use gccjit::{ToRValue, Type}; use rustc_codegen_ssa::traits::{AbiBuilderMethods, BaseTypeMethods}; use rustc_middle::bug; use rustc_middle::ty::Ty; use rustc_target::abi::call::{CastTarget, FnAbi, PassMode, Reg, RegKind}; use crate::builder::Builder; use crate::context::CodegenCx; use crate::intrinsic::ArgAbiExt; use crate::type_of::LayoutGccExt; impl<'a, 'gcc, 'tcx> AbiBuilderMethods<'tcx> for Builder<'a, 'gcc, 'tcx> { fn apply_attrs_callsite(&mut self, _fn_abi: &FnAbi<'tcx, Ty<'tcx>>, _callsite: Self::Value) { // TODO //fn_abi.apply_attrs_callsite(self, callsite) } fn get_param(&self, index: usize) -> Self::Value { self.cx.current_func.borrow().expect("current func") .get_param(index as i32) .to_rvalue() } } impl GccType for CastTarget { fn gcc_type<'gcc>(&self, cx: &CodegenCx<'gcc, '_>) -> Type<'gcc> { let rest_gcc_unit = self.rest.unit.gcc_type(cx); let (rest_count, rem_bytes) = if self.rest.unit.size.bytes() == 0 { (0, 0) } else { (self.rest.total.bytes() / self.rest.unit.size.bytes(), self.rest.total.bytes() % self.rest.unit.size.bytes()) }; if self.prefix.iter().all(|x| x.is_none()) { // Simplify to a single unit when there is no prefix and size <= unit size if self.rest.total <= self.rest.unit.size { return rest_gcc_unit; } // Simplify to array when all chunks are the same size and type if rem_bytes == 0 { return cx.type_array(rest_gcc_unit, rest_count); } } // Create list of fields in the main structure let mut args: Vec<_> = self .prefix .iter() .flat_map(|option_kind| { option_kind.map(|kind| Reg { kind, size: self.prefix_chunk_size }.gcc_type(cx)) }) .chain((0..rest_count).map(|_| rest_gcc_unit)) .collect(); // Append final integer if rem_bytes != 0 { // Only integers can be really split further. assert_eq!(self.rest.unit.kind, RegKind::Integer); args.push(cx.type_ix(rem_bytes * 8)); } cx.type_struct(&args, false) } } pub trait GccType { fn gcc_type<'gcc>(&self, cx: &CodegenCx<'gcc, '_>) -> Type<'gcc>; } impl GccType for Reg { fn gcc_type<'gcc>(&self, cx: &CodegenCx<'gcc, '_>) -> Type<'gcc> { match self.kind { RegKind::Integer => cx.type_ix(self.size.bits()), RegKind::Float => { match self.size.bits() { 32 => cx.type_f32(), 64 => cx.type_f64(), _ => bug!("unsupported float: {:?}", self), } }, RegKind::Vector => unimplemented!(), //cx.type_vector(cx.type_i8(), self.size.bytes()), } } } pub trait FnAbiGccExt<'gcc, 'tcx> { // TODO: return a function pointer type instead? fn gcc_type(&self, cx: &CodegenCx<'gcc, 'tcx>) -> (Type<'gcc>, Vec>, bool); fn ptr_to_gcc_type(&self, cx: &CodegenCx<'gcc, 'tcx>) -> Type<'gcc>; /*fn llvm_cconv(&self) -> llvm::CallConv; fn apply_attrs_llfn(&self, cx: &CodegenCx<'ll, 'tcx>, llfn: &'ll Value); fn apply_attrs_callsite(&self, bx: &mut Builder<'a, 'll, 'tcx>, callsite: &'ll Value);*/ } impl<'gcc, 'tcx> FnAbiGccExt<'gcc, 'tcx> for FnAbi<'tcx, Ty<'tcx>> { fn gcc_type(&self, cx: &CodegenCx<'gcc, 'tcx>) -> (Type<'gcc>, Vec>, bool) { let args_capacity: usize = self.args.iter().map(|arg| if arg.pad.is_some() { 1 } else { 0 } + if let PassMode::Pair(_, _) = arg.mode { 2 } else { 1 } ).sum(); let mut argument_tys = Vec::with_capacity( if let PassMode::Indirect { .. } = self.ret.mode { 1 } else { 0 } + args_capacity, ); let return_ty = match self.ret.mode { PassMode::Ignore => cx.type_void(), PassMode::Direct(_) | PassMode::Pair(..) => self.ret.layout.immediate_gcc_type(cx), PassMode::Cast(cast) => cast.gcc_type(cx), PassMode::Indirect { .. } => { argument_tys.push(cx.type_ptr_to(self.ret.memory_ty(cx))); cx.type_void() } }; for arg in &self.args { // add padding if let Some(ty) = arg.pad { argument_tys.push(ty.gcc_type(cx)); } let arg_ty = match arg.mode { PassMode::Ignore => continue, PassMode::Direct(_) => arg.layout.immediate_gcc_type(cx), PassMode::Pair(..) => { argument_tys.push(arg.layout.scalar_pair_element_gcc_type(cx, 0, true)); argument_tys.push(arg.layout.scalar_pair_element_gcc_type(cx, 1, true)); continue; } PassMode::Indirect { extra_attrs: Some(_), .. } => { /*let ptr_ty = cx.tcx.mk_mut_ptr(arg.layout.ty); let ptr_layout = cx.layout_of(ptr_ty); argument_tys.push(ptr_layout.scalar_pair_element_gcc_type(cx, 0, true)); argument_tys.push(ptr_layout.scalar_pair_element_gcc_type(cx, 1, true));*/ unimplemented!(); //continue; } PassMode::Cast(cast) => cast.gcc_type(cx), PassMode::Indirect { extra_attrs: None, .. } => cx.type_ptr_to(arg.memory_ty(cx)), }; argument_tys.push(arg_ty); } (return_ty, argument_tys, self.c_variadic) } fn ptr_to_gcc_type(&self, cx: &CodegenCx<'gcc, 'tcx>) -> Type<'gcc> { let (return_type, params, variadic) = self.gcc_type(cx); let pointer_type = cx.context.new_function_pointer_type(None, return_type, ¶ms, variadic); pointer_type } /*fn llvm_cconv(&self) -> llvm::CallConv { match self.conv { Conv::C | Conv::Rust => llvm::CCallConv, Conv::AmdGpuKernel => llvm::AmdGpuKernel, Conv::ArmAapcs => llvm::ArmAapcsCallConv, Conv::Msp430Intr => llvm::Msp430Intr, Conv::PtxKernel => llvm::PtxKernel, Conv::X86Fastcall => llvm::X86FastcallCallConv, Conv::X86Intr => llvm::X86_Intr, Conv::X86Stdcall => llvm::X86StdcallCallConv, Conv::X86ThisCall => llvm::X86_ThisCall, Conv::X86VectorCall => llvm::X86_VectorCall, Conv::X86_64SysV => llvm::X86_64_SysV, Conv::X86_64Win64 => llvm::X86_64_Win64, } } fn apply_attrs_llfn(&self, cx: &CodegenCx<'ll, 'tcx>, llfn: &'ll Value) { // FIXME(eddyb) can this also be applied to callsites? if self.ret.layout.abi.is_uninhabited() { llvm::Attribute::NoReturn.apply_llfn(llvm::AttributePlace::Function, llfn); } // FIXME(eddyb, wesleywiser): apply this to callsites as well? if !self.can_unwind { llvm::Attribute::NoUnwind.apply_llfn(llvm::AttributePlace::Function, llfn); } let mut i = 0; let mut apply = |attrs: &ArgAttributes, ty: Option<&Type>| { attrs.apply_llfn(llvm::AttributePlace::Argument(i), llfn, ty); i += 1; }; match self.ret.mode { PassMode::Direct(ref attrs) => { attrs.apply_llfn(llvm::AttributePlace::ReturnValue, llfn, None); } PassMode::Indirect(ref attrs, _) => apply(attrs, Some(self.ret.layout.gcc_type(cx))), _ => {} } for arg in &self.args { if arg.pad.is_some() { apply(&ArgAttributes::new(), None); } match arg.mode { PassMode::Ignore => {} PassMode::Direct(ref attrs) | PassMode::Indirect(ref attrs, None) => { apply(attrs, Some(arg.layout.gcc_type(cx))) } PassMode::Indirect(ref attrs, Some(ref extra_attrs)) => { apply(attrs, None); apply(extra_attrs, None); } PassMode::Pair(ref a, ref b) => { apply(a, None); apply(b, None); } PassMode::Cast(_) => apply(&ArgAttributes::new(), None), } } } fn apply_attrs_callsite(&self, bx: &mut Builder<'a, 'll, 'tcx>, callsite: &'ll Value) { // FIXME(wesleywiser, eddyb): We should apply `nounwind` and `noreturn` as appropriate to this callsite. let mut i = 0; let mut apply = |attrs: &ArgAttributes, ty: Option<&Type>| { attrs.apply_callsite(llvm::AttributePlace::Argument(i), callsite, ty); i += 1; }; match self.ret.mode { PassMode::Direct(ref attrs) => { attrs.apply_callsite(llvm::AttributePlace::ReturnValue, callsite, None); } PassMode::Indirect(ref attrs, _) => apply(attrs, Some(self.ret.layout.gcc_type(bx))), _ => {} } if let abi::Abi::Scalar(ref scalar) = self.ret.layout.abi { // If the value is a boolean, the range is 0..2 and that ultimately // become 0..0 when the type becomes i1, which would be rejected // by the LLVM verifier. if let Int(..) = scalar.value { if !scalar.is_bool() { let range = scalar.valid_range_exclusive(bx); if range.start != range.end { bx.range_metadata(callsite, range); } } } } for arg in &self.args { if arg.pad.is_some() { apply(&ArgAttributes::new(), None); } match arg.mode { PassMode::Ignore => {} PassMode::Direct(ref attrs) | PassMode::Indirect(ref attrs, None) => { apply(attrs, Some(arg.layout.gcc_type(bx))) } PassMode::Indirect(ref attrs, Some(ref extra_attrs)) => { apply(attrs, None); apply(extra_attrs, None); } PassMode::Pair(ref a, ref b) => { apply(a, None); apply(b, None); } PassMode::Cast(_) => apply(&ArgAttributes::new(), None), } } let cconv = self.llvm_cconv(); if cconv != llvm::CCallConv { llvm::SetInstructionCallConv(callsite, cconv); } }*/ }