITIVE_NORMAL: Self = Self::MIN_POSITIVE; const MAX_SUBNORMAL: Self = Self::MIN_POSITIVE.next_down(); } impl TestableFloat for f64 { const APPROX: Self = 1e-6; const MIN_POSITIVE_NORMAL: Self = Self::MIN_POSITIVE; const MAX_SUBNORMAL: Self = Self::MIN_POSITIVE.next_down(); } impl TestableFloat for f128 { const APPROX: Self = 1e-9; const MIN_POSITIVE_NORMAL: Self = Self::MIN_POSITIVE; const MAX_SUBNORMAL: Self = Self::MIN_POSITIVE.next_down(); } /// Determine the tolerance for values of the argument type. const fn lim_for_ty(_x: T) -> T { T::APPROX } // We have runtime ("rt") and const versions of these macros. /// Verify that floats are within a tolerance of each other. macro_rules! assert_approx_eq_rt { ($a:expr, $b:expr) => {{ assert_approx_eq_rt!($a, $b, $crate::floats::lim_for_ty($a)) }}; ($a:expr, $b:expr, $lim:expr) => {{ let (a, b) = (&$a, &$b); let diff = (*a - *b).abs(); assert!( diff <= $lim, "{a:?} is not approximately equal to {b:?} (threshold {lim:?}, difference {diff:?})", lim = $lim ); }}; } macro_rules! assert_approx_eq_const { ($a:expr, $b:expr) => {{ assert_approx_eq_const!($a, $b, $crate::floats::lim_for_ty($a)) }}; ($a:expr, $b:expr, $lim:expr) => {{ let (a, b) = (&$a, &$b); let diff = (*a - *b).abs(); assert!(diff <= $lim); }}; } /// Verify that floats have the same bitwise representation. Used to avoid the default `0.0 == -0.0` /// behavior, as well as to ensure exact NaN bitpatterns. macro_rules! assert_biteq_rt { (@inner $left:expr, $right:expr, $msg_sep:literal, $($tt:tt)*) => {{ let l = $left; let r = $right; // Hack to coerce left and right to the same type let mut _eq_ty = l; _eq_ty = r; // Hack to get the width from a value let bits = (l.to_bits() - l.to_bits()).leading_zeros(); assert!( l.to_bits() == r.to_bits(), "{msg}{nl}l: {l:?} ({lb:#0width$x})\nr: {r:?} ({rb:#0width$x})", msg = format_args!($($tt)*), nl = $msg_sep, lb = l.to_bits(), rb = r.to_bits(), width = ((bits / 4) + 2) as usize, ); if !l.is_nan() && !r.is_nan() { // Also check that standard equality holds, since most tests use `assert_biteq` rather // than `assert_eq`. assert_eq!(l, r); } }}; ($left:expr, $right:expr , $($tt:tt)*) => { assert_biteq_rt!(@inner $left, $right, "\n", $($tt)*) }; ($left:expr, $right:expr $(,)?) => { assert_biteq_rt!(@inner $left, $right, "", "") }; } macro_rules! assert_biteq_const { (@inner $left:expr, $right:expr, $msg_sep:literal, $($tt:tt)*) => {{ let l = $left; let r = $right; // Hack to coerce left and right to the same type let mut _eq_ty = l; _eq_ty = r; assert!(l.to_bits() == r.to_bits()); if !l.is_nan() && !r.is_nan() { // Also check that standard equality holds, since most tests use `assert_biteq` rather // than `assert_eq`. assert!(l == r); } }}; ($left:expr, $right:expr , $($tt:tt)*) => { assert_biteq_const!(@inner $left, $right, "\n", $($tt)*) }; ($left:expr, $right:expr $(,)?) => { assert_biteq_const!(@inner $left, $right, "", "") }; } // Use the runtime version by default. // This way, they can be shadowed by the const versions. pub(crate) use {assert_approx_eq_rt as assert_approx_eq, assert_biteq_rt as assert_biteq}; // Also make the const version available for re-exports. #[rustfmt::skip] pub(crate) use assert_biteq_const; pub(crate) use assert_approx_eq_const; /// Generate float tests for all our float types, for compile-time and run-time behavior. /// /// By default all tests run for all float types. Configuration can be applied via `attrs`. /// /// ```ignore (this is only a sketch) /// float_test! { /// name: fn_name, /* function under test */ /// attrs: { /// // Apply a configuration to the test for a single type /// f16: #[cfg(target_has_reliable_f16_math)], /// // Types can be excluded with `cfg(false)` /// f64: #[cfg(false)], /// }, /// test { /// /* write tests here, using `Float` as the type */ /// } /// } /// ``` macro_rules! float_test { ( name: $name:ident, attrs: { $(const: #[ $($const_meta:meta),+ ] ,)? $(f16: #[ $($f16_meta:meta),+ ] ,)? $(const f16: #[ $($f16_const_meta:meta),+ ] ,)? $(f32: #[ $($f32_meta:meta),+ ] ,)? $(const f32: #[ $($f32_const_meta:meta),+ ] ,)? $(f64: #[ $($f64_meta:meta),+ ] ,)? $(const f64: #[ $($f64_const_meta:meta),+ ] ,)? $(f128: #[ $($f128_meta:meta),+ ] ,)? $(const f128: #[ $($f128_const_meta:meta),+ ] ,)? }, test<$fty:ident> $test:block ) => { mod $name { use super::*; #[test] $( $( #[$f16_meta] )+ )? fn test_f16() { type $fty = f16; $test } #[test] $( $( #[$f32_meta] )+ )? fn test_f32() { type $fty = f32; $test } #[test] $( $( #[$f64_meta] )+ )? fn test_f64() { type $fty = f64; $test } #[test] $( $( #[$f128_meta] )+ )? fn test_f128() { type $fty = f128; $test } $( $( #[$const_meta] )+ )? mod const_ { #[allow(unused)] use super::TestableFloat; #[allow(unused)] use std::num::FpCategory as Fp; #[allow(unused)] use std::ops::{Add, Div, Mul, Rem, Sub}; // Shadow the runtime versions of the macro with const-compatible versions. #[allow(unused)] use $crate::floats::{ assert_approx_eq_const as assert_approx_eq, assert_biteq_const as assert_biteq, }; #[test] $( $( #[$f16_const_meta] )+ )? fn test_f16() { type $fty = f16; const { $test } } #[test] $( $( #[$f32_const_meta] )+ )? fn test_f32() { type $fty = f32; const { $test } } #[test] $( $( #[$f64_const_meta] )+ )? fn test_f64() { type $fty = f64; const { $test } } #[test] $( $( #[$f128_const_meta] )+ )? fn test_f128() { type $fty = f128; const { $test } } } } }; } mod f128; mod f16; mod f32; mod f64; float_test! { name: num, attrs: { f16: #[cfg(any(miri, target_has_reliable_f16))], f128: #[cfg(any(miri, target_has_reliable_f128))], }, test { let two: Float = 2.0; let ten: Float = 10.0; assert_biteq!(ten.add(two), ten + two); assert_biteq!(ten.sub(two), ten - two); assert_biteq!(ten.mul(two), ten * two); assert_biteq!(ten.div(two), ten / two); } } // FIXME(f16_f128): merge into `num` once the required `fmodl`/`fmodf128` function is available on // all platforms. float_test! { name: num_rem, attrs: { f16: #[cfg(any(miri, target_has_reliable_f16_math))], f128: #[cfg(any(miri, target_has_reliable_f128_math))], }, test { let two: Float = 2.0; let ten: Float = 10.0; assert_biteq!(ten.rem(two), ten % two); } } float_test! { name: nan, attrs: { f16: #[cfg(any(miri, target_has_reliable_f16))], f128: #[cfg(any(miri, target_has_reliable_f128))], }, test { let nan: Float = Float::NAN; assert!(nan.is_nan()); assert!(!nan.is_infinite()); assert!(!nan.is_finite()); assert!(!nan.is_normal()); assert!(nan.is_sign_positive()); assert!(!nan.is_sign_negative()); assert!(matches!(nan.classify(), Fp::Nan)); // Ensure the quiet bit is set. assert!(nan.to_bits() & (1 << (Float::MANTISSA_DIGITS - 2)) != 0); } } float_test! { name: infinity, attrs: { f16: #[cfg(any(miri, target_has_reliable_f16))], f128: #[cfg(any(miri, target_has_reliable_f128))], }, test { let inf: Float = Float::INFINITY; assert!(inf.is_infinite()); assert!(!inf.is_finite()); assert!(inf.is_sign_positive()); assert!(!inf.is_sign_negative()); assert!(!inf.is_nan()); assert!(!inf.is_normal()); assert!(matches!(inf.classify(), Fp::Infinite)); } } float_test! { name: neg_infinity, attrs: { f16: #[cfg(any(miri, target_has_reliable_f16))], f128: #[cfg(any(miri, target_has_reliable_f128))], }, test { let neg_inf: Float = Float::NEG_INFINITY; assert!(neg_inf.is_infinite()); assert!(!neg_inf.is_finite()); assert!(!neg_inf.is_sign_positive()); assert!(neg_inf.is_sign_negative()); assert!(!neg_inf.is_nan()); assert!(!neg_inf.is_normal()); assert!(matches!(neg_inf.classify(), Fp::Infinite)); } } float_test! { name: zero, attrs: { f16: #[cfg(any(miri, target_has_reliable_f16))], f128: #[cfg(any(miri, target_has_reliable_f128))], }, test { let zero: Float = 0.0; assert_biteq!(0.0, zero); assert!(!zero.is_infinite()); assert!(zero.is_finite()); assert!(zero.is_sign_positive()); assert!(!zero.is_sign_negative()); assert!(!zero.is_nan()); assert!(!zero.is_normal()); assert!(matches!(zero.classify(), Fp::Zero)); } } float_test! { name: neg_zero, attrs: { f16: #[cfg(any(miri, target_has_reliable_f16))], f128: #[cfg(any(miri, target_has_reliable_f128))], }, test { let neg_zero: Float = -0.0; assert!(0.0 == neg_zero); assert_biteq!(-0.0, neg_zero); assert!(!neg_zero.is_infinite()); assert!(neg_zero.is_finite()); assert!(!neg_zero.is_sign_positive()); assert!(neg_zero.is_sign_negative()); assert!(!neg_zero.is_nan()); assert!(!neg_zero.is_normal()); assert!(matches!(neg_zero.classify(), Fp::Zero)); } } float_test! { name: one, attrs: { f16: #[cfg(any(miri, target_has_reliable_f16))], f128: #[cfg(any(miri, target_has_reliable_f128))], }, test { let one: Float = 1.0; assert_biteq!(1.0, one); assert!(!one.is_infinite()); assert!(one.is_finite()); assert!(one.is_sign_positive()); assert!(!one.is_sign_negative()); assert!(!one.is_nan()); assert!(one.is_normal()); assert!(matches!(one.classify(), Fp::Normal)); } } float_test! { name: is_nan, attrs: { f16: #[cfg(any(miri, target_has_reliable_f16))], f128: #[cfg(any(miri, target_has_reliable_f128))], }, test { let nan: Float = Float::NAN; let inf: Float = Float::INFINITY; let neg_inf: Float = Float::NEG_INFINITY; let zero: Float = 0.0; let pos: Float = 5.3; let neg: Float = -10.732; assert!(nan.is_nan()); assert!(!zero.is_nan()); assert!(!pos.is_nan()); assert!(!neg.is_nan()); assert!(!inf.is_nan()); assert!(!neg_inf.is_nan()); } } float_test! { name: is_infinite, attrs: { f16: #[cfg(any(miri, target_has_reliable_f16))], f128: #[cfg(any(miri, target_has_reliable_f128))], }, test { let nan: Float = Float::NAN; let inf: Float = Float::INFINITY; let neg_inf: Float = Float::NEG_INFINITY; let zero: Float = 0.0; let pos: Float = 42.8; let neg: Float = -109.2; assert!(!nan.is_infinite()); assert!(inf.is_infinite()); assert!(neg_inf.is_infinite()); assert!(!zero.is_infinite()); assert!(!pos.is_infinite()); assert!(!neg.is_infinite()); } } float_test! { name: is_finite, attrs: { f16: #[cfg(any(miri, target_has_reliable_f16))], f128: #[cfg(any(miri, target_has_reliable_f128))], }, test { let nan: Float = Float::NAN; let inf: Float = Float::INFINITY; let neg_inf: Float = Float::NEG_INFINITY; let zero: Float = 0.0; let pos: Float = 42.8; let neg: Float = -109.2; assert!(!nan.is_finite()); assert!(!inf.is_finite()); assert!(!neg_inf.is_finite()); assert!(zero.is_finite()); assert!(pos.is_finite()); assert!(neg.is_finite()); } } float_test! { name: is_normal, attrs: { f16: #[cfg(any(miri, target_has_reliable_f16))], f128: #[cfg(any(miri, target_has_reliable_f128))], }, test { let nan: Float = Float::NAN; let inf: Float = Float::INFINITY; let neg_inf: Float = Float::NEG_INFINITY; let zero: Float = 0.0; let neg_zero: Float = -0.0; let one : Float = 1.0; assert!(!nan.is_normal()); assert!(!inf.is_normal()); assert!(!neg_inf.is_normal()); assert!(!zero.is_normal()); assert!(!neg_zero.is_normal()); assert!(one.is_normal()); assert!(Float::MIN_POSITIVE_NORMAL.is_normal()); assert!(!Float::MAX_SUBNORMAL.is_normal()); } } float_test! { name: classify, attrs: { f16: #[cfg(any(miri, target_has_reliable_f16))], }, test { let nan: Float = Float::NAN; let inf: Float = Float::INFINITY; let neg_inf: Float = Float::NEG_INFINITY; let zero: Float = 0.0; let neg_zero: Float = -0.0; let one: Float = 1.0; assert!(matches!(nan.classify(), Fp::Nan)); assert!(matches!(inf.classify(), Fp::Infinite)); assert!(matches!(neg_inf.classify(), Fp::Infinite)); assert!(matches!(zero.classify(), Fp::Zero)); assert!(matches!(neg_zero.classify(), Fp::Zero)); assert!(matches!(one.classify(), Fp::Normal)); assert!(matches!(Float::MIN_POSITIVE_NORMAL.classify(), Fp::Normal)); assert!(matches!(Float::MAX_SUBNORMAL.classify(), Fp::Subnormal)); } } float_test! { name: min, attrs: { f16: #[cfg(any(miri, target_has_reliable_f16_math))], f128: #[cfg(any(miri, target_has_reliable_f128_math))], }, test { assert_biteq!((0.0 as Float).min(0.0), 0.0); assert_biteq!((-0.0 as Float).min(-0.0), -0.0); assert_biteq!((9.0 as Float).min(9.0), 9.0); assert_biteq!((-9.0 as Float).min(0.0), -9.0); assert_biteq!((0.0 as Float).min(9.0), 0.0); assert_biteq!((-0.0 as Float).min(9.0), -0.0); assert_biteq!((-0.0 as Float).min(-9.0), -9.0); assert_biteq!(Float::INFINITY.min(9.0), 9.0); assert_biteq!((9.0 as Float).min(Float::INFINITY), 9.0); assert_biteq!(Float::INFINITY.min(-9.0), -9.0); assert_biteq!((-9.0 as Float).min(Float::INFINITY), -9.0); assert_biteq!(Float::NEG_INFINITY.min(9.0), Float::NEG_INFINITY); assert_biteq!((9.0 as Float).min(Float::NEG_INFINITY), Float::NEG_INFINITY); assert_biteq!(Float::NEG_INFINITY.min(-9.0), Float::NEG_INFINITY); assert_biteq!((-9.0 as Float).min(Float::NEG_INFINITY), Float::NEG_INFINITY); assert_biteq!(Float::NAN.min(9.0), 9.0); assert_biteq!(Float::NAN.min(-9.0), -9.0); assert_biteq!((9.0 as Float).min(Float::NAN), 9.0); assert_biteq!((-9.0 as Float).min(Float::NAN), -9.0); assert!(Float::NAN.min(Float::NAN).is_nan()); } } float_test! { name: max, attrs: { f16: #[cfg(any(miri, target_has_reliable_f16_math))], f128: #[cfg(any(miri, target_has_reliable_f128_math))], }, test { assert_biteq!((0.0 as Float).max(0.0), 0.0); assert_biteq!((-0.0 as Float).max(-0.0), -0.0); assert_biteq!((9.0 as Float).max(9.0), 9.0); assert_biteq!((-9.0 as Float).max(0.0), 0.0); assert_biteq!((-9.0 as Float).max(-0.0), -0.0); assert_biteq!((0.0 as Float).max(9.0), 9.0); assert_biteq!((0.0 as Float).max(-9.0), 0.0); assert_biteq!((-0.0 as Float).max(-9.0), -0.0); assert_biteq!(Float::INFINITY.max(9.0), Float::INFINITY); assert_biteq!((9.0 as Float).max(Float::INFINITY), Float::INFINITY); assert_biteq!(Float::INFINITY.max(-9.0), Float::INFINITY); assert_biteq!((-9.0 as Float).max(Float::INFINITY), Float::INFINITY); assert_biteq!(Float::NEG_INFINITY.max(9.0), 9.0); assert_biteq!((9.0 as Float).max(Float::NEG_INFINITY), 9.0); assert_biteq!(Float::NEG_INFINITY.max(-9.0), -9.0); assert_biteq!((-9.0 as Float).max(Float::NEG_INFINITY), -9.0); assert_biteq!(Float::NAN.max(9.0), 9.0); assert_biteq!(Float::NAN.max(-9.0), -9.0); assert_biteq!((9.0 as Float).max(Float::NAN), 9.0); assert_biteq!((-9.0 as Float).max(Float::NAN), -9.0); assert!(Float::NAN.max(Float::NAN).is_nan()); } } float_test! { name: minimum, attrs: { f16: #[cfg(any(miri, target_has_reliable_f16_math))], f128: #[cfg(any(miri, target_has_reliable_f128_math))], }, test { assert_biteq!((0.0 as Float).minimum(0.0), 0.0); assert_biteq!((-0.0 as Float).minimum(0.0), -0.0); assert_biteq!((-0.0 as Float).minimum(-0.0), -0.0); assert_biteq!((9.0 as Float).minimum(9.0), 9.0); assert_biteq!((-9.0 as Float).minimum(0.0), -9.0); assert_biteq!((0.0 as Float).minimum(9.0), 0.0); assert_biteq!((-0.0 as Float).minimum(9.0), -0.0); assert_biteq!((-0.0 as Float).minimum(-9.0), -9.0); assert_biteq!(Float::INFINITY.minimum(9.0), 9.0); assert_biteq!((9.0 as Float).minimum(Float::INFINITY), 9.0); assert_biteq!(Float::INFINITY.minimum(-9.0), -9.0); assert_biteq!((-9.0 as Float).minimum(Float::INFINITY), -9.0); assert_biteq!(Float::NEG_INFINITY.minimum(9.0), Float::NEG_INFINITY); assert_biteq!((9.0 as Float).minimum(Float::NEG_INFINITY), Float::NEG_INFINITY); assert_biteq!(Float::NEG_INFINITY.minimum(-9.0), Float::NEG_INFINITY); assert_biteq!((-9.0 as Float).minimum(Float::NEG_INFINITY), Float::NEG_INFINITY); assert!(Float::NAN.minimum(9.0).is_nan()); assert!(Float::NAN.minimum(-9.0).is_nan()); assert!((9.0 as Float).minimum(Float::NAN).is_nan()); assert!((-9.0 as Float).minimum(Float::NAN).is_nan()); assert!(Float::NAN.minimum(Float::NAN).is_nan()); } } float_test! { name: maximum, attrs: { f16: #[cfg(any(miri, target_has_reliable_f16_math))], f128: #[cfg(any(miri, target_has_reliable_f128_math))], }, test { assert_biteq!((0.0 as Float).maximum(0.0), 0.0); assert_biteq!((-0.0 as Float).maximum(0.0), 0.0); assert_biteq!((-0.0 as Float).maximum(-0.0), -0.0); assert_biteq!((9.0 as Float).maximum(9.0), 9.0); assert_biteq!((-9.0 as Float).maximum(0.0), 0.0); assert_biteq!((-9.0 as Float).maximum(-0.0), -0.0); assert_biteq!((0.0 as Float).maximum(9.0), 9.0); assert_biteq!((0.0 as Float).maximum(-9.0), 0.0); assert_biteq!((-0.0 as Float).maximum(-9.0), -0.0); assert_biteq!(Float::INFINITY.maximum(9.0), Float::INFINITY); assert_biteq!((9.0 as Float).maximum(Float::INFINITY), Float::INFINITY); assert_biteq!(Float::INFINITY.maximum(-9.0), Float::INFINITY); assert_biteq!((-9.0 as Float).maximum(Float::INFINITY), Float::INFINITY); assert_biteq!(Float::NEG_INFINITY.maximum(9.0), 9.0); assert_biteq!((9.0 as Float).maximum(Float::NEG_INFINITY), 9.0); assert_biteq!(Float::NEG_INFINITY.maximum(-9.0), -9.0); assert_biteq!((-9.0 as Float).maximum(Float::NEG_INFINITY), -9.0); assert!(Float::NAN.maximum(9.0).is_nan()); assert!(Float::NAN.maximum(-9.0).is_nan()); assert!((9.0 as Float).maximum(Float::NAN).is_nan()); assert!((-9.0 as Float).maximum(Float::NAN).is_nan()); assert!(Float::NAN.maximum(Float::NAN).is_nan()); } } float_test! { name: midpoint, attrs: { f16: #[cfg(any(miri, target_has_reliable_f16_math))], f128: #[cfg(any(miri, target_has_reliable_f128_math))], }, test { assert_biteq!((0.5 as Float).midpoint(0.5), 0.5); assert_biteq!((0.5 as Float).midpoint(2.5), 1.5); assert_biteq!((3.0 as Float).midpoint(4.0), 3.5); assert_biteq!((-3.0 as Float).midpoint(4.0), 0.5); assert_biteq!((3.0 as Float).midpoint(-4.0), -0.5); assert_biteq!((-3.0 as Float).midpoint(-4.0), -3.5); assert_biteq!((0.0 as Float).midpoint(0.0), 0.0); assert_biteq!((-0.0 as Float).midpoint(-0.0), -0.0); assert_biteq!((-5.0 as Float).midpoint(5.0), 0.0); assert_biteq!(Float::MAX.midpoint(Float::MIN), 0.0); assert_biteq!(Float::MIN.midpoint(Float::MAX), 0.0); assert_biteq!(Float::MAX.midpoint(Float::MIN_POSITIVE), Float::MAX / 2.); assert_biteq!((-Float::MAX).midpoint(Float::MIN_POSITIVE), -Float::MAX / 2.); assert_biteq!(Float::MAX.midpoint(-Float::MIN_POSITIVE), Float::MAX / 2.); assert_biteq!((-Float::MAX).midpoint(-Float::MIN_POSITIVE), -Float::MAX / 2.); assert_biteq!((Float::MIN_POSITIVE).midpoint(Float::MAX), Float::MAX / 2.); assert_biteq!((Float::MIN_POSITIVE).midpoint(-Float::MAX), -Float::MAX / 2.); assert_biteq!((-Float::MIN_POSITIVE).midpoint(Float::MAX), Float::MAX / 2.); assert_biteq!((-Float::MIN_POSITIVE).midpoint(-Float::MAX), -Float::MAX / 2.); assert_biteq!(Float::MAX.midpoint(Float::MAX), Float::MAX); assert_biteq!( (Float::MIN_POSITIVE).midpoint(Float::MIN_POSITIVE), Float::MIN_POSITIVE ); assert_biteq!( (-Float::MIN_POSITIVE).midpoint(-Float::MIN_POSITIVE), -Float::MIN_POSITIVE ); assert_biteq!(Float::MAX.midpoint(5.0), Float::MAX / 2.0 + 2.5); assert_biteq!(Float::MAX.midpoint(-5.0), Float::MAX / 2.0 - 2.5); assert_biteq!(Float::INFINITY.midpoint(Float::INFINITY), Float::INFINITY); assert_biteq!( Float::NEG_INFINITY.midpoint(Float::NEG_INFINITY), Float::NEG_INFINITY ); assert!(Float::NEG_INFINITY.midpoint(Float::INFINITY).is_nan()); assert!(Float::INFINITY.midpoint(Float::NEG_INFINITY).is_nan()); assert!(Float::NAN.midpoint(1.0).is_nan()); assert!((1.0 as Float).midpoint(Float::NAN).is_nan()); assert!(Float::NAN.midpoint(Float::NAN).is_nan()); } } // Separate test since the `for` loops cannot be run in `const`. float_test! { name: midpoint_large_magnitude, attrs: { const: #[cfg(false)], // FIXME(f16_f128): `powi` does not work in Miri for these types f16: #[cfg(all(not(miri), target_has_reliable_f16_math))], f128: #[cfg(all(not(miri), target_has_reliable_f128_math))], }, test { // test if large differences in magnitude are still correctly computed. // NOTE: that because of how small x and y are, x + y can never overflow // so (x + y) / 2.0 is always correct // in particular, `2.pow(i)` will never be at the max exponent, so it could // be safely doubled, while j is significantly smaller. for i in Float::MAX_EXP.saturating_sub(64)..Float::MAX_EXP { for j in 0..64u8 { let large = (2.0 as Float).powi(i); // a much smaller number, such that there is no chance of overflow to test // potential double rounding in midpoint's implementation. let small = (2.0 as Float).powi(Float::MAX_EXP - 1) * Float::EPSILON * Float::from(j); let naive = (large + small) / 2.0; let midpoint = large.midpoint(small); assert_biteq!(naive, midpoint); } } } } float_test! { name: abs, attrs: { f16: #[cfg(any(miri, target_has_reliable_f16_math))], f128: #[cfg(any(miri, target_has_reliable_f128_math))], }, test { assert_biteq!((-1.0 as Float).abs(), 1.0); assert_biteq!((1.0 as Float).abs(), 1.0); assert_biteq!(Float::NEG_INFINITY.abs(), Float::INFINITY); assert_biteq!(Float::INFINITY.abs(), Float::INFINITY); } } float_test! { name: copysign, attrs: { f16: #[cfg(any(miri, target_has_reliable_f16_math))], f128: #[cfg(any(miri, target_has_reliable_f128_math))], }, test { assert_biteq!((1.0 as Float).copysign(-2.0), -1.0); assert_biteq!((-1.0 as Float).copysign(2.0), 1.0); assert_biteq!(Float::INFINITY.copysign(-0.0), Float::NEG_INFINITY); assert_biteq!(Float::NEG_INFINITY.copysign(0.0), Float::INFINITY); } } float_test! { name: rem_euclid, attrs: { const: #[cfg(false)], f16: #[cfg(any(miri, target_has_reliable_f16_math))], f128: #[cfg(any(miri, target_has_reliable_f128_math))], }, test { assert!(Float::INFINITY.rem_euclid(42.0 as Float).is_nan()); assert_biteq!((42.0 as Float).rem_euclid(Float::INFINITY), 42.0 as Float); assert!((42.0 as Float).rem_euclid(Float::NAN).is_nan()); assert!(Float::INFINITY.rem_euclid(Float::INFINITY).is_nan()); assert!(Float::INFINITY.rem_euclid(Float::NAN).is_nan()); assert!(Float::NAN.rem_euclid(Float::INFINITY).is_nan()); } } float_test! { name: div_euclid, attrs: { const: #[cfg(false)], f16: #[cfg(any(miri, target_has_reliable_f16_math))], f128: #[cfg(any(miri, target_has_reliable_f128_math))], }, test { assert_biteq!((42.0 as Float).div_euclid(Float::INFINITY), 0.0); assert!((42.0 as Float).div_euclid(Float::NAN).is_nan()); assert!(Float::INFINITY.div_euclid(Float::INFINITY).is_nan()); assert!(Float::INFINITY.div_euclid(Float::NAN).is_nan()); assert!(Float::NAN.div_euclid(Float::INFINITY).is_nan()); } } float_test! { name: floor, attrs: { f16: #[cfg(any(miri, target_has_reliable_f16_math))], f128: #[cfg(any(miri, target_has_reliable_f128_math))], }, test { assert_biteq!((1.0 as Float).floor(), 1.0); assert_biteq!((1.3 as Float).floor(), 1.0); assert_biteq!((1.5 as Float).floor(), 1.0); assert_biteq!((1.7 as Float).floor(), 1.0); assert_biteq!((0.5 as Float).floor(), 0.0); assert_biteq!((0.0 as Float).floor(), 0.0); assert_biteq!((-0.0 as Float).floor(), -0.0); assert_biteq!((-0.5 as Float).floor(), -1.0); assert_biteq!((-1.0 as Float).floor(), -1.0); assert_biteq!((-1.3 as Float).floor(), -2.0); assert_biteq!((-1.5 as Float).floor(), -2.0); assert_biteq!((-1.7 as Float).floor(), -2.0); assert_biteq!(Float::MAX.floor(), Float::MAX); assert_biteq!(Float::MIN.floor(), Float::MIN); assert_biteq!(Float::MIN_POSITIVE.floor(), 0.0); assert_biteq!((-Float::MIN_POSITIVE).floor(), -1.0); assert!(Float::NAN.floor().is_nan()); assert_biteq!(Float::INFINITY.floor(), Float::INFINITY); assert_biteq!(Float::NEG_INFINITY.floor(), Float::NEG_INFINITY); } } float_test! { name: ceil, attrs: { f16: #[cfg(any(miri, target_has_reliable_f16_math))], f128: #[cfg(any(miri, target_has_reliable_f128_math))], }, test { assert_biteq!((1.0 as Float).ceil(), 1.0); assert_biteq!((1.3 as Float).ceil(), 2.0); assert_biteq!((1.5 as Float).ceil(), 2.0); assert_biteq!((1.7 as Float).ceil(), 2.0); assert_biteq!((0.5 as Float).ceil(), 1.0); assert_biteq!((0.0 as Float).ceil(), 0.0); assert_biteq!((-0.0 as Float).ceil(), -0.0); assert_biteq!((-0.5 as Float).ceil(), -0.0); assert_biteq!((-1.0 as Float).ceil(), -1.0); assert_biteq!((-1.3 as Float).ceil(), -1.0); assert_biteq!((-1.5 as Float).ceil(), -1.0); assert_biteq!((-1.7 as Float).ceil(), -1.0); assert_biteq!(Float::MAX.ceil(), Float::MAX); assert_biteq!(Float::MIN.ceil(), Float::MIN); assert_biteq!(Float::MIN_POSITIVE.ceil(), 1.0); assert_biteq!((-Float::MIN_POSITIVE).ceil(), -0.0); assert!(Float::NAN.ceil().is_nan()); assert_biteq!(Float::INFINITY.ceil(), Float::INFINITY); assert_biteq!(Float::NEG_INFINITY.ceil(), Float::NEG_INFINITY); } } float_test! { name: round, attrs: { f16: #[cfg(any(miri, target_has_reliable_f16_math))], f128: #[cfg(any(miri, target_has_reliable_f128_math))], }, test { assert_biteq!((2.5 as Float).round(), 3.0); assert_biteq!((1.0 as Float).round(), 1.0); assert_biteq!((1.3 as Float).round(), 1.0); assert_biteq!((1.5 as Float).round(), 2.0); assert_biteq!((1.7 as Float).round(), 2.0); assert_biteq!((0.5 as Float).round(), 1.0); assert_biteq!((0.0 as Float).round(), 0.0); assert_biteq!((-0.0 as Float).round(), -0.0); assert_biteq!((-0.5 as Float).round(), -1.0); assert_biteq!((-1.0 as Float).round(), -1.0); assert_biteq!((-1.3 as Float).round(), -1.0); assert_biteq!((-1.5 as Float).round(), -2.0); assert_biteq!((-1.7 as Float).round(), -2.0); assert_biteq!(Float::MAX.round(), Float::MAX); assert_biteq!(Float::MIN.round(), Float::MIN); assert_biteq!(Float::MIN_POSITIVE.round(), 0.0); assert_biteq!((-Float::MIN_POSITIVE).round(), -0.0); assert!(Float::NAN.round().is_nan()); assert_biteq!(Float::INFINITY.round(), Float::INFINITY); assert_biteq!(Float::NEG_INFINITY.round(), Float::NEG_INFINITY); } } float_test! { name: round_ties_even, attrs: { f16: #[cfg(any(miri, target_has_reliable_f16_math))], f128: #[cfg(any(miri, target_has_reliable_f128_math))], }, test { assert_biteq!((2.5 as Float).round_ties_even(), 2.0); assert_biteq!((1.0 as Float).round_ties_even(), 1.0); assert_biteq!((1.3 as Float).round_ties_even(), 1.0); assert_biteq!((1.5 as Float).round_ties_even(), 2.0); assert_biteq!((1.7 as Float).round_ties_even(), 2.0); assert_biteq!((0.5 as Float).round_ties_even(), 0.0); assert_biteq!((0.0 as Float).round_ties_even(), 0.0); assert_biteq!((-0.0 as Float).round_ties_even(), -0.0); assert_biteq!((-0.5 as Float).round_ties_even(), -0.0); assert_biteq!((-1.0 as Float).round_ties_even(), -1.0); assert_biteq!((-1.3 as Float).round_ties_even(), -1.0); assert_biteq!((-1.5 as Float).round_ties_even(), -2.0); assert_biteq!((-1.7 as Float).round_ties_even(), -2.0); assert_biteq!(Float::MAX.round_ties_even(), Float::MAX); assert_biteq!(Float::MIN.round_ties_even(), Float::MIN); assert_biteq!(Float::MIN_POSITIVE.round_ties_even(), 0.0); assert_biteq!((-Float::MIN_POSITIVE).round_ties_even(), -0.0); assert!(Float::NAN.round_ties_even().is_nan()); assert_biteq!(Float::INFINITY.round_ties_even(), Float::INFINITY); assert_biteq!(Float::NEG_INFINITY.round_ties_even(), Float::NEG_INFINITY); } } float_test! { name: trunc, attrs: { f16: #[cfg(any(miri, target_has_reliable_f16_math))], f128: #[cfg(any(miri, target_has_reliable_f128_math))], }, test { assert_biteq!((1.0 as Float).trunc(), 1.0); assert_biteq!((1.3 as Float).trunc(), 1.0); assert_biteq!((1.5 as Float).trunc(), 1.0); assert_biteq!((1.7 as Float).trunc(), 1.0); assert_biteq!((0.5 as Float).trunc(), 0.0); assert_biteq!((0.0 as Float).trunc(), 0.0); assert_biteq!((-0.0 as Float).trunc(), -0.0); assert_biteq!((-0.5 as Float).trunc(), -0.0); assert_biteq!((-1.0 as Float).trunc(), -1.0); assert_biteq!((-1.3 as Float).trunc(), -1.0); assert_biteq!((-1.5 as Float).trunc(), -1.0); assert_biteq!((-1.7 as Float).trunc(), -1.0); assert_biteq!(Float::MAX.trunc(), Float::MAX); assert_biteq!(Float::MIN.trunc(), Float::MIN); assert_biteq!(Float::MIN_POSITIVE.trunc(), 0.0); assert_biteq!((-Float::MIN_POSITIVE).trunc(), -0.0); assert!(Float::NAN.trunc().is_nan()); assert_biteq!(Float::INFINITY.trunc(), Float::INFINITY); assert_biteq!(Float::NEG_INFINITY.trunc(), Float::NEG_INFINITY); } } float_test! { name: fract, attrs: { f16: #[cfg(any(miri, target_has_reliable_f16_math))], f128: #[cfg(any(miri, target_has_reliable_f128_math))], }, test { assert_biteq!((1.0 as Float).fract(), 0.0); assert_approx_eq!((1.3 as Float).fract(), 0.3); // rounding differs between float types assert_biteq!((1.5 as Float).fract(), 0.5); assert_approx_eq!((1.7 as Float).fract(), 0.7); assert_biteq!((0.5 as Float).fract(), 0.5); assert_biteq!((0.0 as Float).fract(), 0.0); assert_biteq!((-0.0 as Float).fract(), 0.0); assert_biteq!((-0.5 as Float).fract(), -0.5); assert_biteq!((-1.0 as Float).fract(), 0.0); assert_approx_eq!((-1.3 as Float).fract(), -0.3); // rounding differs between float types assert_biteq!((-1.5 as Float).fract(), -0.5); assert_approx_eq!((-1.7 as Float).fract(), -0.7); assert_biteq!(Float::MAX.fract(), 0.0); assert_biteq!(Float::MIN.fract(), 0.0); assert_biteq!(Float::MIN_POSITIVE.fract(), Float::MIN_POSITIVE); assert!(Float::MIN_POSITIVE.fract().is_sign_positive()); assert_biteq!((-Float::MIN_POSITIVE).fract(), -Float::MIN_POSITIVE); assert!((-Float::MIN_POSITIVE).fract().is_sign_negative()); assert!(Float::NAN.fract().is_nan()); assert!(Float::INFINITY.fract().is_nan()); assert!(Float::NEG_INFINITY.fract().is_nan()); } }