use std::assert_matches::assert_matches; use std::cmp::Ordering; use rustc_abi::{Align, BackendRepr, ExternAbi, Float, HasDataLayout, Primitive, Size}; use rustc_codegen_ssa::base::{compare_simd_types, wants_msvc_seh, wants_wasm_eh}; use rustc_codegen_ssa::common::{IntPredicate, TypeKind}; use rustc_codegen_ssa::errors::{ExpectedPointerMutability, InvalidMonomorphization}; use rustc_codegen_ssa::mir::operand::{OperandRef, OperandValue}; use rustc_codegen_ssa::mir::place::{PlaceRef, PlaceValue}; use rustc_codegen_ssa::traits::*; use rustc_hir as hir; use rustc_middle::mir::BinOp; use rustc_middle::ty::layout::{FnAbiOf, HasTyCtxt, HasTypingEnv, LayoutOf}; use rustc_middle::ty::{self, GenericArgsRef, Ty}; use rustc_middle::{bug, span_bug}; use rustc_span::{Span, Symbol, sym}; use rustc_symbol_mangling::mangle_internal_symbol; use rustc_target::spec::PanicStrategy; use tracing::debug; use crate::abi::FnAbiLlvmExt; use crate::builder::Builder; use crate::context::CodegenCx; use crate::llvm::{self, Metadata}; use crate::type_::Type; use crate::type_of::LayoutLlvmExt; use crate::va_arg::emit_va_arg; use crate::value::Value; fn call_simple_intrinsic<'ll, 'tcx>( bx: &mut Builder<'_, 'll, 'tcx>, name: Symbol, args: &[OperandRef<'tcx, &'ll Value>], ) -> Option<&'ll Value> { let (base_name, type_params): (&'static str, &[&'ll Type]) = match name { sym::sqrtf16 => ("llvm.sqrt", &[bx.type_f16()]), sym::sqrtf32 => ("llvm.sqrt", &[bx.type_f32()]), sym::sqrtf64 => ("llvm.sqrt", &[bx.type_f64()]), sym::sqrtf128 => ("llvm.sqrt", &[bx.type_f128()]), sym::powif16 => ("llvm.powi", &[bx.type_f16(), bx.type_i32()]), sym::powif32 => ("llvm.powi", &[bx.type_f32(), bx.type_i32()]), sym::powif64 => ("llvm.powi", &[bx.type_f64(), bx.type_i32()]), sym::powif128 => ("llvm.powi", &[bx.type_f128(), bx.type_i32()]), sym::sinf16 => ("llvm.sin", &[bx.type_f16()]), sym::sinf32 => ("llvm.sin", &[bx.type_f32()]), sym::sinf64 => ("llvm.sin", &[bx.type_f64()]), sym::sinf128 => ("llvm.sin", &[bx.type_f128()]), sym::cosf16 => ("llvm.cos", &[bx.type_f16()]), sym::cosf32 => ("llvm.cos", &[bx.type_f32()]), sym::cosf64 => ("llvm.cos", &[bx.type_f64()]), sym::cosf128 => ("llvm.cos", &[bx.type_f128()]), sym::powf16 => ("llvm.pow", &[bx.type_f16()]), sym::powf32 => ("llvm.pow", &[bx.type_f32()]), sym::powf64 => ("llvm.pow", &[bx.type_f64()]), sym::powf128 => ("llvm.pow", &[bx.type_f128()]), sym::expf16 => ("llvm.exp", &[bx.type_f16()]), sym::expf32 => ("llvm.exp", &[bx.type_f32()]), sym::expf64 => ("llvm.exp", &[bx.type_f64()]), sym::expf128 => ("llvm.exp", &[bx.type_f128()]), sym::exp2f16 => ("llvm.exp2", &[bx.type_f16()]), sym::exp2f32 => ("llvm.exp2", &[bx.type_f32()]), sym::exp2f64 => ("llvm.exp2", &[bx.type_f64()]), sym::exp2f128 => ("llvm.exp2", &[bx.type_f128()]), sym::logf16 => ("llvm.log", &[bx.type_f16()]), sym::logf32 => ("llvm.log", &[bx.type_f32()]), sym::logf64 => ("llvm.log", &[bx.type_f64()]), sym::logf128 => ("llvm.log", &[bx.type_f128()]), sym::log10f16 => ("llvm.log10", &[bx.type_f16()]), sym::log10f32 => ("llvm.log10", &[bx.type_f32()]), sym::log10f64 => ("llvm.log10", &[bx.type_f64()]), sym::log10f128 => ("llvm.log10", &[bx.type_f128()]), sym::log2f16 => ("llvm.log2", &[bx.type_f16()]), sym::log2f32 => ("llvm.log2", &[bx.type_f32()]), sym::log2f64 => ("llvm.log2", &[bx.type_f64()]), sym::log2f128 => ("llvm.log2", &[bx.type_f128()]), sym::fmaf16 => ("llvm.fma", &[bx.type_f16()]), sym::fmaf32 => ("llvm.fma", &[bx.type_f32()]), sym::fmaf64 => ("llvm.fma", &[bx.type_f64()]), sym::fmaf128 => ("llvm.fma", &[bx.type_f128()]), sym::fmuladdf16 => ("llvm.fmuladd", &[bx.type_f16()]), sym::fmuladdf32 => ("llvm.fmuladd", &[bx.type_f32()]), sym::fmuladdf64 => ("llvm.fmuladd", &[bx.type_f64()]), sym::fmuladdf128 => ("llvm.fmuladd", &[bx.type_f128()]), sym::fabsf16 => ("llvm.fabs", &[bx.type_f16()]), sym::fabsf32 => ("llvm.fabs", &[bx.type_f32()]), sym::fabsf64 => ("llvm.fabs", &[bx.type_f64()]), sym::fabsf128 => ("llvm.fabs", &[bx.type_f128()]), sym::minnumf16 => ("llvm.minnum", &[bx.type_f16()]), sym::minnumf32 => ("llvm.minnum", &[bx.type_f32()]), sym::minnumf64 => ("llvm.minnum", &[bx.type_f64()]), sym::minnumf128 => ("llvm.minnum", &[bx.type_f128()]), // FIXME: LLVM currently mis-compile those intrinsics, re-enable them // when llvm/llvm-project#{139380,139381,140445} are fixed. //sym::minimumf16 => ("llvm.minimum", &[bx.type_f16()]), //sym::minimumf32 => ("llvm.minimum", &[bx.type_f32()]), //sym::minimumf64 => ("llvm.minimum", &[bx.type_f64()]), //sym::minimumf128 => ("llvm.minimum", &[cx.type_f128()]), // sym::maxnumf16 => ("llvm.maxnum", &[bx.type_f16()]), sym::maxnumf32 => ("llvm.maxnum", &[bx.type_f32()]), sym::maxnumf64 => ("llvm.maxnum", &[bx.type_f64()]), sym::maxnumf128 => ("llvm.maxnum", &[bx.type_f128()]), // FIXME: LLVM currently mis-compile those intrinsics, re-enable them // when llvm/llvm-project#{139380,139381,140445} are fixed. //sym::maximumf16 => ("llvm.maximum", &[bx.type_f16()]), //sym::maximumf32 => ("llvm.maximum", &[bx.type_f32()]), //sym::maximumf64 => ("llvm.maximum", &[bx.type_f64()]), //sym::maximumf128 => ("llvm.maximum", &[cx.type_f128()]), // sym::copysignf16 => ("llvm.copysign", &[bx.type_f16()]), sym::copysignf32 => ("llvm.copysign", &[bx.type_f32()]), sym::copysignf64 => ("llvm.copysign", &[bx.type_f64()]), sym::copysignf128 => ("llvm.copysign", &[bx.type_f128()]), sym::floorf16 => ("llvm.floor", &[bx.type_f16()]), sym::floorf32 => ("llvm.floor", &[bx.type_f32()]), sym::floorf64 => ("llvm.floor", &[bx.type_f64()]), sym::floorf128 => ("llvm.floor", &[bx.type_f128()]), sym::ceilf16 => ("llvm.ceil", &[bx.type_f16()]), sym::ceilf32 => ("llvm.ceil", &[bx.type_f32()]), sym::ceilf64 => ("llvm.ceil", &[bx.type_f64()]), sym::ceilf128 => ("llvm.ceil", &[bx.type_f128()]), sym::truncf16 => ("llvm.trunc", &[bx.type_f16()]), sym::truncf32 => ("llvm.trunc", &[bx.type_f32()]), sym::truncf64 => ("llvm.trunc", &[bx.type_f64()]), sym::truncf128 => ("llvm.trunc", &[bx.type_f128()]), // We could use any of `rint`, `nearbyint`, or `roundeven` // for this -- they are all identical in semantics when // assuming the default FP environment. // `rint` is what we used for $forever. sym::round_ties_even_f16 => ("llvm.rint", &[bx.type_f16()]), sym::round_ties_even_f32 => ("llvm.rint", &[bx.type_f32()]), sym::round_ties_even_f64 => ("llvm.rint", &[bx.type_f64()]), sym::round_ties_even_f128 => ("llvm.rint", &[bx.type_f128()]), sym::roundf16 => ("llvm.round", &[bx.type_f16()]), sym::roundf32 => ("llvm.round", &[bx.type_f32()]), sym::roundf64 => ("llvm.round", &[bx.type_f64()]), sym::roundf128 => ("llvm.round", &[bx.type_f128()]), _ => return None, }; Some(bx.call_intrinsic( base_name, type_params, &args.iter().map(|arg| arg.immediate()).collect::>(), )) } impl<'ll, 'tcx> IntrinsicCallBuilderMethods<'tcx> for Builder<'_, 'll, 'tcx> { fn codegen_intrinsic_call( &mut self, instance: ty::Instance<'tcx>, args: &[OperandRef<'tcx, &'ll Value>], result: PlaceRef<'tcx, &'ll Value>, span: Span, ) -> Result<(), ty::Instance<'tcx>> { let tcx = self.tcx; let name = tcx.item_name(instance.def_id()); let fn_args = instance.args; let simple = call_simple_intrinsic(self, name, args); let llval = match name { _ if simple.is_some() => simple.unwrap(), sym::ptr_mask => { let ptr = args[0].immediate(); self.call_intrinsic( "llvm.ptrmask", &[self.val_ty(ptr), self.type_isize()], &[ptr, args[1].immediate()], ) } sym::is_val_statically_known => { if let OperandValue::Immediate(imm) = args[0].val { self.call_intrinsic( "llvm.is.constant", &[args[0].layout.immediate_llvm_type(self.cx)], &[imm], ) } else { self.const_bool(false) } } sym::select_unpredictable => { let cond = args[0].immediate(); assert_eq!(args[1].layout, args[2].layout); let select = |bx: &mut Self, true_val, false_val| { let result = bx.select(cond, true_val, false_val); bx.set_unpredictable(&result); result }; match (args[1].val, args[2].val) { (OperandValue::Ref(true_val), OperandValue::Ref(false_val)) => { assert!(true_val.llextra.is_none()); assert!(false_val.llextra.is_none()); assert_eq!(true_val.align, false_val.align); let ptr = select(self, true_val.llval, false_val.llval); let selected = OperandValue::Ref(PlaceValue::new_sized(ptr, true_val.align)); selected.store(self, result); return Ok(()); } (OperandValue::Immediate(_), OperandValue::Immediate(_)) | (OperandValue::Pair(_, _), OperandValue::Pair(_, _)) => { let true_val = args[1].immediate_or_packed_pair(self); let false_val = args[2].immediate_or_packed_pair(self); select(self, true_val, false_val) } (OperandValue::ZeroSized, OperandValue::ZeroSized) => return Ok(()), _ => span_bug!(span, "Incompatible OperandValue for select_unpredictable"), } } sym::catch_unwind => { catch_unwind_intrinsic( self, args[0].immediate(), args[1].immediate(), args[2].immediate(), result, ); return Ok(()); } sym::breakpoint => self.call_intrinsic("llvm.debugtrap", &[], &[]), sym::va_copy => { let dest = args[0].immediate(); self.call_intrinsic( "llvm.va_copy", &[self.val_ty(dest)], &[dest, args[1].immediate()], ) } sym::va_arg => { match result.layout.backend_repr { BackendRepr::Scalar(scalar) => { match scalar.primitive() { Primitive::Int(..) => { if self.cx().size_of(result.layout.ty).bytes() < 4 { // `va_arg` should not be called on an integer type // less than 4 bytes in length. If it is, promote // the integer to an `i32` and truncate the result // back to the smaller type. let promoted_result = emit_va_arg(self, args[0], tcx.types.i32); self.trunc(promoted_result, result.layout.llvm_type(self)) } else { emit_va_arg(self, args[0], result.layout.ty) } } Primitive::Float(Float::F16) => { bug!("the va_arg intrinsic does not work with `f16`") } Primitive::Float(Float::F64) | Primitive::Pointer(_) => { emit_va_arg(self, args[0], result.layout.ty) } // `va_arg` should never be used with the return type f32. Primitive::Float(Float::F32) => { bug!("the va_arg intrinsic does not work with `f32`") } Primitive::Float(Float::F128) => { bug!("the va_arg intrinsic does not work with `f128`") } } } _ => bug!("the va_arg intrinsic does not work with non-scalar types"), } } sym::volatile_load | sym::unaligned_volatile_load => { let ptr = args[0].immediate(); let load = self.volatile_load(result.layout.llvm_type(self), ptr); let align = if name == sym::unaligned_volatile_load { 1 } else { result.layout.align.abi.bytes() as u32 }; unsafe { llvm::LLVMSetAlignment(load, align); } if !result.layout.is_zst() { self.store_to_place(load, result.val); } return Ok(()); } sym::volatile_store => { let dst = args[0].deref(self.cx()); args[1].val.volatile_store(self, dst); return Ok(()); } sym::unaligned_volatile_store => { let dst = args[0].deref(self.cx()); args[1].val.unaligned_volatile_store(self, dst); return Ok(()); } sym::prefetch_read_data | sym::prefetch_write_data | sym::prefetch_read_instruction | sym::prefetch_write_instruction => { let (rw, cache_type) = match name { sym::prefetch_read_data => (0, 1), sym::prefetch_write_data => (1, 1), sym::prefetch_read_instruction => (0, 0), sym::prefetch_write_instruction => (1, 0), _ => bug!(), }; let ptr = args[0].immediate(); self.call_intrinsic( "llvm.prefetch", &[self.val_ty(ptr)], &[ptr, self.const_i32(rw), args[1].immediate(), self.const_i32(cache_type)], ) } sym::carrying_mul_add => { let (size, signed) = fn_args.type_at(0).int_size_and_signed(self.tcx); let wide_llty = self.type_ix(size.bits() * 2); let args = args.as_array().unwrap(); let [a, b, c, d] = args.map(|a| self.intcast(a.immediate(), wide_llty, signed)); let wide = if signed { let prod = self.unchecked_smul(a, b); let acc = self.unchecked_sadd(prod, c); self.unchecked_sadd(acc, d) } else { let prod = self.unchecked_umul(a, b); let acc = self.unchecked_uadd(prod, c); self.unchecked_uadd(acc, d) }; let narrow_llty = self.type_ix(size.bits()); let low = self.trunc(wide, narrow_llty); let bits_const = self.const_uint(wide_llty, size.bits()); // No need for ashr when signed; LLVM changes it to lshr anyway. let high = self.lshr(wide, bits_const); // FIXME: could be `trunc nuw`, even for signed. let high = self.trunc(high, narrow_llty); let pair_llty = self.type_struct(&[narrow_llty, narrow_llty], false); let pair = self.const_poison(pair_llty); let pair = self.insert_value(pair, low, 0); let pair = self.insert_value(pair, high, 1); pair } sym::ctlz | sym::ctlz_nonzero | sym::cttz | sym::cttz_nonzero | sym::ctpop | sym::bswap | sym::bitreverse | sym::rotate_left | sym::rotate_right | sym::saturating_add | sym::saturating_sub => { let ty = args[0].layout.ty; if !ty.is_integral() { tcx.dcx().emit_err(InvalidMonomorphization::BasicIntegerType { span, name, ty, }); return Ok(()); } let (size, signed) = ty.int_size_and_signed(self.tcx); let width = size.bits(); let llty = self.type_ix(width); match name { sym::ctlz | sym::ctlz_nonzero | sym::cttz | sym::cttz_nonzero => { let y = self.const_bool(name == sym::ctlz_nonzero || name == sym::cttz_nonzero); let llvm_name = if name == sym::ctlz || name == sym::ctlz_nonzero { "llvm.ctlz" } else { "llvm.cttz" }; let ret = self.call_intrinsic(llvm_name, &[llty], &[args[0].immediate(), y]); self.intcast(ret, result.layout.llvm_type(self), false) } sym::ctpop => { let ret = self.call_intrinsic("llvm.ctpop", &[llty], &[args[0].immediate()]); self.intcast(ret, result.layout.llvm_type(self), false) } sym::bswap => { if width == 8 { args[0].immediate() // byte swap a u8/i8 is just a no-op } else { self.call_intrinsic("llvm.bswap", &[llty], &[args[0].immediate()]) } } sym::bitreverse => { self.call_intrinsic("llvm.bitreverse", &[llty], &[args[0].immediate()]) } sym::rotate_left | sym::rotate_right => { let is_left = name == sym::rotate_left; let val = args[0].immediate(); let raw_shift = args[1].immediate(); // rotate = funnel shift with first two args the same let llvm_name = format!("llvm.fsh{}", if is_left { 'l' } else { 'r' }); // llvm expects shift to be the same type as the values, but rust // always uses `u32`. let raw_shift = self.intcast(raw_shift, self.val_ty(val), false); self.call_intrinsic(llvm_name, &[llty], &[val, val, raw_shift]) } sym::saturating_add | sym::saturating_sub => { let is_add = name == sym::saturating_add; let lhs = args[0].immediate(); let rhs = args[1].immediate(); let llvm_name = format!( "llvm.{}{}.sat", if signed { 's' } else { 'u' }, if is_add { "add" } else { "sub" }, ); self.call_intrinsic(llvm_name, &[llty], &[lhs, rhs]) } _ => bug!(), } } sym::raw_eq => { use BackendRepr::*; let tp_ty = fn_args.type_at(0); let layout = self.layout_of(tp_ty).layout; let use_integer_compare = match layout.backend_repr() { Scalar(_) | ScalarPair(_, _) => true, SimdVector { .. } => false, Memory { .. } => { // For rusty ABIs, small aggregates are actually passed // as `RegKind::Integer` (see `FnAbi::adjust_for_abi`), // so we re-use that same threshold here. layout.size() <= self.data_layout().pointer_size() * 2 } }; let a = args[0].immediate(); let b = args[1].immediate(); if layout.size().bytes() == 0 { self.const_bool(true) } else if use_integer_compare { let integer_ty = self.type_ix(layout.size().bits()); let a_val = self.load(integer_ty, a, layout.align().abi); let b_val = self.load(integer_ty, b, layout.align().abi); self.icmp(IntPredicate::IntEQ, a_val, b_val) } else { let n = self.const_usize(layout.size().bytes()); let cmp = self.call_intrinsic("memcmp", &[], &[a, b, n]); self.icmp(IntPredicate::IntEQ, cmp, self.const_int(self.type_int(), 0)) } } sym::compare_bytes => { // Here we assume that the `memcmp` provided by the target is a NOP for size 0. let cmp = self.call_intrinsic( "memcmp", &[], &[args[0].immediate(), args[1].immediate(), args[2].immediate()], ); // Some targets have `memcmp` returning `i16`, but the intrinsic is always `i32`. self.sext(cmp, self.type_ix(32)) } sym::black_box => { args[0].val.store(self, result); let result_val_span = [result.val.llval]; // We need to "use" the argument in some way LLVM can't introspect, and on // targets that support it we can typically leverage inline assembly to do // this. LLVM's interpretation of inline assembly is that it's, well, a black // box. This isn't the greatest implementation since it probably deoptimizes // more than we want, but it's so far good enough. // // For zero-sized types, the location pointed to by the result may be // uninitialized. Do not "use" the result in this case; instead just clobber // the memory. let (constraint, inputs): (&str, &[_]) = if result.layout.is_zst() { ("~{memory}", &[]) } else { ("r,~{memory}", &result_val_span) }; crate::asm::inline_asm_call( self, "", constraint, inputs, self.type_void(), &[], true, false, llvm::AsmDialect::Att, &[span], false, None, None, ) .unwrap_or_else(|| bug!("failed to generate inline asm call for `black_box`")); // We have copied the value to `result` already. return Ok(()); } _ if name.as_str().starts_with("simd_") => { // Unpack non-power-of-2 #[repr(packed, simd)] arguments. // This gives them the expected layout of a regular #[repr(simd)] vector. let mut loaded_args = Vec::new(); for arg in args { loaded_args.push( // #[repr(packed, simd)] vectors are passed like arrays (as references, // with reduced alignment and no padding) rather than as immediates. // We can use a vector load to fix the layout and turn the argument // into an immediate. if arg.layout.ty.is_simd() && let OperandValue::Ref(place) = arg.val { let (size, elem_ty) = arg.layout.ty.simd_size_and_type(self.tcx()); let elem_ll_ty = match elem_ty.kind() { ty::Float(f) => self.type_float_from_ty(*f), ty::Int(i) => self.type_int_from_ty(*i), ty::Uint(u) => self.type_uint_from_ty(*u), ty::RawPtr(_, _) => self.type_ptr(), _ => unreachable!(), }; let loaded = self.load_from_place(self.type_vector(elem_ll_ty, size), place); OperandRef::from_immediate_or_packed_pair(self, loaded, arg.layout) } else { *arg }, ); } let llret_ty = if result.layout.ty.is_simd() && let BackendRepr::Memory { .. } = result.layout.backend_repr { let (size, elem_ty) = result.layout.ty.simd_size_and_type(self.tcx()); let elem_ll_ty = match elem_ty.kind() { ty::Float(f) => self.type_float_from_ty(*f), ty::Int(i) => self.type_int_from_ty(*i), ty::Uint(u) => self.type_uint_from_ty(*u), ty::RawPtr(_, _) => self.type_ptr(), _ => unreachable!(), }; self.type_vector(elem_ll_ty, size) } else { result.layout.llvm_type(self) }; match generic_simd_intrinsic( self, name, fn_args, &loaded_args, result.layout.ty, llret_ty, span, ) { Ok(llval) => llval, // If there was an error, just skip this invocation... we'll abort compilation // anyway, but we can keep codegen'ing to find more errors. Err(()) => return Ok(()), } } _ => { debug!("unknown intrinsic '{}' -- falling back to default body", name); // Call the fallback body instead of generating the intrinsic code return Err(ty::Instance::new_raw(instance.def_id(), instance.args)); } }; if result.layout.ty.is_bool() { let val = self.from_immediate(llval); self.store_to_place(val, result.val); } else if !result.layout.ty.is_unit() { self.store_to_place(llval, result.val); } Ok(()) } fn abort(&mut self) { self.call_intrinsic("llvm.trap", &[], &[]); } fn assume(&mut self, val: Self::Value) { if self.cx.sess().opts.optimize != rustc_session::config::OptLevel::No { self.call_intrinsic("llvm.assume", &[], &[val]); } } fn expect(&mut self, cond: Self::Value, expected: bool) -> Self::Value { if self.cx.sess().opts.optimize != rustc_session::config::OptLevel::No { self.call_intrinsic( "llvm.expect", &[self.type_i1()], &[cond, self.const_bool(expected)], ) } else { cond } } fn type_checked_load( &mut self, llvtable: &'ll Value, vtable_byte_offset: u64, typeid: &'ll Metadata, ) -> Self::Value { let typeid = self.get_metadata_value(typeid); let vtable_byte_offset = self.const_i32(vtable_byte_offset as i32); let type_checked_load = self.call_intrinsic( "llvm.type.checked.load", &[], &[llvtable, vtable_byte_offset, typeid], ); self.extract_value(type_checked_load, 0) } fn va_start(&mut self, va_list: &'ll Value) -> &'ll Value { self.call_intrinsic("llvm.va_start", &[self.val_ty(va_list)], &[va_list]) } fn va_end(&mut self, va_list: &'ll Value) -> &'ll Value { self.call_intrinsic("llvm.va_end", &[self.val_ty(va_list)], &[va_list]) } } fn catch_unwind_intrinsic<'ll, 'tcx>( bx: &mut Builder<'_, 'll, 'tcx>, try_func: &'ll Value, data: &'ll Value, catch_func: &'ll Value, dest: PlaceRef<'tcx, &'ll Value>, ) { if bx.sess().panic_strategy() == PanicStrategy::Abort { let try_func_ty = bx.type_func(&[bx.type_ptr()], bx.type_void()); bx.call(try_func_ty, None, None, try_func, &[data], None, None); // Return 0 unconditionally from the intrinsic call; // we can never unwind. OperandValue::Immediate(bx.const_i32(0)).store(bx, dest); } else if wants_msvc_seh(bx.sess()) { codegen_msvc_try(bx, try_func, data, catch_func, dest); } else if wants_wasm_eh(bx.sess()) { codegen_wasm_try(bx, try_func, data, catch_func, dest); } else if bx.sess().target.os == "emscripten" { codegen_emcc_try(bx, try_func, data, catch_func, dest); } else { codegen_gnu_try(bx, try_func, data, catch_func, dest); } } // MSVC's definition of the `rust_try` function. // // This implementation uses the new exception handling instructions in LLVM // which have support in LLVM for SEH on MSVC targets. Although these // instructions are meant to work for all targets, as of the time of this // writing, however, LLVM does not recommend the usage of these new instructions // as the old ones are still more optimized. fn codegen_msvc_try<'ll, 'tcx>( bx: &mut Builder<'_, 'll, 'tcx>, try_func: &'ll Value, data: &'ll Value, catch_func: &'ll Value, dest: PlaceRef<'tcx, &'ll Value>, ) { let (llty, llfn) = get_rust_try_fn(bx, &mut |mut bx| { bx.set_personality_fn(bx.eh_personality()); let normal = bx.append_sibling_block("normal"); let catchswitch = bx.append_sibling_block("catchswitch"); let catchpad_rust = bx.append_sibling_block("catchpad_rust"); let catchpad_foreign = bx.append_sibling_block("catchpad_foreign"); let caught = bx.append_sibling_block("caught"); let try_func = llvm::get_param(bx.llfn(), 0); let data = llvm::get_param(bx.llfn(), 1); let catch_func = llvm::get_param(bx.llfn(), 2); // We're generating an IR snippet that looks like: // // declare i32 @rust_try(%try_func, %data, %catch_func) { // %slot = alloca i8* // invoke %try_func(%data) to label %normal unwind label %catchswitch // // normal: // ret i32 0 // // catchswitch: // %cs = catchswitch within none [%catchpad_rust, %catchpad_foreign] unwind to caller // // catchpad_rust: // %tok = catchpad within %cs [%type_descriptor, 8, %slot] // %ptr = load %slot // call %catch_func(%data, %ptr) // catchret from %tok to label %caught // // catchpad_foreign: // %tok = catchpad within %cs [null, 64, null] // call %catch_func(%data, null) // catchret from %tok to label %caught // // caught: // ret i32 1 // } // // This structure follows the basic usage of throw/try/catch in LLVM. // For example, compile this C++ snippet to see what LLVM generates: // // struct rust_panic { // rust_panic(const rust_panic&); // ~rust_panic(); // // void* x[2]; // }; // // int __rust_try( // void (*try_func)(void*), // void *data, // void (*catch_func)(void*, void*) noexcept // ) { // try { // try_func(data); // return 0; // } catch(rust_panic& a) { // catch_func(data, &a); // return 1; // } catch(...) { // catch_func(data, NULL); // return 1; // } // } // // More information can be found in libstd's seh.rs implementation. let ptr_size = bx.tcx().data_layout.pointer_size(); let ptr_align = bx.tcx().data_layout.pointer_align().abi; let slot = bx.alloca(ptr_size, ptr_align); let try_func_ty = bx.type_func(&[bx.type_ptr()], bx.type_void()); bx.invoke(try_func_ty, None, None, try_func, &[data], normal, catchswitch, None, None); bx.switch_to_block(normal); bx.ret(bx.const_i32(0)); bx.switch_to_block(catchswitch); let cs = bx.catch_switch(None, None, &[catchpad_rust, catchpad_foreign]); // We can't use the TypeDescriptor defined in libpanic_unwind because it // might be in another DLL and the SEH encoding only supports specifying // a TypeDescriptor from the current module. // // However this isn't an issue since the MSVC runtime uses string // comparison on the type name to match TypeDescriptors rather than // pointer equality. // // So instead we generate a new TypeDescriptor in each module that uses // `try` and let the linker merge duplicate definitions in the same // module. // // When modifying, make sure that the type_name string exactly matches // the one used in library/panic_unwind/src/seh.rs. let type_info_vtable = bx.declare_global("??_7type_info@@6B@", bx.type_ptr()); let type_name = bx.const_bytes(b"rust_panic\0"); let type_info = bx.const_struct(&[type_info_vtable, bx.const_null(bx.type_ptr()), type_name], false); let tydesc = bx.declare_global( &mangle_internal_symbol(bx.tcx, "__rust_panic_type_info"), bx.val_ty(type_info), ); llvm::set_linkage(tydesc, llvm::Linkage::LinkOnceODRLinkage); if bx.cx.tcx.sess.target.supports_comdat() { llvm::SetUniqueComdat(bx.llmod, tydesc); } llvm::set_initializer(tydesc, type_info); // The flag value of 8 indicates that we are catching the exception by // reference instead of by value. We can't use catch by value because // that requires copying the exception object, which we don't support // since our exception object effectively contains a Box. // // Source: MicrosoftCXXABI::getAddrOfCXXCatchHandlerType in clang bx.switch_to_block(catchpad_rust); let flags = bx.const_i32(8); let funclet = bx.catch_pad(cs, &[tydesc, flags, slot]); let ptr = bx.load(bx.type_ptr(), slot, ptr_align); let catch_ty = bx.type_func(&[bx.type_ptr(), bx.type_ptr()], bx.type_void()); bx.call(catch_ty, None, None, catch_func, &[data, ptr], Some(&funclet), None); bx.catch_ret(&funclet, caught); // The flag value of 64 indicates a "catch-all". bx.switch_to_block(catchpad_foreign); let flags = bx.const_i32(64); let null = bx.const_null(bx.type_ptr()); let funclet = bx.catch_pad(cs, &[null, flags, null]); bx.call(catch_ty, None, None, catch_func, &[data, null], Some(&funclet), None); bx.catch_ret(&funclet, caught); bx.switch_to_block(caught); bx.ret(bx.const_i32(1)); }); // Note that no invoke is used here because by definition this function // can't panic (that's what it's catching). let ret = bx.call(llty, None, None, llfn, &[try_func, data, catch_func], None, None); OperandValue::Immediate(ret).store(bx, dest); } // WASM's definition of the `rust_try` function. fn codegen_wasm_try<'ll, 'tcx>( bx: &mut Builder<'_, 'll, 'tcx>, try_func: &'ll Value, data: &'ll Value, catch_func: &'ll Value, dest: PlaceRef<'tcx, &'ll Value>, ) { let (llty, llfn) = get_rust_try_fn(bx, &mut |mut bx| { bx.set_personality_fn(bx.eh_personality()); let normal = bx.append_sibling_block("normal"); let catchswitch = bx.append_sibling_block("catchswitch"); let catchpad = bx.append_sibling_block("catchpad"); let caught = bx.append_sibling_block("caught"); let try_func = llvm::get_param(bx.llfn(), 0); let data = llvm::get_param(bx.llfn(), 1); let catch_func = llvm::get_param(bx.llfn(), 2); // We're generating an IR snippet that looks like: // // declare i32 @rust_try(%try_func, %data, %catch_func) { // %slot = alloca i8* // invoke %try_func(%data) to label %normal unwind label %catchswitch // // normal: // ret i32 0 // // catchswitch: // %cs = catchswitch within none [%catchpad] unwind to caller // // catchpad: // %tok = catchpad within %cs [null] // %ptr = call @llvm.wasm.get.exception(token %tok) // %sel = call @llvm.wasm.get.ehselector(token %tok) // call %catch_func(%data, %ptr) // catchret from %tok to label %caught // // caught: // ret i32 1 // } // let try_func_ty = bx.type_func(&[bx.type_ptr()], bx.type_void()); bx.invoke(try_func_ty, None, None, try_func, &[data], normal, catchswitch, None, None); bx.switch_to_block(normal); bx.ret(bx.const_i32(0)); bx.switch_to_block(catchswitch); let cs = bx.catch_switch(None, None, &[catchpad]); bx.switch_to_block(catchpad); let null = bx.const_null(bx.type_ptr()); let funclet = bx.catch_pad(cs, &[null]); let ptr = bx.call_intrinsic("llvm.wasm.get.exception", &[], &[funclet.cleanuppad()]); let _sel = bx.call_intrinsic("llvm.wasm.get.ehselector", &[], &[funclet.cleanuppad()]); let catch_ty = bx.type_func(&[bx.type_ptr(), bx.type_ptr()], bx.type_void()); bx.call(catch_ty, None, None, catch_func, &[data, ptr], Some(&funclet), None); bx.catch_ret(&funclet, caught); bx.switch_to_block(caught); bx.ret(bx.const_i32(1)); }); // Note that no invoke is used here because by definition this function // can't panic (that's what it's catching). let ret = bx.call(llty, None, None, llfn, &[try_func, data, catch_func], None, None); OperandValue::Immediate(ret).store(bx, dest); } // Definition of the standard `try` function for Rust using the GNU-like model // of exceptions (e.g., the normal semantics of LLVM's `landingpad` and `invoke` // instructions). // // This codegen is a little surprising because we always call a shim // function instead of inlining the call to `invoke` manually here. This is done // because in LLVM we're only allowed to have one personality per function // definition. The call to the `try` intrinsic is being inlined into the // function calling it, and that function may already have other personality // functions in play. By calling a shim we're guaranteed that our shim will have // the right personality function. fn codegen_gnu_try<'ll, 'tcx>( bx: &mut Builder<'_, 'll, 'tcx>, try_func: &'ll Value, data: &'ll Value, catch_func: &'ll Value, dest: PlaceRef<'tcx, &'ll Value>, ) { let (llty, llfn) = get_rust_try_fn(bx, &mut |mut bx| { // Codegens the shims described above: // // bx: // invoke %try_func(%data) normal %normal unwind %catch // // normal: // ret 0 // // catch: // (%ptr, _) = landingpad // call %catch_func(%data, %ptr) // ret 1 let then = bx.append_sibling_block("then"); let catch = bx.append_sibling_block("catch"); let try_func = llvm::get_param(bx.llfn(), 0); let data = llvm::get_param(bx.llfn(), 1); let catch_func = llvm::get_param(bx.llfn(), 2); let try_func_ty = bx.type_func(&[bx.type_ptr()], bx.type_void()); bx.invoke(try_func_ty, None, None, try_func, &[data], then, catch, None, None); bx.switch_to_block(then); bx.ret(bx.const_i32(0)); // Type indicator for the exception being thrown. // // The first value in this tuple is a pointer to the exception object // being thrown. The second value is a "selector" indicating which of // the landing pad clauses the exception's type had been matched to. // rust_try ignores the selector. bx.switch_to_block(catch); let lpad_ty = bx.type_struct(&[bx.type_ptr(), bx.type_i32()], false); let vals = bx.landing_pad(lpad_ty, bx.eh_personality(), 1); let tydesc = bx.const_null(bx.type_ptr()); bx.add_clause(vals, tydesc); let ptr = bx.extract_value(vals, 0); let catch_ty = bx.type_func(&[bx.type_ptr(), bx.type_ptr()], bx.type_void()); bx.call(catch_ty, None, None, catch_func, &[data, ptr], None, None); bx.ret(bx.const_i32(1)); }); // Note that no invoke is used here because by definition this function // can't panic (that's what it's catching). let ret = bx.call(llty, None, None, llfn, &[try_func, data, catch_func], None, None); OperandValue::Immediate(ret).store(bx, dest); } // Variant of codegen_gnu_try used for emscripten where Rust panics are // implemented using C++ exceptions. Here we use exceptions of a specific type // (`struct rust_panic`) to represent Rust panics. fn codegen_emcc_try<'ll, 'tcx>( bx: &mut Builder<'_, 'll, 'tcx>, try_func: &'ll Value, data: &'ll Value, catch_func: &'ll Value, dest: PlaceRef<'tcx, &'ll Value>, ) { let (llty, llfn) = get_rust_try_fn(bx, &mut |mut bx| { // Codegens the shims described above: // // bx: // invoke %try_func(%data) normal %normal unwind %catch // // normal: // ret 0 // // catch: // (%ptr, %selector) = landingpad // %rust_typeid = @llvm.eh.typeid.for(@_ZTI10rust_panic) // %is_rust_panic = %selector == %rust_typeid // %catch_data = alloca { i8*, i8 } // %catch_data[0] = %ptr // %catch_data[1] = %is_rust_panic // call %catch_func(%data, %catch_data) // ret 1 let then = bx.append_sibling_block("then"); let catch = bx.append_sibling_block("catch"); let try_func = llvm::get_param(bx.llfn(), 0); let data = llvm::get_param(bx.llfn(), 1); let catch_func = llvm::get_param(bx.llfn(), 2); let try_func_ty = bx.type_func(&[bx.type_ptr()], bx.type_void()); bx.invoke(try_func_ty, None, None, try_func, &[data], then, catch, None, None); bx.switch_to_block(then); bx.ret(bx.const_i32(0)); // Type indicator for the exception being thrown. // // The first value in this tuple is a pointer to the exception object // being thrown. The second value is a "selector" indicating which of // the landing pad clauses the exception's type had been matched to. bx.switch_to_block(catch); let tydesc = bx.eh_catch_typeinfo(); let lpad_ty = bx.type_struct(&[bx.type_ptr(), bx.type_i32()], false); let vals = bx.landing_pad(lpad_ty, bx.eh_personality(), 2); bx.add_clause(vals, tydesc); bx.add_clause(vals, bx.const_null(bx.type_ptr())); let ptr = bx.extract_value(vals, 0); let selector = bx.extract_value(vals, 1); // Check if the typeid we got is the one for a Rust panic. let rust_typeid = bx.call_intrinsic("llvm.eh.typeid.for", &[bx.val_ty(tydesc)], &[tydesc]); let is_rust_panic = bx.icmp(IntPredicate::IntEQ, selector, rust_typeid); let is_rust_panic = bx.zext(is_rust_panic, bx.type_bool()); // We need to pass two values to catch_func (ptr and is_rust_panic), so // create an alloca and pass a pointer to that. let ptr_size = bx.tcx().data_layout.pointer_size(); let ptr_align = bx.tcx().data_layout.pointer_align().abi; let i8_align = bx.tcx().data_layout.i8_align.abi; // Required in order for there to be no padding between the fields. assert!(i8_align <= ptr_align); let catch_data = bx.alloca(2 * ptr_size, ptr_align); bx.store(ptr, catch_data, ptr_align); let catch_data_1 = bx.inbounds_ptradd(catch_data, bx.const_usize(ptr_size.bytes())); bx.store(is_rust_panic, catch_data_1, i8_align); let catch_ty = bx.type_func(&[bx.type_ptr(), bx.type_ptr()], bx.type_void()); bx.call(catch_ty, None, None, catch_func, &[data, catch_data], None, None); bx.ret(bx.const_i32(1)); }); // Note that no invoke is used here because by definition this function // can't panic (that's what it's catching). let ret = bx.call(llty, None, None, llfn, &[try_func, data, catch_func], None, None); OperandValue::Immediate(ret).store(bx, dest); } // Helper function to give a Block to a closure to codegen a shim function. // This is currently primarily used for the `try` intrinsic functions above. fn gen_fn<'a, 'll, 'tcx>( cx: &'a CodegenCx<'ll, 'tcx>, name: &str, rust_fn_sig: ty::PolyFnSig<'tcx>, codegen: &mut dyn FnMut(Builder<'a, 'll, 'tcx>), ) -> (&'ll Type, &'ll Value) { let fn_abi = cx.fn_abi_of_fn_ptr(rust_fn_sig, ty::List::empty()); let llty = fn_abi.llvm_type(cx); let llfn = cx.declare_fn(name, fn_abi, None); cx.set_frame_pointer_type(llfn); cx.apply_target_cpu_attr(llfn); // FIXME(eddyb) find a nicer way to do this. llvm::set_linkage(llfn, llvm::Linkage::InternalLinkage); let llbb = Builder::append_block(cx, llfn, "entry-block"); let bx = Builder::build(cx, llbb); codegen(bx); (llty, llfn) } // Helper function used to get a handle to the `__rust_try` function used to // catch exceptions. // // This function is only generated once and is then cached. fn get_rust_try_fn<'a, 'll, 'tcx>( cx: &'a CodegenCx<'ll, 'tcx>, codegen: &mut dyn FnMut(Builder<'a, 'll, 'tcx>), ) -> (&'ll Type, &'ll Value) { if let Some(llfn) = cx.rust_try_fn.get() { return llfn; } // Define the type up front for the signature of the rust_try function. let tcx = cx.tcx; let i8p = Ty::new_mut_ptr(tcx, tcx.types.i8); // `unsafe fn(*mut i8) -> ()` let try_fn_ty = Ty::new_fn_ptr( tcx, ty::Binder::dummy(tcx.mk_fn_sig( [i8p], tcx.types.unit, false, hir::Safety::Unsafe, ExternAbi::Rust, )), ); // `unsafe fn(*mut i8, *mut i8) -> ()` let catch_fn_ty = Ty::new_fn_ptr( tcx, ty::Binder::dummy(tcx.mk_fn_sig( [i8p, i8p], tcx.types.unit, false, hir::Safety::Unsafe, ExternAbi::Rust, )), ); // `unsafe fn(unsafe fn(*mut i8) -> (), *mut i8, unsafe fn(*mut i8, *mut i8) -> ()) -> i32` let rust_fn_sig = ty::Binder::dummy(cx.tcx.mk_fn_sig( [try_fn_ty, i8p, catch_fn_ty], tcx.types.i32, false, hir::Safety::Unsafe, ExternAbi::Rust, )); let rust_try = gen_fn(cx, "__rust_try", rust_fn_sig, codegen); cx.rust_try_fn.set(Some(rust_try)); rust_try } fn generic_simd_intrinsic<'ll, 'tcx>( bx: &mut Builder<'_, 'll, 'tcx>, name: Symbol, fn_args: GenericArgsRef<'tcx>, args: &[OperandRef<'tcx, &'ll Value>], ret_ty: Ty<'tcx>, llret_ty: &'ll Type, span: Span, ) -> Result<&'ll Value, ()> { macro_rules! return_error { ($diag: expr) => {{ bx.sess().dcx().emit_err($diag); return Err(()); }}; } macro_rules! require { ($cond: expr, $diag: expr) => { if !$cond { return_error!($diag); } }; } macro_rules! require_simd { ($ty: expr, $variant:ident) => {{ require!($ty.is_simd(), InvalidMonomorphization::$variant { span, name, ty: $ty }); $ty.simd_size_and_type(bx.tcx()) }}; } /// Returns the bitwidth of the `$ty` argument if it is an `Int` or `Uint` type. macro_rules! require_int_or_uint_ty { ($ty: expr, $diag: expr) => { match $ty { ty::Int(i) => { i.bit_width().unwrap_or_else(|| bx.data_layout().pointer_size().bits()) } ty::Uint(i) => { i.bit_width().unwrap_or_else(|| bx.data_layout().pointer_size().bits()) } _ => { return_error!($diag); } } }; } /// Converts a vector mask, where each element has a bit width equal to the data elements it is used with, /// down to an i1 based mask that can be used by llvm intrinsics. /// /// The rust simd semantics are that each element should either consist of all ones or all zeroes, /// but this information is not available to llvm. Truncating the vector effectively uses the lowest bit, /// but codegen for several targets is better if we consider the highest bit by shifting. /// /// For x86 SSE/AVX targets this is beneficial since most instructions with mask parameters only consider the highest bit. /// So even though on llvm level we have an additional shift, in the final assembly there is no shift or truncate and /// instead the mask can be used as is. /// /// For aarch64 and other targets there is a benefit because a mask from the sign bit can be more /// efficiently converted to an all ones / all zeroes mask by comparing whether each element is negative. fn vector_mask_to_bitmask<'a, 'll, 'tcx>( bx: &mut Builder<'a, 'll, 'tcx>, i_xn: &'ll Value, in_elem_bitwidth: u64, in_len: u64, ) -> &'ll Value { // Shift the MSB to the right by "in_elem_bitwidth - 1" into the first bit position. let shift_idx = bx.cx.const_int(bx.type_ix(in_elem_bitwidth), (in_elem_bitwidth - 1) as _); let shift_indices = vec![shift_idx; in_len as _]; let i_xn_msb = bx.lshr(i_xn, bx.const_vector(shift_indices.as_slice())); // Truncate vector to an bx.trunc(i_xn_msb, bx.type_vector(bx.type_i1(), in_len)) } // Sanity-check: all vector arguments must be immediates. if cfg!(debug_assertions) { for arg in args { if arg.layout.ty.is_simd() { assert_matches!(arg.val, OperandValue::Immediate(_)); } } } if name == sym::simd_select_bitmask { let (len, _) = require_simd!(args[1].layout.ty, SimdArgument); let expected_int_bits = len.max(8).next_power_of_two(); let expected_bytes = len.div_ceil(8); let mask_ty = args[0].layout.ty; let mask = match mask_ty.kind() { ty::Int(i) if i.bit_width() == Some(expected_int_bits) => args[0].immediate(), ty::Uint(i) if i.bit_width() == Some(expected_int_bits) => args[0].immediate(), ty::Array(elem, len) if matches!(elem.kind(), ty::Uint(ty::UintTy::U8)) && len .try_to_target_usize(bx.tcx) .expect("expected monomorphic const in codegen") == expected_bytes => { let place = PlaceRef::alloca(bx, args[0].layout); args[0].val.store(bx, place); let int_ty = bx.type_ix(expected_bytes * 8); bx.load(int_ty, place.val.llval, Align::ONE) } _ => return_error!(InvalidMonomorphization::InvalidBitmask { span, name, mask_ty, expected_int_bits, expected_bytes }), }; let i1 = bx.type_i1(); let im = bx.type_ix(len); let i1xn = bx.type_vector(i1, len); let m_im = bx.trunc(mask, im); let m_i1s = bx.bitcast(m_im, i1xn); return Ok(bx.select(m_i1s, args[1].immediate(), args[2].immediate())); } // every intrinsic below takes a SIMD vector as its first argument let (in_len, in_elem) = require_simd!(args[0].layout.ty, SimdInput); let in_ty = args[0].layout.ty; let comparison = match name { sym::simd_eq => Some(BinOp::Eq), sym::simd_ne => Some(BinOp::Ne), sym::simd_lt => Some(BinOp::Lt), sym::simd_le => Some(BinOp::Le), sym::simd_gt => Some(BinOp::Gt), sym::simd_ge => Some(BinOp::Ge), _ => None, }; if let Some(cmp_op) = comparison { let (out_len, out_ty) = require_simd!(ret_ty, SimdReturn); require!( in_len == out_len, InvalidMonomorphization::ReturnLengthInputType { span, name, in_len, in_ty, ret_ty, out_len } ); require!( bx.type_kind(bx.element_type(llret_ty)) == TypeKind::Integer, InvalidMonomorphization::ReturnIntegerType { span, name, ret_ty, out_ty } ); return Ok(compare_simd_types( bx, args[0].immediate(), args[1].immediate(), in_elem, llret_ty, cmp_op, )); } if name == sym::simd_shuffle_const_generic { let idx = fn_args[2].expect_const().to_value().valtree.unwrap_branch(); let n = idx.len() as u64; let (out_len, out_ty) = require_simd!(ret_ty, SimdReturn); require!( out_len == n, InvalidMonomorphization::ReturnLength { span, name, in_len: n, ret_ty, out_len } ); require!( in_elem == out_ty, InvalidMonomorphization::ReturnElement { span, name, in_elem, in_ty, ret_ty, out_ty } ); let total_len = in_len * 2; let indices: Option> = idx .iter() .enumerate() .map(|(arg_idx, val)| { let idx = val.unwrap_leaf().to_i32(); if idx >= i32::try_from(total_len).unwrap() { bx.sess().dcx().emit_err(InvalidMonomorphization::SimdIndexOutOfBounds { span, name, arg_idx: arg_idx as u64, total_len: total_len.into(), }); None } else { Some(bx.const_i32(idx)) } }) .collect(); let Some(indices) = indices else { return Ok(bx.const_null(llret_ty)); }; return Ok(bx.shuffle_vector( args[0].immediate(), args[1].immediate(), bx.const_vector(&indices), )); } if name == sym::simd_shuffle { // Make sure this is actually a SIMD vector. let idx_ty = args[2].layout.ty; let n: u64 = if idx_ty.is_simd() && matches!(idx_ty.simd_size_and_type(bx.cx.tcx).1.kind(), ty::Uint(ty::UintTy::U32)) { idx_ty.simd_size_and_type(bx.cx.tcx).0 } else { return_error!(InvalidMonomorphization::SimdShuffle { span, name, ty: idx_ty }) }; let (out_len, out_ty) = require_simd!(ret_ty, SimdReturn); require!( out_len == n, InvalidMonomorphization::ReturnLength { span, name, in_len: n, ret_ty, out_len } ); require!( in_elem == out_ty, InvalidMonomorphization::ReturnElement { span, name, in_elem, in_ty, ret_ty, out_ty } ); let total_len = u128::from(in_len) * 2; // Check that the indices are in-bounds. let indices = args[2].immediate(); for i in 0..n { let val = bx.const_get_elt(indices, i as u64); let idx = bx .const_to_opt_u128(val, true) .unwrap_or_else(|| bug!("typeck should have already ensured that these are const")); if idx >= total_len { return_error!(InvalidMonomorphization::SimdIndexOutOfBounds { span, name, arg_idx: i, total_len, }); } } return Ok(bx.shuffle_vector(args[0].immediate(), args[1].immediate(), indices)); } if name == sym::simd_insert || name == sym::simd_insert_dyn { require!( in_elem == args[2].layout.ty, InvalidMonomorphization::InsertedType { span, name, in_elem, in_ty, out_ty: args[2].layout.ty } ); let index_imm = if name == sym::simd_insert { let idx = bx .const_to_opt_u128(args[1].immediate(), false) .expect("typeck should have ensure that this is a const"); if idx >= in_len.into() { return_error!(InvalidMonomorphization::SimdIndexOutOfBounds { span, name, arg_idx: 1, total_len: in_len.into(), }); } bx.const_i32(idx as i32) } else { args[1].immediate() }; return Ok(bx.insert_element(args[0].immediate(), args[2].immediate(), index_imm)); } if name == sym::simd_extract || name == sym::simd_extract_dyn { require!( ret_ty == in_elem, InvalidMonomorphization::ReturnType { span, name, in_elem, in_ty, ret_ty } ); let index_imm = if name == sym::simd_extract { let idx = bx .const_to_opt_u128(args[1].immediate(), false) .expect("typeck should have ensure that this is a const"); if idx >= in_len.into() { return_error!(InvalidMonomorphization::SimdIndexOutOfBounds { span, name, arg_idx: 1, total_len: in_len.into(), }); } bx.const_i32(idx as i32) } else { args[1].immediate() }; return Ok(bx.extract_element(args[0].immediate(), index_imm)); } if name == sym::simd_select { let m_elem_ty = in_elem; let m_len = in_len; let (v_len, _) = require_simd!(args[1].layout.ty, SimdArgument); require!( m_len == v_len, InvalidMonomorphization::MismatchedLengths { span, name, m_len, v_len } ); let in_elem_bitwidth = require_int_or_uint_ty!( m_elem_ty.kind(), InvalidMonomorphization::MaskWrongElementType { span, name, ty: m_elem_ty } ); let m_i1s = vector_mask_to_bitmask(bx, args[0].immediate(), in_elem_bitwidth, m_len); return Ok(bx.select(m_i1s, args[1].immediate(), args[2].immediate())); } if name == sym::simd_bitmask { // The `fn simd_bitmask(vector) -> unsigned integer` intrinsic takes a vector mask and // returns one bit for each lane (which must all be `0` or `!0`) in the form of either: // * an unsigned integer // * an array of `u8` // If the vector has less than 8 lanes, a u8 is returned with zeroed trailing bits. // // The bit order of the result depends on the byte endianness, LSB-first for little // endian and MSB-first for big endian. let expected_int_bits = in_len.max(8).next_power_of_two(); let expected_bytes = in_len.div_ceil(8); // Integer vector : let in_elem_bitwidth = require_int_or_uint_ty!( in_elem.kind(), InvalidMonomorphization::MaskWrongElementType { span, name, ty: in_elem } ); let i1xn = vector_mask_to_bitmask(bx, args[0].immediate(), in_elem_bitwidth, in_len); // Bitcast to iN: let i_ = bx.bitcast(i1xn, bx.type_ix(in_len)); match ret_ty.kind() { ty::Uint(i) if i.bit_width() == Some(expected_int_bits) => { // Zero-extend iN to the bitmask type: return Ok(bx.zext(i_, bx.type_ix(expected_int_bits))); } ty::Array(elem, len) if matches!(elem.kind(), ty::Uint(ty::UintTy::U8)) && len .try_to_target_usize(bx.tcx) .expect("expected monomorphic const in codegen") == expected_bytes => { // Zero-extend iN to the array length: let ze = bx.zext(i_, bx.type_ix(expected_bytes * 8)); // Convert the integer to a byte array let ptr = bx.alloca(Size::from_bytes(expected_bytes), Align::ONE); bx.store(ze, ptr, Align::ONE); let array_ty = bx.type_array(bx.type_i8(), expected_bytes); return Ok(bx.load(array_ty, ptr, Align::ONE)); } _ => return_error!(InvalidMonomorphization::CannotReturn { span, name, ret_ty, expected_int_bits, expected_bytes }), } } fn simd_simple_float_intrinsic<'ll, 'tcx>( name: Symbol, in_elem: Ty<'_>, in_ty: Ty<'_>, in_len: u64, bx: &mut Builder<'_, 'll, 'tcx>, span: Span, args: &[OperandRef<'tcx, &'ll Value>], ) -> Result<&'ll Value, ()> { macro_rules! return_error { ($diag: expr) => {{ bx.sess().dcx().emit_err($diag); return Err(()); }}; } let elem_ty = if let ty::Float(f) = in_elem.kind() { bx.cx.type_float_from_ty(*f) } else { return_error!(InvalidMonomorphization::FloatingPointType { span, name, in_ty }); }; let vec_ty = bx.type_vector(elem_ty, in_len); let intr_name = match name { sym::simd_ceil => "llvm.ceil", sym::simd_fabs => "llvm.fabs", sym::simd_fcos => "llvm.cos", sym::simd_fexp2 => "llvm.exp2", sym::simd_fexp => "llvm.exp", sym::simd_flog10 => "llvm.log10", sym::simd_flog2 => "llvm.log2", sym::simd_flog => "llvm.log", sym::simd_floor => "llvm.floor", sym::simd_fma => "llvm.fma", sym::simd_relaxed_fma => "llvm.fmuladd", sym::simd_fsin => "llvm.sin", sym::simd_fsqrt => "llvm.sqrt", sym::simd_round => "llvm.round", sym::simd_round_ties_even => "llvm.rint", sym::simd_trunc => "llvm.trunc", _ => return_error!(InvalidMonomorphization::UnrecognizedIntrinsic { span, name }), }; Ok(bx.call_intrinsic( intr_name, &[vec_ty], &args.iter().map(|arg| arg.immediate()).collect::>(), )) } if std::matches!( name, sym::simd_ceil | sym::simd_fabs | sym::simd_fcos | sym::simd_fexp2 | sym::simd_fexp | sym::simd_flog10 | sym::simd_flog2 | sym::simd_flog | sym::simd_floor | sym::simd_fma | sym::simd_fsin | sym::simd_fsqrt | sym::simd_relaxed_fma | sym::simd_round | sym::simd_round_ties_even | sym::simd_trunc ) { return simd_simple_float_intrinsic(name, in_elem, in_ty, in_len, bx, span, args); } fn llvm_vector_ty<'ll>(cx: &CodegenCx<'ll, '_>, elem_ty: Ty<'_>, vec_len: u64) -> &'ll Type { let elem_ty = match *elem_ty.kind() { ty::Int(v) => cx.type_int_from_ty(v), ty::Uint(v) => cx.type_uint_from_ty(v), ty::Float(v) => cx.type_float_from_ty(v), ty::RawPtr(_, _) => cx.type_ptr(), _ => unreachable!(), }; cx.type_vector(elem_ty, vec_len) } if name == sym::simd_gather { // simd_gather(values: , pointers: , // mask: ) -> // * N: number of elements in the input vectors // * T: type of the element to load // * M: any integer width is supported, will be truncated to i1 // All types must be simd vector types // The second argument must be a simd vector with an element type that's a pointer // to the element type of the first argument let (_, element_ty0) = require_simd!(in_ty, SimdFirst); let (out_len, element_ty1) = require_simd!(args[1].layout.ty, SimdSecond); // The element type of the third argument must be a signed integer type of any width: let (out_len2, element_ty2) = require_simd!(args[2].layout.ty, SimdThird); require_simd!(ret_ty, SimdReturn); // Of the same length: require!( in_len == out_len, InvalidMonomorphization::SecondArgumentLength { span, name, in_len, in_ty, arg_ty: args[1].layout.ty, out_len } ); require!( in_len == out_len2, InvalidMonomorphization::ThirdArgumentLength { span, name, in_len, in_ty, arg_ty: args[2].layout.ty, out_len: out_len2 } ); // The return type must match the first argument type require!( ret_ty == in_ty, InvalidMonomorphization::ExpectedReturnType { span, name, in_ty, ret_ty } ); require!( matches!( *element_ty1.kind(), ty::RawPtr(p_ty, _) if p_ty == in_elem && p_ty.kind() == element_ty0.kind() ), InvalidMonomorphization::ExpectedElementType { span, name, expected_element: element_ty1, second_arg: args[1].layout.ty, in_elem, in_ty, mutability: ExpectedPointerMutability::Not, } ); let mask_elem_bitwidth = require_int_or_uint_ty!( element_ty2.kind(), InvalidMonomorphization::MaskWrongElementType { span, name, ty: element_ty2 } ); // Alignment of T, must be a constant integer value: let alignment = bx.const_i32(bx.align_of(in_elem).bytes() as i32); // Truncate the mask vector to a vector of i1s: let mask = vector_mask_to_bitmask(bx, args[2].immediate(), mask_elem_bitwidth, in_len); // Type of the vector of pointers: let llvm_pointer_vec_ty = llvm_vector_ty(bx, element_ty1, in_len); // Type of the vector of elements: let llvm_elem_vec_ty = llvm_vector_ty(bx, element_ty0, in_len); return Ok(bx.call_intrinsic( "llvm.masked.gather", &[llvm_elem_vec_ty, llvm_pointer_vec_ty], &[args[1].immediate(), alignment, mask, args[0].immediate()], )); } if name == sym::simd_masked_load { // simd_masked_load(mask: , pointer: *_ T, values: ) -> // * N: number of elements in the input vectors // * T: type of the element to load // * M: any integer width is supported, will be truncated to i1 // Loads contiguous elements from memory behind `pointer`, but only for // those lanes whose `mask` bit is enabled. // The memory addresses corresponding to the “off” lanes are not accessed. // The element type of the "mask" argument must be a signed integer type of any width let mask_ty = in_ty; let (mask_len, mask_elem) = (in_len, in_elem); // The second argument must be a pointer matching the element type let pointer_ty = args[1].layout.ty; // The last argument is a passthrough vector providing values for disabled lanes let values_ty = args[2].layout.ty; let (values_len, values_elem) = require_simd!(values_ty, SimdThird); require_simd!(ret_ty, SimdReturn); // Of the same length: require!( values_len == mask_len, InvalidMonomorphization::ThirdArgumentLength { span, name, in_len: mask_len, in_ty: mask_ty, arg_ty: values_ty, out_len: values_len } ); // The return type must match the last argument type require!( ret_ty == values_ty, InvalidMonomorphization::ExpectedReturnType { span, name, in_ty: values_ty, ret_ty } ); require!( matches!( *pointer_ty.kind(), ty::RawPtr(p_ty, _) if p_ty == values_elem && p_ty.kind() == values_elem.kind() ), InvalidMonomorphization::ExpectedElementType { span, name, expected_element: values_elem, second_arg: pointer_ty, in_elem: values_elem, in_ty: values_ty, mutability: ExpectedPointerMutability::Not, } ); let m_elem_bitwidth = require_int_or_uint_ty!( mask_elem.kind(), InvalidMonomorphization::MaskWrongElementType { span, name, ty: mask_elem } ); let mask = vector_mask_to_bitmask(bx, args[0].immediate(), m_elem_bitwidth, mask_len); // Alignment of T, must be a constant integer value: let alignment = bx.const_i32(bx.align_of(values_elem).bytes() as i32); let llvm_pointer = bx.type_ptr(); // Type of the vector of elements: let llvm_elem_vec_ty = llvm_vector_ty(bx, values_elem, values_len); return Ok(bx.call_intrinsic( "llvm.masked.load", &[llvm_elem_vec_ty, llvm_pointer], &[args[1].immediate(), alignment, mask, args[2].immediate()], )); } if name == sym::simd_masked_store { // simd_masked_store(mask: , pointer: *mut T, values: ) -> () // * N: number of elements in the input vectors // * T: type of the element to load // * M: any integer width is supported, will be truncated to i1 // Stores contiguous elements to memory behind `pointer`, but only for // those lanes whose `mask` bit is enabled. // The memory addresses corresponding to the “off” lanes are not accessed. // The element type of the "mask" argument must be a signed integer type of any width let mask_ty = in_ty; let (mask_len, mask_elem) = (in_len, in_elem); // The second argument must be a pointer matching the element type let pointer_ty = args[1].layout.ty; // The last argument specifies the values to store to memory let values_ty = args[2].layout.ty; let (values_len, values_elem) = require_simd!(values_ty, SimdThird); // Of the same length: require!( values_len == mask_len, InvalidMonomorphization::ThirdArgumentLength { span, name, in_len: mask_len, in_ty: mask_ty, arg_ty: values_ty, out_len: values_len } ); // The second argument must be a mutable pointer type matching the element type require!( matches!( *pointer_ty.kind(), ty::RawPtr(p_ty, p_mutbl) if p_ty == values_elem && p_ty.kind() == values_elem.kind() && p_mutbl.is_mut() ), InvalidMonomorphization::ExpectedElementType { span, name, expected_element: values_elem, second_arg: pointer_ty, in_elem: values_elem, in_ty: values_ty, mutability: ExpectedPointerMutability::Mut, } ); let m_elem_bitwidth = require_int_or_uint_ty!( mask_elem.kind(), InvalidMonomorphization::MaskWrongElementType { span, name, ty: mask_elem } ); let mask = vector_mask_to_bitmask(bx, args[0].immediate(), m_elem_bitwidth, mask_len); // Alignment of T, must be a constant integer value: let alignment = bx.const_i32(bx.align_of(values_elem).bytes() as i32); let llvm_pointer = bx.type_ptr(); // Type of the vector of elements: let llvm_elem_vec_ty = llvm_vector_ty(bx, values_elem, values_len); return Ok(bx.call_intrinsic( "llvm.masked.store", &[llvm_elem_vec_ty, llvm_pointer], &[args[2].immediate(), args[1].immediate(), alignment, mask], )); } if name == sym::simd_scatter { // simd_scatter(values: , pointers: , // mask: ) -> () // * N: number of elements in the input vectors // * T: type of the element to load // * M: any integer width is supported, will be truncated to i1 // All types must be simd vector types // The second argument must be a simd vector with an element type that's a pointer // to the element type of the first argument let (_, element_ty0) = require_simd!(in_ty, SimdFirst); let (element_len1, element_ty1) = require_simd!(args[1].layout.ty, SimdSecond); let (element_len2, element_ty2) = require_simd!(args[2].layout.ty, SimdThird); // Of the same length: require!( in_len == element_len1, InvalidMonomorphization::SecondArgumentLength { span, name, in_len, in_ty, arg_ty: args[1].layout.ty, out_len: element_len1 } ); require!( in_len == element_len2, InvalidMonomorphization::ThirdArgumentLength { span, name, in_len, in_ty, arg_ty: args[2].layout.ty, out_len: element_len2 } ); require!( matches!( *element_ty1.kind(), ty::RawPtr(p_ty, p_mutbl) if p_ty == in_elem && p_mutbl.is_mut() && p_ty.kind() == element_ty0.kind() ), InvalidMonomorphization::ExpectedElementType { span, name, expected_element: element_ty1, second_arg: args[1].layout.ty, in_elem, in_ty, mutability: ExpectedPointerMutability::Mut, } ); // The element type of the third argument must be an integer type of any width: let mask_elem_bitwidth = require_int_or_uint_ty!( element_ty2.kind(), InvalidMonomorphization::MaskWrongElementType { span, name, ty: element_ty2 } ); // Alignment of T, must be a constant integer value: let alignment = bx.const_i32(bx.align_of(in_elem).bytes() as i32); // Truncate the mask vector to a vector of i1s: let mask = vector_mask_to_bitmask(bx, args[2].immediate(), mask_elem_bitwidth, in_len); // Type of the vector of pointers: let llvm_pointer_vec_ty = llvm_vector_ty(bx, element_ty1, in_len); // Type of the vector of elements: let llvm_elem_vec_ty = llvm_vector_ty(bx, element_ty0, in_len); return Ok(bx.call_intrinsic( "llvm.masked.scatter", &[llvm_elem_vec_ty, llvm_pointer_vec_ty], &[args[0].immediate(), args[1].immediate(), alignment, mask], )); } macro_rules! arith_red { ($name:ident : $integer_reduce:ident, $float_reduce:ident, $ordered:expr, $op:ident, $identity:expr) => { if name == sym::$name { require!( ret_ty == in_elem, InvalidMonomorphization::ReturnType { span, name, in_elem, in_ty, ret_ty } ); return match in_elem.kind() { ty::Int(_) | ty::Uint(_) => { let r = bx.$integer_reduce(args[0].immediate()); if $ordered { // if overflow occurs, the result is the // mathematical result modulo 2^n: Ok(bx.$op(args[1].immediate(), r)) } else { Ok(bx.$integer_reduce(args[0].immediate())) } } ty::Float(f) => { let acc = if $ordered { // ordered arithmetic reductions take an accumulator args[1].immediate() } else { // unordered arithmetic reductions use the identity accumulator match f.bit_width() { 32 => bx.const_real(bx.type_f32(), $identity), 64 => bx.const_real(bx.type_f64(), $identity), v => return_error!( InvalidMonomorphization::UnsupportedSymbolOfSize { span, name, symbol: sym::$name, in_ty, in_elem, size: v, ret_ty } ), } }; Ok(bx.$float_reduce(acc, args[0].immediate())) } _ => return_error!(InvalidMonomorphization::UnsupportedSymbol { span, name, symbol: sym::$name, in_ty, in_elem, ret_ty }), }; } }; } arith_red!(simd_reduce_add_ordered: vector_reduce_add, vector_reduce_fadd, true, add, -0.0); arith_red!(simd_reduce_mul_ordered: vector_reduce_mul, vector_reduce_fmul, true, mul, 1.0); arith_red!( simd_reduce_add_unordered: vector_reduce_add, vector_reduce_fadd_reassoc, false, add, -0.0 ); arith_red!( simd_reduce_mul_unordered: vector_reduce_mul, vector_reduce_fmul_reassoc, false, mul, 1.0 ); macro_rules! minmax_red { ($name:ident: $int_red:ident, $float_red:ident) => { if name == sym::$name { require!( ret_ty == in_elem, InvalidMonomorphization::ReturnType { span, name, in_elem, in_ty, ret_ty } ); return match in_elem.kind() { ty::Int(_i) => Ok(bx.$int_red(args[0].immediate(), true)), ty::Uint(_u) => Ok(bx.$int_red(args[0].immediate(), false)), ty::Float(_f) => Ok(bx.$float_red(args[0].immediate())), _ => return_error!(InvalidMonomorphization::UnsupportedSymbol { span, name, symbol: sym::$name, in_ty, in_elem, ret_ty }), }; } }; } minmax_red!(simd_reduce_min: vector_reduce_min, vector_reduce_fmin); minmax_red!(simd_reduce_max: vector_reduce_max, vector_reduce_fmax); macro_rules! bitwise_red { ($name:ident : $red:ident, $boolean:expr) => { if name == sym::$name { let input = if !$boolean { require!( ret_ty == in_elem, InvalidMonomorphization::ReturnType { span, name, in_elem, in_ty, ret_ty } ); args[0].immediate() } else { let bitwidth = match in_elem.kind() { ty::Int(i) => { i.bit_width().unwrap_or_else(|| bx.data_layout().pointer_size().bits()) } ty::Uint(i) => { i.bit_width().unwrap_or_else(|| bx.data_layout().pointer_size().bits()) } _ => return_error!(InvalidMonomorphization::UnsupportedSymbol { span, name, symbol: sym::$name, in_ty, in_elem, ret_ty }), }; vector_mask_to_bitmask(bx, args[0].immediate(), bitwidth, in_len as _) }; return match in_elem.kind() { ty::Int(_) | ty::Uint(_) => { let r = bx.$red(input); Ok(if !$boolean { r } else { bx.zext(r, bx.type_bool()) }) } _ => return_error!(InvalidMonomorphization::UnsupportedSymbol { span, name, symbol: sym::$name, in_ty, in_elem, ret_ty }), }; } }; } bitwise_red!(simd_reduce_and: vector_reduce_and, false); bitwise_red!(simd_reduce_or: vector_reduce_or, false); bitwise_red!(simd_reduce_xor: vector_reduce_xor, false); bitwise_red!(simd_reduce_all: vector_reduce_and, true); bitwise_red!(simd_reduce_any: vector_reduce_or, true); if name == sym::simd_cast_ptr { let (out_len, out_elem) = require_simd!(ret_ty, SimdReturn); require!( in_len == out_len, InvalidMonomorphization::ReturnLengthInputType { span, name, in_len, in_ty, ret_ty, out_len } ); match in_elem.kind() { ty::RawPtr(p_ty, _) => { let metadata = p_ty.ptr_metadata_ty(bx.tcx, |ty| { bx.tcx.normalize_erasing_regions(bx.typing_env(), ty) }); require!( metadata.is_unit(), InvalidMonomorphization::CastWidePointer { span, name, ty: in_elem } ); } _ => { return_error!(InvalidMonomorphization::ExpectedPointer { span, name, ty: in_elem }) } } match out_elem.kind() { ty::RawPtr(p_ty, _) => { let metadata = p_ty.ptr_metadata_ty(bx.tcx, |ty| { bx.tcx.normalize_erasing_regions(bx.typing_env(), ty) }); require!( metadata.is_unit(), InvalidMonomorphization::CastWidePointer { span, name, ty: out_elem } ); } _ => { return_error!(InvalidMonomorphization::ExpectedPointer { span, name, ty: out_elem }) } } return Ok(args[0].immediate()); } if name == sym::simd_expose_provenance { let (out_len, out_elem) = require_simd!(ret_ty, SimdReturn); require!( in_len == out_len, InvalidMonomorphization::ReturnLengthInputType { span, name, in_len, in_ty, ret_ty, out_len } ); match in_elem.kind() { ty::RawPtr(_, _) => {} _ => { return_error!(InvalidMonomorphization::ExpectedPointer { span, name, ty: in_elem }) } } match out_elem.kind() { ty::Uint(ty::UintTy::Usize) => {} _ => return_error!(InvalidMonomorphization::ExpectedUsize { span, name, ty: out_elem }), } return Ok(bx.ptrtoint(args[0].immediate(), llret_ty)); } if name == sym::simd_with_exposed_provenance { let (out_len, out_elem) = require_simd!(ret_ty, SimdReturn); require!( in_len == out_len, InvalidMonomorphization::ReturnLengthInputType { span, name, in_len, in_ty, ret_ty, out_len } ); match in_elem.kind() { ty::Uint(ty::UintTy::Usize) => {} _ => return_error!(InvalidMonomorphization::ExpectedUsize { span, name, ty: in_elem }), } match out_elem.kind() { ty::RawPtr(_, _) => {} _ => { return_error!(InvalidMonomorphization::ExpectedPointer { span, name, ty: out_elem }) } } return Ok(bx.inttoptr(args[0].immediate(), llret_ty)); } if name == sym::simd_cast || name == sym::simd_as { let (out_len, out_elem) = require_simd!(ret_ty, SimdReturn); require!( in_len == out_len, InvalidMonomorphization::ReturnLengthInputType { span, name, in_len, in_ty, ret_ty, out_len } ); // casting cares about nominal type, not just structural type if in_elem == out_elem { return Ok(args[0].immediate()); } #[derive(Copy, Clone)] enum Sign { Unsigned, Signed, } use Sign::*; enum Style { Float, Int(Sign), Unsupported, } let (in_style, in_width) = match in_elem.kind() { // vectors of pointer-sized integers should've been // disallowed before here, so this unwrap is safe. ty::Int(i) => ( Style::Int(Signed), i.normalize(bx.tcx().sess.target.pointer_width).bit_width().unwrap(), ), ty::Uint(u) => ( Style::Int(Unsigned), u.normalize(bx.tcx().sess.target.pointer_width).bit_width().unwrap(), ), ty::Float(f) => (Style::Float, f.bit_width()), _ => (Style::Unsupported, 0), }; let (out_style, out_width) = match out_elem.kind() { ty::Int(i) => ( Style::Int(Signed), i.normalize(bx.tcx().sess.target.pointer_width).bit_width().unwrap(), ), ty::Uint(u) => ( Style::Int(Unsigned), u.normalize(bx.tcx().sess.target.pointer_width).bit_width().unwrap(), ), ty::Float(f) => (Style::Float, f.bit_width()), _ => (Style::Unsupported, 0), }; match (in_style, out_style) { (Style::Int(sign), Style::Int(_)) => { return Ok(match in_width.cmp(&out_width) { Ordering::Greater => bx.trunc(args[0].immediate(), llret_ty), Ordering::Equal => args[0].immediate(), Ordering::Less => match sign { Sign::Signed => bx.sext(args[0].immediate(), llret_ty), Sign::Unsigned => bx.zext(args[0].immediate(), llret_ty), }, }); } (Style::Int(Sign::Signed), Style::Float) => { return Ok(bx.sitofp(args[0].immediate(), llret_ty)); } (Style::Int(Sign::Unsigned), Style::Float) => { return Ok(bx.uitofp(args[0].immediate(), llret_ty)); } (Style::Float, Style::Int(sign)) => { return Ok(match (sign, name == sym::simd_as) { (Sign::Unsigned, false) => bx.fptoui(args[0].immediate(), llret_ty), (Sign::Signed, false) => bx.fptosi(args[0].immediate(), llret_ty), (_, true) => bx.cast_float_to_int( matches!(sign, Sign::Signed), args[0].immediate(), llret_ty, ), }); } (Style::Float, Style::Float) => { return Ok(match in_width.cmp(&out_width) { Ordering::Greater => bx.fptrunc(args[0].immediate(), llret_ty), Ordering::Equal => args[0].immediate(), Ordering::Less => bx.fpext(args[0].immediate(), llret_ty), }); } _ => { /* Unsupported. Fallthrough. */ } } return_error!(InvalidMonomorphization::UnsupportedCast { span, name, in_ty, in_elem, ret_ty, out_elem }); } macro_rules! arith_binary { ($($name: ident: $($($p: ident),* => $call: ident),*;)*) => { $(if name == sym::$name { match in_elem.kind() { $($(ty::$p(_))|* => { return Ok(bx.$call(args[0].immediate(), args[1].immediate())) })* _ => {}, } return_error!( InvalidMonomorphization::UnsupportedOperation { span, name, in_ty, in_elem } ); })* } } arith_binary! { simd_add: Uint, Int => add, Float => fadd; simd_sub: Uint, Int => sub, Float => fsub; simd_mul: Uint, Int => mul, Float => fmul; simd_div: Uint => udiv, Int => sdiv, Float => fdiv; simd_rem: Uint => urem, Int => srem, Float => frem; simd_shl: Uint, Int => shl; simd_shr: Uint => lshr, Int => ashr; simd_and: Uint, Int => and; simd_or: Uint, Int => or; simd_xor: Uint, Int => xor; simd_fmax: Float => maxnum; simd_fmin: Float => minnum; } macro_rules! arith_unary { ($($name: ident: $($($p: ident),* => $call: ident),*;)*) => { $(if name == sym::$name { match in_elem.kind() { $($(ty::$p(_))|* => { return Ok(bx.$call(args[0].immediate())) })* _ => {}, } return_error!( InvalidMonomorphization::UnsupportedOperation { span, name, in_ty, in_elem } ); })* } } arith_unary! { simd_neg: Int => neg, Float => fneg; } // Unary integer intrinsics if matches!( name, sym::simd_bswap | sym::simd_bitreverse | sym::simd_ctlz | sym::simd_ctpop | sym::simd_cttz | sym::simd_funnel_shl | sym::simd_funnel_shr ) { let vec_ty = bx.cx.type_vector( match *in_elem.kind() { ty::Int(i) => bx.cx.type_int_from_ty(i), ty::Uint(i) => bx.cx.type_uint_from_ty(i), _ => return_error!(InvalidMonomorphization::UnsupportedOperation { span, name, in_ty, in_elem }), }, in_len as u64, ); let llvm_intrinsic = match name { sym::simd_bswap => "llvm.bswap", sym::simd_bitreverse => "llvm.bitreverse", sym::simd_ctlz => "llvm.ctlz", sym::simd_ctpop => "llvm.ctpop", sym::simd_cttz => "llvm.cttz", sym::simd_funnel_shl => "llvm.fshl", sym::simd_funnel_shr => "llvm.fshr", _ => unreachable!(), }; let int_size = in_elem.int_size_and_signed(bx.tcx()).0.bits(); return match name { // byte swap is no-op for i8/u8 sym::simd_bswap if int_size == 8 => Ok(args[0].immediate()), sym::simd_ctlz | sym::simd_cttz => { // for the (int, i1 immediate) pair, the second arg adds `(0, true) => poison` let dont_poison_on_zero = bx.const_int(bx.type_i1(), 0); Ok(bx.call_intrinsic( llvm_intrinsic, &[vec_ty], &[args[0].immediate(), dont_poison_on_zero], )) } sym::simd_bswap | sym::simd_bitreverse | sym::simd_ctpop => { // simple unary argument cases Ok(bx.call_intrinsic(llvm_intrinsic, &[vec_ty], &[args[0].immediate()])) } sym::simd_funnel_shl | sym::simd_funnel_shr => Ok(bx.call_intrinsic( llvm_intrinsic, &[vec_ty], &[args[0].immediate(), args[1].immediate(), args[2].immediate()], )), _ => unreachable!(), }; } if name == sym::simd_arith_offset { // This also checks that the first operand is a ptr type. let pointee = in_elem.builtin_deref(true).unwrap_or_else(|| { span_bug!(span, "must be called with a vector of pointer types as first argument") }); let layout = bx.layout_of(pointee); let ptrs = args[0].immediate(); // The second argument must be a ptr-sized integer. // (We don't care about the signedness, this is wrapping anyway.) let (_offsets_len, offsets_elem) = args[1].layout.ty.simd_size_and_type(bx.tcx()); if !matches!(offsets_elem.kind(), ty::Int(ty::IntTy::Isize) | ty::Uint(ty::UintTy::Usize)) { span_bug!( span, "must be called with a vector of pointer-sized integers as second argument" ); } let offsets = args[1].immediate(); return Ok(bx.gep(bx.backend_type(layout), ptrs, &[offsets])); } if name == sym::simd_saturating_add || name == sym::simd_saturating_sub { let lhs = args[0].immediate(); let rhs = args[1].immediate(); let is_add = name == sym::simd_saturating_add; let (signed, elem_ty) = match *in_elem.kind() { ty::Int(i) => (true, bx.cx.type_int_from_ty(i)), ty::Uint(i) => (false, bx.cx.type_uint_from_ty(i)), _ => { return_error!(InvalidMonomorphization::ExpectedVectorElementType { span, name, expected_element: args[0].layout.ty.simd_size_and_type(bx.tcx()).1, vector_type: args[0].layout.ty }); } }; let llvm_intrinsic = format!( "llvm.{}{}.sat", if signed { 's' } else { 'u' }, if is_add { "add" } else { "sub" }, ); let vec_ty = bx.cx.type_vector(elem_ty, in_len as u64); return Ok(bx.call_intrinsic(llvm_intrinsic, &[vec_ty], &[lhs, rhs])); } span_bug!(span, "unknown SIMD intrinsic"); }