mirror of
				https://github.com/rust-lang/rust.git
				synced 2025-10-31 21:16:44 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1476 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			1476 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
| //! Mono Item Collection
 | |
| //! ====================
 | |
| //!
 | |
| //! This module is responsible for discovering all items that will contribute
 | |
| //! to code generation of the crate. The important part here is that it not only
 | |
| //! needs to find syntax-level items (functions, structs, etc) but also all
 | |
| //! their monomorphized instantiations. Every non-generic, non-const function
 | |
| //! maps to one LLVM artifact. Every generic function can produce
 | |
| //! from zero to N artifacts, depending on the sets of type arguments it
 | |
| //! is instantiated with.
 | |
| //! This also applies to generic items from other crates: A generic definition
 | |
| //! in crate X might produce monomorphizations that are compiled into crate Y.
 | |
| //! We also have to collect these here.
 | |
| //!
 | |
| //! The following kinds of "mono items" are handled here:
 | |
| //!
 | |
| //! - Functions
 | |
| //! - Methods
 | |
| //! - Closures
 | |
| //! - Statics
 | |
| //! - Drop glue
 | |
| //!
 | |
| //! The following things also result in LLVM artifacts, but are not collected
 | |
| //! here, since we instantiate them locally on demand when needed in a given
 | |
| //! codegen unit:
 | |
| //!
 | |
| //! - Constants
 | |
| //! - VTables
 | |
| //! - Object Shims
 | |
| //!
 | |
| //!
 | |
| //! General Algorithm
 | |
| //! -----------------
 | |
| //! Let's define some terms first:
 | |
| //!
 | |
| //! - A "mono item" is something that results in a function or global in
 | |
| //!   the LLVM IR of a codegen unit. Mono items do not stand on their
 | |
| //!   own, they can use other mono items. For example, if function
 | |
| //!   `foo()` calls function `bar()` then the mono item for `foo()`
 | |
| //!   uses the mono item for function `bar()`. In general, the
 | |
| //!   definition for mono item A using a mono item B is that
 | |
| //!   the LLVM artifact produced for A uses the LLVM artifact produced
 | |
| //!   for B.
 | |
| //!
 | |
| //! - Mono items and the uses between them form a directed graph,
 | |
| //!   where the mono items are the nodes and uses form the edges.
 | |
| //!   Let's call this graph the "mono item graph".
 | |
| //!
 | |
| //! - The mono item graph for a program contains all mono items
 | |
| //!   that are needed in order to produce the complete LLVM IR of the program.
 | |
| //!
 | |
| //! The purpose of the algorithm implemented in this module is to build the
 | |
| //! mono item graph for the current crate. It runs in two phases:
 | |
| //!
 | |
| //! 1. Discover the roots of the graph by traversing the HIR of the crate.
 | |
| //! 2. Starting from the roots, find uses by inspecting the MIR
 | |
| //!    representation of the item corresponding to a given node, until no more
 | |
| //!    new nodes are found.
 | |
| //!
 | |
| //! ### Discovering roots
 | |
| //! The roots of the mono item graph correspond to the public non-generic
 | |
| //! syntactic items in the source code. We find them by walking the HIR of the
 | |
| //! crate, and whenever we hit upon a public function, method, or static item,
 | |
| //! we create a mono item consisting of the items DefId and, since we only
 | |
| //! consider non-generic items, an empty type-substitution set. (In eager
 | |
| //! collection mode, during incremental compilation, all non-generic functions
 | |
| //! are considered as roots, as well as when the `-Clink-dead-code` option is
 | |
| //! specified. Functions marked `#[no_mangle]` and functions called by inlinable
 | |
| //! functions also always act as roots.)
 | |
| //!
 | |
| //! ### Finding uses
 | |
| //! Given a mono item node, we can discover uses by inspecting its MIR. We walk
 | |
| //! the MIR to find other mono items used by each mono item. Since the mono
 | |
| //! item we are currently at is always monomorphic, we also know the concrete
 | |
| //! type arguments of its used mono items. The specific forms a use can take in
 | |
| //! MIR are quite diverse. Here is an overview:
 | |
| //!
 | |
| //! #### Calling Functions/Methods
 | |
| //! The most obvious way for one mono item to use another is a
 | |
| //! function or method call (represented by a CALL terminator in MIR). But
 | |
| //! calls are not the only thing that might introduce a use between two
 | |
| //! function mono items, and as we will see below, they are just a
 | |
| //! specialization of the form described next, and consequently will not get any
 | |
| //! special treatment in the algorithm.
 | |
| //!
 | |
| //! #### Taking a reference to a function or method
 | |
| //! A function does not need to actually be called in order to be used by
 | |
| //! another function. It suffices to just take a reference in order to introduce
 | |
| //! an edge. Consider the following example:
 | |
| //!
 | |
| //! ```
 | |
| //! # use core::fmt::Display;
 | |
| //! fn print_val<T: Display>(x: T) {
 | |
| //!     println!("{}", x);
 | |
| //! }
 | |
| //!
 | |
| //! fn call_fn(f: &dyn Fn(i32), x: i32) {
 | |
| //!     f(x);
 | |
| //! }
 | |
| //!
 | |
| //! fn main() {
 | |
| //!     let print_i32 = print_val::<i32>;
 | |
| //!     call_fn(&print_i32, 0);
 | |
| //! }
 | |
| //! ```
 | |
| //! The MIR of none of these functions will contain an explicit call to
 | |
| //! `print_val::<i32>`. Nonetheless, in order to mono this program, we need
 | |
| //! an instance of this function. Thus, whenever we encounter a function or
 | |
| //! method in operand position, we treat it as a use of the current
 | |
| //! mono item. Calls are just a special case of that.
 | |
| //!
 | |
| //! #### Drop glue
 | |
| //! Drop glue mono items are introduced by MIR drop-statements. The
 | |
| //! generated mono item will have additional drop-glue item uses if the
 | |
| //! type to be dropped contains nested values that also need to be dropped. It
 | |
| //! might also have a function item use for the explicit `Drop::drop`
 | |
| //! implementation of its type.
 | |
| //!
 | |
| //! #### Unsizing Casts
 | |
| //! A subtle way of introducing use edges is by casting to a trait object.
 | |
| //! Since the resulting fat-pointer contains a reference to a vtable, we need to
 | |
| //! instantiate all object-safe methods of the trait, as we need to store
 | |
| //! pointers to these functions even if they never get called anywhere. This can
 | |
| //! be seen as a special case of taking a function reference.
 | |
| //!
 | |
| //!
 | |
| //! Interaction with Cross-Crate Inlining
 | |
| //! -------------------------------------
 | |
| //! The binary of a crate will not only contain machine code for the items
 | |
| //! defined in the source code of that crate. It will also contain monomorphic
 | |
| //! instantiations of any extern generic functions and of functions marked with
 | |
| //! `#[inline]`.
 | |
| //! The collection algorithm handles this more or less mono. If it is
 | |
| //! about to create a mono item for something with an external `DefId`,
 | |
| //! it will take a look if the MIR for that item is available, and if so just
 | |
| //! proceed normally. If the MIR is not available, it assumes that the item is
 | |
| //! just linked to and no node is created; which is exactly what we want, since
 | |
| //! no machine code should be generated in the current crate for such an item.
 | |
| //!
 | |
| //! Eager and Lazy Collection Mode
 | |
| //! ------------------------------
 | |
| //! Mono item collection can be performed in one of two modes:
 | |
| //!
 | |
| //! - Lazy mode means that items will only be instantiated when actually
 | |
| //!   used. The goal is to produce the least amount of machine code
 | |
| //!   possible.
 | |
| //!
 | |
| //! - Eager mode is meant to be used in conjunction with incremental compilation
 | |
| //!   where a stable set of mono items is more important than a minimal
 | |
| //!   one. Thus, eager mode will instantiate drop-glue for every drop-able type
 | |
| //!   in the crate, even if no drop call for that type exists (yet). It will
 | |
| //!   also instantiate default implementations of trait methods, something that
 | |
| //!   otherwise is only done on demand.
 | |
| //!
 | |
| //!
 | |
| //! Open Issues
 | |
| //! -----------
 | |
| //! Some things are not yet fully implemented in the current version of this
 | |
| //! module.
 | |
| //!
 | |
| //! ### Const Fns
 | |
| //! Ideally, no mono item should be generated for const fns unless there
 | |
| //! is a call to them that cannot be evaluated at compile time. At the moment
 | |
| //! this is not implemented however: a mono item will be produced
 | |
| //! regardless of whether it is actually needed or not.
 | |
| 
 | |
| use rustc_data_structures::fx::{FxHashMap, FxHashSet};
 | |
| use rustc_data_structures::sync::{par_for_each_in, MTLock, MTLockRef};
 | |
| use rustc_hir as hir;
 | |
| use rustc_hir::def::DefKind;
 | |
| use rustc_hir::def_id::{DefId, DefIdMap, LocalDefId};
 | |
| use rustc_hir::lang_items::LangItem;
 | |
| use rustc_middle::mir::interpret::{AllocId, ErrorHandled, GlobalAlloc, Scalar};
 | |
| use rustc_middle::mir::mono::{InstantiationMode, MonoItem};
 | |
| use rustc_middle::mir::visit::Visitor as MirVisitor;
 | |
| use rustc_middle::mir::{self, Location};
 | |
| use rustc_middle::query::TyCtxtAt;
 | |
| use rustc_middle::ty::adjustment::{CustomCoerceUnsized, PointerCoercion};
 | |
| use rustc_middle::ty::layout::ValidityRequirement;
 | |
| use rustc_middle::ty::print::with_no_trimmed_paths;
 | |
| use rustc_middle::ty::{
 | |
|     self, AssocKind, GenericParamDefKind, Instance, InstanceDef, Ty, TyCtxt, TypeFoldable,
 | |
|     TypeVisitableExt, VtblEntry,
 | |
| };
 | |
| use rustc_middle::ty::{GenericArgKind, GenericArgs};
 | |
| use rustc_middle::{middle::codegen_fn_attrs::CodegenFnAttrFlags, mir::visit::TyContext};
 | |
| use rustc_session::config::EntryFnType;
 | |
| use rustc_session::lint::builtin::LARGE_ASSIGNMENTS;
 | |
| use rustc_session::Limit;
 | |
| use rustc_span::source_map::{dummy_spanned, respan, Spanned};
 | |
| use rustc_span::symbol::{sym, Ident};
 | |
| use rustc_span::{Span, DUMMY_SP};
 | |
| use rustc_target::abi::Size;
 | |
| use std::path::PathBuf;
 | |
| 
 | |
| use crate::errors::{
 | |
|     EncounteredErrorWhileInstantiating, LargeAssignmentsLint, NoOptimizedMir, RecursionLimit,
 | |
|     TypeLengthLimit,
 | |
| };
 | |
| 
 | |
| #[derive(PartialEq)]
 | |
| pub enum MonoItemCollectionMode {
 | |
|     Eager,
 | |
|     Lazy,
 | |
| }
 | |
| 
 | |
| pub struct UsageMap<'tcx> {
 | |
|     // Maps every mono item to the mono items used by it.
 | |
|     used_map: FxHashMap<MonoItem<'tcx>, Vec<MonoItem<'tcx>>>,
 | |
| 
 | |
|     // Maps every mono item to the mono items that use it.
 | |
|     user_map: FxHashMap<MonoItem<'tcx>, Vec<MonoItem<'tcx>>>,
 | |
| }
 | |
| 
 | |
| type MonoItems<'tcx> = Vec<Spanned<MonoItem<'tcx>>>;
 | |
| 
 | |
| impl<'tcx> UsageMap<'tcx> {
 | |
|     fn new() -> UsageMap<'tcx> {
 | |
|         UsageMap { used_map: FxHashMap::default(), user_map: FxHashMap::default() }
 | |
|     }
 | |
| 
 | |
|     fn record_used<'a>(
 | |
|         &mut self,
 | |
|         user_item: MonoItem<'tcx>,
 | |
|         used_items: &'a [Spanned<MonoItem<'tcx>>],
 | |
|     ) where
 | |
|         'tcx: 'a,
 | |
|     {
 | |
|         let used_items: Vec<_> = used_items.iter().map(|item| item.node).collect();
 | |
|         for &used_item in used_items.iter() {
 | |
|             self.user_map.entry(used_item).or_default().push(user_item);
 | |
|         }
 | |
| 
 | |
|         assert!(self.used_map.insert(user_item, used_items).is_none());
 | |
|     }
 | |
| 
 | |
|     pub fn get_user_items(&self, item: MonoItem<'tcx>) -> &[MonoItem<'tcx>] {
 | |
|         self.user_map.get(&item).map(|items| items.as_slice()).unwrap_or(&[])
 | |
|     }
 | |
| 
 | |
|     /// Internally iterate over all inlined items used by `item`.
 | |
|     pub fn for_each_inlined_used_item<F>(&self, tcx: TyCtxt<'tcx>, item: MonoItem<'tcx>, mut f: F)
 | |
|     where
 | |
|         F: FnMut(MonoItem<'tcx>),
 | |
|     {
 | |
|         let used_items = self.used_map.get(&item).unwrap();
 | |
|         for used_item in used_items.iter() {
 | |
|             let is_inlined = used_item.instantiation_mode(tcx) == InstantiationMode::LocalCopy;
 | |
|             if is_inlined {
 | |
|                 f(*used_item);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[instrument(skip(tcx, mode), level = "debug")]
 | |
| pub fn collect_crate_mono_items(
 | |
|     tcx: TyCtxt<'_>,
 | |
|     mode: MonoItemCollectionMode,
 | |
| ) -> (FxHashSet<MonoItem<'_>>, UsageMap<'_>) {
 | |
|     let _prof_timer = tcx.prof.generic_activity("monomorphization_collector");
 | |
| 
 | |
|     let roots =
 | |
|         tcx.sess.time("monomorphization_collector_root_collections", || collect_roots(tcx, mode));
 | |
| 
 | |
|     debug!("building mono item graph, beginning at roots");
 | |
| 
 | |
|     let mut visited = MTLock::new(FxHashSet::default());
 | |
|     let mut usage_map = MTLock::new(UsageMap::new());
 | |
|     let recursion_limit = tcx.recursion_limit();
 | |
| 
 | |
|     {
 | |
|         let visited: MTLockRef<'_, _> = &mut visited;
 | |
|         let usage_map: MTLockRef<'_, _> = &mut usage_map;
 | |
| 
 | |
|         tcx.sess.time("monomorphization_collector_graph_walk", || {
 | |
|             par_for_each_in(roots, |root| {
 | |
|                 let mut recursion_depths = DefIdMap::default();
 | |
|                 collect_items_rec(
 | |
|                     tcx,
 | |
|                     dummy_spanned(root),
 | |
|                     visited,
 | |
|                     &mut recursion_depths,
 | |
|                     recursion_limit,
 | |
|                     usage_map,
 | |
|                 );
 | |
|             });
 | |
|         });
 | |
|     }
 | |
| 
 | |
|     (visited.into_inner(), usage_map.into_inner())
 | |
| }
 | |
| 
 | |
| // Find all non-generic items by walking the HIR. These items serve as roots to
 | |
| // start monomorphizing from.
 | |
| #[instrument(skip(tcx, mode), level = "debug")]
 | |
| fn collect_roots(tcx: TyCtxt<'_>, mode: MonoItemCollectionMode) -> Vec<MonoItem<'_>> {
 | |
|     debug!("collecting roots");
 | |
|     let mut roots = Vec::new();
 | |
| 
 | |
|     {
 | |
|         let entry_fn = tcx.entry_fn(());
 | |
| 
 | |
|         debug!("collect_roots: entry_fn = {:?}", entry_fn);
 | |
| 
 | |
|         let mut collector = RootCollector { tcx, mode, entry_fn, output: &mut roots };
 | |
| 
 | |
|         let crate_items = tcx.hir_crate_items(());
 | |
| 
 | |
|         for id in crate_items.items() {
 | |
|             collector.process_item(id);
 | |
|         }
 | |
| 
 | |
|         for id in crate_items.impl_items() {
 | |
|             collector.process_impl_item(id);
 | |
|         }
 | |
| 
 | |
|         collector.push_extra_entry_roots();
 | |
|     }
 | |
| 
 | |
|     // We can only codegen items that are instantiable - items all of
 | |
|     // whose predicates hold. Luckily, items that aren't instantiable
 | |
|     // can't actually be used, so we can just skip codegenning them.
 | |
|     roots
 | |
|         .into_iter()
 | |
|         .filter_map(|Spanned { node: mono_item, .. }| {
 | |
|             mono_item.is_instantiable(tcx).then_some(mono_item)
 | |
|         })
 | |
|         .collect()
 | |
| }
 | |
| 
 | |
| /// Collect all monomorphized items reachable from `starting_point`, and emit a note diagnostic if a
 | |
| /// post-monomorphization error is encountered during a collection step.
 | |
| #[instrument(skip(tcx, visited, recursion_depths, recursion_limit, usage_map), level = "debug")]
 | |
| fn collect_items_rec<'tcx>(
 | |
|     tcx: TyCtxt<'tcx>,
 | |
|     starting_item: Spanned<MonoItem<'tcx>>,
 | |
|     visited: MTLockRef<'_, FxHashSet<MonoItem<'tcx>>>,
 | |
|     recursion_depths: &mut DefIdMap<usize>,
 | |
|     recursion_limit: Limit,
 | |
|     usage_map: MTLockRef<'_, UsageMap<'tcx>>,
 | |
| ) {
 | |
|     if !visited.lock_mut().insert(starting_item.node) {
 | |
|         // We've been here already, no need to search again.
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     let mut used_items = Vec::new();
 | |
|     let recursion_depth_reset;
 | |
| 
 | |
|     // Post-monomorphization errors MVP
 | |
|     //
 | |
|     // We can encounter errors while monomorphizing an item, but we don't have a good way of
 | |
|     // showing a complete stack of spans ultimately leading to collecting the erroneous one yet.
 | |
|     // (It's also currently unclear exactly which diagnostics and information would be interesting
 | |
|     // to report in such cases)
 | |
|     //
 | |
|     // This leads to suboptimal error reporting: a post-monomorphization error (PME) will be
 | |
|     // shown with just a spanned piece of code causing the error, without information on where
 | |
|     // it was called from. This is especially obscure if the erroneous mono item is in a
 | |
|     // dependency. See for example issue #85155, where, before minimization, a PME happened two
 | |
|     // crates downstream from libcore's stdarch, without a way to know which dependency was the
 | |
|     // cause.
 | |
|     //
 | |
|     // If such an error occurs in the current crate, its span will be enough to locate the
 | |
|     // source. If the cause is in another crate, the goal here is to quickly locate which mono
 | |
|     // item in the current crate is ultimately responsible for causing the error.
 | |
|     //
 | |
|     // To give at least _some_ context to the user: while collecting mono items, we check the
 | |
|     // error count. If it has changed, a PME occurred, and we trigger some diagnostics about the
 | |
|     // current step of mono items collection.
 | |
|     //
 | |
|     // FIXME: don't rely on global state, instead bubble up errors. Note: this is very hard to do.
 | |
|     let error_count = tcx.dcx().err_count();
 | |
| 
 | |
|     match starting_item.node {
 | |
|         MonoItem::Static(def_id) => {
 | |
|             let instance = Instance::mono(tcx, def_id);
 | |
| 
 | |
|             // Sanity check whether this ended up being collected accidentally
 | |
|             debug_assert!(should_codegen_locally(tcx, &instance));
 | |
| 
 | |
|             let ty = instance.ty(tcx, ty::ParamEnv::reveal_all());
 | |
|             visit_drop_use(tcx, ty, true, starting_item.span, &mut used_items);
 | |
| 
 | |
|             recursion_depth_reset = None;
 | |
| 
 | |
|             if let Ok(alloc) = tcx.eval_static_initializer(def_id) {
 | |
|                 for &prov in alloc.inner().provenance().ptrs().values() {
 | |
|                     collect_alloc(tcx, prov.alloc_id(), &mut used_items);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if tcx.needs_thread_local_shim(def_id) {
 | |
|                 used_items.push(respan(
 | |
|                     starting_item.span,
 | |
|                     MonoItem::Fn(Instance {
 | |
|                         def: InstanceDef::ThreadLocalShim(def_id),
 | |
|                         args: GenericArgs::empty(),
 | |
|                     }),
 | |
|                 ));
 | |
|             }
 | |
|         }
 | |
|         MonoItem::Fn(instance) => {
 | |
|             // Sanity check whether this ended up being collected accidentally
 | |
|             debug_assert!(should_codegen_locally(tcx, &instance));
 | |
| 
 | |
|             // Keep track of the monomorphization recursion depth
 | |
|             recursion_depth_reset = Some(check_recursion_limit(
 | |
|                 tcx,
 | |
|                 instance,
 | |
|                 starting_item.span,
 | |
|                 recursion_depths,
 | |
|                 recursion_limit,
 | |
|             ));
 | |
|             check_type_length_limit(tcx, instance);
 | |
| 
 | |
|             rustc_data_structures::stack::ensure_sufficient_stack(|| {
 | |
|                 collect_used_items(tcx, instance, &mut used_items);
 | |
|             });
 | |
|         }
 | |
|         MonoItem::GlobalAsm(item_id) => {
 | |
|             recursion_depth_reset = None;
 | |
| 
 | |
|             let item = tcx.hir().item(item_id);
 | |
|             if let hir::ItemKind::GlobalAsm(asm) = item.kind {
 | |
|                 for (op, op_sp) in asm.operands {
 | |
|                     match op {
 | |
|                         hir::InlineAsmOperand::Const { .. } => {
 | |
|                             // Only constants which resolve to a plain integer
 | |
|                             // are supported. Therefore the value should not
 | |
|                             // depend on any other items.
 | |
|                         }
 | |
|                         hir::InlineAsmOperand::SymFn { anon_const } => {
 | |
|                             let fn_ty =
 | |
|                                 tcx.typeck_body(anon_const.body).node_type(anon_const.hir_id);
 | |
|                             visit_fn_use(tcx, fn_ty, false, *op_sp, &mut used_items);
 | |
|                         }
 | |
|                         hir::InlineAsmOperand::SymStatic { path: _, def_id } => {
 | |
|                             let instance = Instance::mono(tcx, *def_id);
 | |
|                             if should_codegen_locally(tcx, &instance) {
 | |
|                                 trace!("collecting static {:?}", def_id);
 | |
|                                 used_items.push(dummy_spanned(MonoItem::Static(*def_id)));
 | |
|                             }
 | |
|                         }
 | |
|                         hir::InlineAsmOperand::In { .. }
 | |
|                         | hir::InlineAsmOperand::Out { .. }
 | |
|                         | hir::InlineAsmOperand::InOut { .. }
 | |
|                         | hir::InlineAsmOperand::SplitInOut { .. } => {
 | |
|                             span_bug!(*op_sp, "invalid operand type for global_asm!")
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             } else {
 | |
|                 span_bug!(item.span, "Mismatch between hir::Item type and MonoItem type")
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Check for PMEs and emit a diagnostic if one happened. To try to show relevant edges of the
 | |
|     // mono item graph.
 | |
|     if tcx.dcx().err_count() > error_count
 | |
|         && starting_item.node.is_generic_fn(tcx)
 | |
|         && starting_item.node.is_user_defined()
 | |
|     {
 | |
|         let formatted_item = with_no_trimmed_paths!(starting_item.node.to_string());
 | |
|         tcx.dcx().emit_note(EncounteredErrorWhileInstantiating {
 | |
|             span: starting_item.span,
 | |
|             formatted_item,
 | |
|         });
 | |
|     }
 | |
|     usage_map.lock_mut().record_used(starting_item.node, &used_items);
 | |
| 
 | |
|     for used_item in used_items {
 | |
|         collect_items_rec(tcx, used_item, visited, recursion_depths, recursion_limit, usage_map);
 | |
|     }
 | |
| 
 | |
|     if let Some((def_id, depth)) = recursion_depth_reset {
 | |
|         recursion_depths.insert(def_id, depth);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// Format instance name that is already known to be too long for rustc.
 | |
| /// Show only the first 2 types if it is longer than 32 characters to avoid blasting
 | |
| /// the user's terminal with thousands of lines of type-name.
 | |
| ///
 | |
| /// If the type name is longer than before+after, it will be written to a file.
 | |
| fn shrunk_instance_name<'tcx>(
 | |
|     tcx: TyCtxt<'tcx>,
 | |
|     instance: &Instance<'tcx>,
 | |
| ) -> (String, Option<PathBuf>) {
 | |
|     let s = instance.to_string();
 | |
| 
 | |
|     // Only use the shrunk version if it's really shorter.
 | |
|     // This also avoids the case where before and after slices overlap.
 | |
|     if s.chars().nth(33).is_some() {
 | |
|         let shrunk = format!("{}", ty::ShortInstance(instance, 4));
 | |
|         if shrunk == s {
 | |
|             return (s, None);
 | |
|         }
 | |
| 
 | |
|         let path = tcx.output_filenames(()).temp_path_ext("long-type.txt", None);
 | |
|         let written_to_path = std::fs::write(&path, s).ok().map(|_| path);
 | |
| 
 | |
|         (shrunk, written_to_path)
 | |
|     } else {
 | |
|         (s, None)
 | |
|     }
 | |
| }
 | |
| 
 | |
| fn check_recursion_limit<'tcx>(
 | |
|     tcx: TyCtxt<'tcx>,
 | |
|     instance: Instance<'tcx>,
 | |
|     span: Span,
 | |
|     recursion_depths: &mut DefIdMap<usize>,
 | |
|     recursion_limit: Limit,
 | |
| ) -> (DefId, usize) {
 | |
|     let def_id = instance.def_id();
 | |
|     let recursion_depth = recursion_depths.get(&def_id).cloned().unwrap_or(0);
 | |
|     debug!(" => recursion depth={}", recursion_depth);
 | |
| 
 | |
|     let adjusted_recursion_depth = if Some(def_id) == tcx.lang_items().drop_in_place_fn() {
 | |
|         // HACK: drop_in_place creates tight monomorphization loops. Give
 | |
|         // it more margin.
 | |
|         recursion_depth / 4
 | |
|     } else {
 | |
|         recursion_depth
 | |
|     };
 | |
| 
 | |
|     // Code that needs to instantiate the same function recursively
 | |
|     // more than the recursion limit is assumed to be causing an
 | |
|     // infinite expansion.
 | |
|     if !recursion_limit.value_within_limit(adjusted_recursion_depth) {
 | |
|         let def_span = tcx.def_span(def_id);
 | |
|         let def_path_str = tcx.def_path_str(def_id);
 | |
|         let (shrunk, written_to_path) = shrunk_instance_name(tcx, &instance);
 | |
|         let mut path = PathBuf::new();
 | |
|         let was_written = if let Some(written_to_path) = written_to_path {
 | |
|             path = written_to_path;
 | |
|             Some(())
 | |
|         } else {
 | |
|             None
 | |
|         };
 | |
|         tcx.dcx().emit_fatal(RecursionLimit {
 | |
|             span,
 | |
|             shrunk,
 | |
|             def_span,
 | |
|             def_path_str,
 | |
|             was_written,
 | |
|             path,
 | |
|         });
 | |
|     }
 | |
| 
 | |
|     recursion_depths.insert(def_id, recursion_depth + 1);
 | |
| 
 | |
|     (def_id, recursion_depth)
 | |
| }
 | |
| 
 | |
| fn check_type_length_limit<'tcx>(tcx: TyCtxt<'tcx>, instance: Instance<'tcx>) {
 | |
|     let type_length = instance
 | |
|         .args
 | |
|         .iter()
 | |
|         .flat_map(|arg| arg.walk())
 | |
|         .filter(|arg| match arg.unpack() {
 | |
|             GenericArgKind::Type(_) | GenericArgKind::Const(_) => true,
 | |
|             GenericArgKind::Lifetime(_) => false,
 | |
|         })
 | |
|         .count();
 | |
|     debug!(" => type length={}", type_length);
 | |
| 
 | |
|     // Rust code can easily create exponentially-long types using only a
 | |
|     // polynomial recursion depth. Even with the default recursion
 | |
|     // depth, you can easily get cases that take >2^60 steps to run,
 | |
|     // which means that rustc basically hangs.
 | |
|     //
 | |
|     // Bail out in these cases to avoid that bad user experience.
 | |
|     if !tcx.type_length_limit().value_within_limit(type_length) {
 | |
|         let (shrunk, written_to_path) = shrunk_instance_name(tcx, &instance);
 | |
|         let span = tcx.def_span(instance.def_id());
 | |
|         let mut path = PathBuf::new();
 | |
|         let was_written = if let Some(path2) = written_to_path {
 | |
|             path = path2;
 | |
|             Some(())
 | |
|         } else {
 | |
|             None
 | |
|         };
 | |
|         tcx.dcx().emit_fatal(TypeLengthLimit { span, shrunk, was_written, path, type_length });
 | |
|     }
 | |
| }
 | |
| 
 | |
| struct MirUsedCollector<'a, 'tcx> {
 | |
|     tcx: TyCtxt<'tcx>,
 | |
|     body: &'a mir::Body<'tcx>,
 | |
|     output: &'a mut MonoItems<'tcx>,
 | |
|     instance: Instance<'tcx>,
 | |
|     /// Spans for move size lints already emitted. Helps avoid duplicate lints.
 | |
|     move_size_spans: Vec<Span>,
 | |
|     visiting_call_terminator: bool,
 | |
|     /// Set of functions for which it is OK to move large data into.
 | |
|     skip_move_check_fns: Option<Vec<DefId>>,
 | |
| }
 | |
| 
 | |
| impl<'a, 'tcx> MirUsedCollector<'a, 'tcx> {
 | |
|     pub fn monomorphize<T>(&self, value: T) -> T
 | |
|     where
 | |
|         T: TypeFoldable<TyCtxt<'tcx>>,
 | |
|     {
 | |
|         debug!("monomorphize: self.instance={:?}", self.instance);
 | |
|         self.instance.instantiate_mir_and_normalize_erasing_regions(
 | |
|             self.tcx,
 | |
|             ty::ParamEnv::reveal_all(),
 | |
|             ty::EarlyBinder::bind(value),
 | |
|         )
 | |
|     }
 | |
| 
 | |
|     fn check_operand_move_size(&mut self, operand: &mir::Operand<'tcx>, location: Location) {
 | |
|         let limit = self.tcx.move_size_limit().0;
 | |
|         if limit == 0 {
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         // This function is called by visit_operand() which visits _all_
 | |
|         // operands, including TerminatorKind::Call operands. But if
 | |
|         // check_fn_args_move_size() has been called, the operands have already
 | |
|         // been visited. Do not visit them again.
 | |
|         if self.visiting_call_terminator {
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         let limit = Size::from_bytes(limit);
 | |
|         let ty = operand.ty(self.body, self.tcx);
 | |
|         let ty = self.monomorphize(ty);
 | |
|         let Ok(layout) = self.tcx.layout_of(ty::ParamEnv::reveal_all().and(ty)) else { return };
 | |
|         if layout.size <= limit {
 | |
|             return;
 | |
|         }
 | |
|         debug!(?layout);
 | |
|         let source_info = self.body.source_info(location);
 | |
|         debug!(?source_info);
 | |
|         for span in &self.move_size_spans {
 | |
|             if span.overlaps(source_info.span) {
 | |
|                 return;
 | |
|             }
 | |
|         }
 | |
|         let lint_root = source_info.scope.lint_root(&self.body.source_scopes);
 | |
|         debug!(?lint_root);
 | |
|         let Some(lint_root) = lint_root else {
 | |
|             // This happens when the issue is in a function from a foreign crate that
 | |
|             // we monomorphized in the current crate. We can't get a `HirId` for things
 | |
|             // in other crates.
 | |
|             // FIXME: Find out where to report the lint on. Maybe simply crate-level lint root
 | |
|             // but correct span? This would make the lint at least accept crate-level lint attributes.
 | |
|             return;
 | |
|         };
 | |
|         self.tcx.emit_spanned_lint(
 | |
|             LARGE_ASSIGNMENTS,
 | |
|             lint_root,
 | |
|             source_info.span,
 | |
|             LargeAssignmentsLint {
 | |
|                 span: source_info.span,
 | |
|                 size: layout.size.bytes(),
 | |
|                 limit: limit.bytes(),
 | |
|             },
 | |
|         );
 | |
|         self.move_size_spans.push(source_info.span);
 | |
|     }
 | |
| 
 | |
|     fn check_fn_args_move_size(
 | |
|         &mut self,
 | |
|         callee_ty: Ty<'tcx>,
 | |
|         args: &[mir::Operand<'tcx>],
 | |
|         location: Location,
 | |
|     ) {
 | |
|         let limit = self.tcx.move_size_limit();
 | |
|         if limit.0 == 0 {
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         if args.is_empty() {
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         // Allow large moves into container types that themselves are cheap to move
 | |
|         let ty::FnDef(def_id, _) = *callee_ty.kind() else {
 | |
|             return;
 | |
|         };
 | |
|         if self
 | |
|             .skip_move_check_fns
 | |
|             .get_or_insert_with(|| build_skip_move_check_fns(self.tcx))
 | |
|             .contains(&def_id)
 | |
|         {
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         for arg in args {
 | |
|             self.check_operand_move_size(arg, location);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<'a, 'tcx> MirVisitor<'tcx> for MirUsedCollector<'a, 'tcx> {
 | |
|     fn visit_rvalue(&mut self, rvalue: &mir::Rvalue<'tcx>, location: Location) {
 | |
|         debug!("visiting rvalue {:?}", *rvalue);
 | |
| 
 | |
|         let span = self.body.source_info(location).span;
 | |
| 
 | |
|         match *rvalue {
 | |
|             // When doing an cast from a regular pointer to a fat pointer, we
 | |
|             // have to instantiate all methods of the trait being cast to, so we
 | |
|             // can build the appropriate vtable.
 | |
|             mir::Rvalue::Cast(
 | |
|                 mir::CastKind::PointerCoercion(PointerCoercion::Unsize),
 | |
|                 ref operand,
 | |
|                 target_ty,
 | |
|             )
 | |
|             | mir::Rvalue::Cast(mir::CastKind::DynStar, ref operand, target_ty) => {
 | |
|                 let target_ty = self.monomorphize(target_ty);
 | |
|                 let source_ty = operand.ty(self.body, self.tcx);
 | |
|                 let source_ty = self.monomorphize(source_ty);
 | |
|                 let (source_ty, target_ty) =
 | |
|                     find_vtable_types_for_unsizing(self.tcx.at(span), source_ty, target_ty);
 | |
|                 // This could also be a different Unsize instruction, like
 | |
|                 // from a fixed sized array to a slice. But we are only
 | |
|                 // interested in things that produce a vtable.
 | |
|                 if (target_ty.is_trait() && !source_ty.is_trait())
 | |
|                     || (target_ty.is_dyn_star() && !source_ty.is_dyn_star())
 | |
|                 {
 | |
|                     create_mono_items_for_vtable_methods(
 | |
|                         self.tcx,
 | |
|                         target_ty,
 | |
|                         source_ty,
 | |
|                         span,
 | |
|                         self.output,
 | |
|                     );
 | |
|                 }
 | |
|             }
 | |
|             mir::Rvalue::Cast(
 | |
|                 mir::CastKind::PointerCoercion(PointerCoercion::ReifyFnPointer),
 | |
|                 ref operand,
 | |
|                 _,
 | |
|             ) => {
 | |
|                 let fn_ty = operand.ty(self.body, self.tcx);
 | |
|                 let fn_ty = self.monomorphize(fn_ty);
 | |
|                 visit_fn_use(self.tcx, fn_ty, false, span, self.output);
 | |
|             }
 | |
|             mir::Rvalue::Cast(
 | |
|                 mir::CastKind::PointerCoercion(PointerCoercion::ClosureFnPointer(_)),
 | |
|                 ref operand,
 | |
|                 _,
 | |
|             ) => {
 | |
|                 let source_ty = operand.ty(self.body, self.tcx);
 | |
|                 let source_ty = self.monomorphize(source_ty);
 | |
|                 match *source_ty.kind() {
 | |
|                     ty::Closure(def_id, args) => {
 | |
|                         let instance = Instance::resolve_closure(
 | |
|                             self.tcx,
 | |
|                             def_id,
 | |
|                             args,
 | |
|                             ty::ClosureKind::FnOnce,
 | |
|                         )
 | |
|                         .expect("failed to normalize and resolve closure during codegen");
 | |
|                         if should_codegen_locally(self.tcx, &instance) {
 | |
|                             self.output.push(create_fn_mono_item(self.tcx, instance, span));
 | |
|                         }
 | |
|                     }
 | |
|                     _ => bug!(),
 | |
|                 }
 | |
|             }
 | |
|             mir::Rvalue::ThreadLocalRef(def_id) => {
 | |
|                 assert!(self.tcx.is_thread_local_static(def_id));
 | |
|                 let instance = Instance::mono(self.tcx, def_id);
 | |
|                 if should_codegen_locally(self.tcx, &instance) {
 | |
|                     trace!("collecting thread-local static {:?}", def_id);
 | |
|                     self.output.push(respan(span, MonoItem::Static(def_id)));
 | |
|                 }
 | |
|             }
 | |
|             _ => { /* not interesting */ }
 | |
|         }
 | |
| 
 | |
|         self.super_rvalue(rvalue, location);
 | |
|     }
 | |
| 
 | |
|     /// This does not walk the constant, as it has been handled entirely here and trying
 | |
|     /// to walk it would attempt to evaluate the `ty::Const` inside, which doesn't necessarily
 | |
|     /// work, as some constants cannot be represented in the type system.
 | |
|     #[instrument(skip(self), level = "debug")]
 | |
|     fn visit_constant(&mut self, constant: &mir::ConstOperand<'tcx>, location: Location) {
 | |
|         let const_ = self.monomorphize(constant.const_);
 | |
|         let param_env = ty::ParamEnv::reveal_all();
 | |
|         let val = match const_.eval(self.tcx, param_env, None) {
 | |
|             Ok(v) => v,
 | |
|             Err(ErrorHandled::Reported(..)) => return,
 | |
|             Err(ErrorHandled::TooGeneric(..)) => span_bug!(
 | |
|                 self.body.source_info(location).span,
 | |
|                 "collection encountered polymorphic constant: {:?}",
 | |
|                 const_
 | |
|             ),
 | |
|         };
 | |
|         collect_const_value(self.tcx, val, self.output);
 | |
|         MirVisitor::visit_ty(self, const_.ty(), TyContext::Location(location));
 | |
|     }
 | |
| 
 | |
|     fn visit_terminator(&mut self, terminator: &mir::Terminator<'tcx>, location: Location) {
 | |
|         debug!("visiting terminator {:?} @ {:?}", terminator, location);
 | |
|         let source = self.body.source_info(location).span;
 | |
| 
 | |
|         let tcx = self.tcx;
 | |
|         let push_mono_lang_item = |this: &mut Self, lang_item: LangItem| {
 | |
|             let instance = Instance::mono(tcx, tcx.require_lang_item(lang_item, Some(source)));
 | |
|             if should_codegen_locally(tcx, &instance) {
 | |
|                 this.output.push(create_fn_mono_item(tcx, instance, source));
 | |
|             }
 | |
|         };
 | |
| 
 | |
|         match terminator.kind {
 | |
|             mir::TerminatorKind::Call { ref func, ref args, .. } => {
 | |
|                 let callee_ty = func.ty(self.body, tcx);
 | |
|                 let callee_ty = self.monomorphize(callee_ty);
 | |
|                 self.check_fn_args_move_size(callee_ty, args, location);
 | |
|                 visit_fn_use(self.tcx, callee_ty, true, source, self.output)
 | |
|             }
 | |
|             mir::TerminatorKind::Drop { ref place, .. } => {
 | |
|                 let ty = place.ty(self.body, self.tcx).ty;
 | |
|                 let ty = self.monomorphize(ty);
 | |
|                 visit_drop_use(self.tcx, ty, true, source, self.output);
 | |
|             }
 | |
|             mir::TerminatorKind::InlineAsm { ref operands, .. } => {
 | |
|                 for op in operands {
 | |
|                     match *op {
 | |
|                         mir::InlineAsmOperand::SymFn { ref value } => {
 | |
|                             let fn_ty = self.monomorphize(value.const_.ty());
 | |
|                             visit_fn_use(self.tcx, fn_ty, false, source, self.output);
 | |
|                         }
 | |
|                         mir::InlineAsmOperand::SymStatic { def_id } => {
 | |
|                             let instance = Instance::mono(self.tcx, def_id);
 | |
|                             if should_codegen_locally(self.tcx, &instance) {
 | |
|                                 trace!("collecting asm sym static {:?}", def_id);
 | |
|                                 self.output.push(respan(source, MonoItem::Static(def_id)));
 | |
|                             }
 | |
|                         }
 | |
|                         _ => {}
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             mir::TerminatorKind::Assert { ref msg, .. } => {
 | |
|                 let lang_item = match &**msg {
 | |
|                     mir::AssertKind::BoundsCheck { .. } => LangItem::PanicBoundsCheck,
 | |
|                     mir::AssertKind::MisalignedPointerDereference { .. } => {
 | |
|                         LangItem::PanicMisalignedPointerDereference
 | |
|                     }
 | |
|                     _ => LangItem::Panic,
 | |
|                 };
 | |
|                 push_mono_lang_item(self, lang_item);
 | |
|             }
 | |
|             mir::TerminatorKind::UnwindTerminate(reason) => {
 | |
|                 push_mono_lang_item(self, reason.lang_item());
 | |
|             }
 | |
|             mir::TerminatorKind::Goto { .. }
 | |
|             | mir::TerminatorKind::SwitchInt { .. }
 | |
|             | mir::TerminatorKind::UnwindResume
 | |
|             | mir::TerminatorKind::Return
 | |
|             | mir::TerminatorKind::Unreachable => {}
 | |
|             mir::TerminatorKind::CoroutineDrop
 | |
|             | mir::TerminatorKind::Yield { .. }
 | |
|             | mir::TerminatorKind::FalseEdge { .. }
 | |
|             | mir::TerminatorKind::FalseUnwind { .. } => bug!(),
 | |
|         }
 | |
| 
 | |
|         if let Some(mir::UnwindAction::Terminate(reason)) = terminator.unwind() {
 | |
|             push_mono_lang_item(self, reason.lang_item());
 | |
|         }
 | |
| 
 | |
|         self.visiting_call_terminator = matches!(terminator.kind, mir::TerminatorKind::Call { .. });
 | |
|         self.super_terminator(terminator, location);
 | |
|         self.visiting_call_terminator = false;
 | |
|     }
 | |
| 
 | |
|     fn visit_operand(&mut self, operand: &mir::Operand<'tcx>, location: Location) {
 | |
|         self.super_operand(operand, location);
 | |
|         self.check_operand_move_size(operand, location);
 | |
|     }
 | |
| }
 | |
| 
 | |
| fn visit_drop_use<'tcx>(
 | |
|     tcx: TyCtxt<'tcx>,
 | |
|     ty: Ty<'tcx>,
 | |
|     is_direct_call: bool,
 | |
|     source: Span,
 | |
|     output: &mut MonoItems<'tcx>,
 | |
| ) {
 | |
|     let instance = Instance::resolve_drop_in_place(tcx, ty);
 | |
|     visit_instance_use(tcx, instance, is_direct_call, source, output);
 | |
| }
 | |
| 
 | |
| fn visit_fn_use<'tcx>(
 | |
|     tcx: TyCtxt<'tcx>,
 | |
|     ty: Ty<'tcx>,
 | |
|     is_direct_call: bool,
 | |
|     source: Span,
 | |
|     output: &mut MonoItems<'tcx>,
 | |
| ) {
 | |
|     if let ty::FnDef(def_id, args) = *ty.kind() {
 | |
|         let instance = if is_direct_call {
 | |
|             ty::Instance::expect_resolve(tcx, ty::ParamEnv::reveal_all(), def_id, args)
 | |
|         } else {
 | |
|             match ty::Instance::resolve_for_fn_ptr(tcx, ty::ParamEnv::reveal_all(), def_id, args) {
 | |
|                 Some(instance) => instance,
 | |
|                 _ => bug!("failed to resolve instance for {ty}"),
 | |
|             }
 | |
|         };
 | |
|         visit_instance_use(tcx, instance, is_direct_call, source, output);
 | |
|     }
 | |
| }
 | |
| 
 | |
| fn visit_instance_use<'tcx>(
 | |
|     tcx: TyCtxt<'tcx>,
 | |
|     instance: ty::Instance<'tcx>,
 | |
|     is_direct_call: bool,
 | |
|     source: Span,
 | |
|     output: &mut MonoItems<'tcx>,
 | |
| ) {
 | |
|     debug!("visit_item_use({:?}, is_direct_call={:?})", instance, is_direct_call);
 | |
|     if !should_codegen_locally(tcx, &instance) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // The intrinsics assert_inhabited, assert_zero_valid, and assert_mem_uninitialized_valid will
 | |
|     // be lowered in codegen to nothing or a call to panic_nounwind. So if we encounter any
 | |
|     // of those intrinsics, we need to include a mono item for panic_nounwind, else we may try to
 | |
|     // codegen a call to that function without generating code for the function itself.
 | |
|     if let ty::InstanceDef::Intrinsic(def_id) = instance.def {
 | |
|         let name = tcx.item_name(def_id);
 | |
|         if let Some(_requirement) = ValidityRequirement::from_intrinsic(name) {
 | |
|             let def_id = tcx.lang_items().get(LangItem::PanicNounwind).unwrap();
 | |
|             let panic_instance = Instance::mono(tcx, def_id);
 | |
|             if should_codegen_locally(tcx, &panic_instance) {
 | |
|                 output.push(create_fn_mono_item(tcx, panic_instance, source));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     match instance.def {
 | |
|         ty::InstanceDef::Virtual(..) | ty::InstanceDef::Intrinsic(_) => {
 | |
|             if !is_direct_call {
 | |
|                 bug!("{:?} being reified", instance);
 | |
|             }
 | |
|         }
 | |
|         ty::InstanceDef::ThreadLocalShim(..) => {
 | |
|             bug!("{:?} being reified", instance);
 | |
|         }
 | |
|         ty::InstanceDef::DropGlue(_, None) => {
 | |
|             // Don't need to emit noop drop glue if we are calling directly.
 | |
|             if !is_direct_call {
 | |
|                 output.push(create_fn_mono_item(tcx, instance, source));
 | |
|             }
 | |
|         }
 | |
|         ty::InstanceDef::DropGlue(_, Some(_))
 | |
|         | ty::InstanceDef::VTableShim(..)
 | |
|         | ty::InstanceDef::ReifyShim(..)
 | |
|         | ty::InstanceDef::ClosureOnceShim { .. }
 | |
|         | ty::InstanceDef::Item(..)
 | |
|         | ty::InstanceDef::FnPtrShim(..)
 | |
|         | ty::InstanceDef::CloneShim(..)
 | |
|         | ty::InstanceDef::FnPtrAddrShim(..) => {
 | |
|             output.push(create_fn_mono_item(tcx, instance, source));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// Returns `true` if we should codegen an instance in the local crate, or returns `false` if we
 | |
| /// can just link to the upstream crate and therefore don't need a mono item.
 | |
| fn should_codegen_locally<'tcx>(tcx: TyCtxt<'tcx>, instance: &Instance<'tcx>) -> bool {
 | |
|     let Some(def_id) = instance.def.def_id_if_not_guaranteed_local_codegen() else {
 | |
|         return true;
 | |
|     };
 | |
| 
 | |
|     if tcx.is_foreign_item(def_id) {
 | |
|         // Foreign items are always linked against, there's no way of instantiating them.
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if def_id.is_local() {
 | |
|         // Local items cannot be referred to locally without monomorphizing them locally.
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     if tcx.is_reachable_non_generic(def_id)
 | |
|         || instance.polymorphize(tcx).upstream_monomorphization(tcx).is_some()
 | |
|     {
 | |
|         // We can link to the item in question, no instance needed in this crate.
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if let DefKind::Static(_) = tcx.def_kind(def_id) {
 | |
|         // We cannot monomorphize statics from upstream crates.
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if !tcx.is_mir_available(def_id) {
 | |
|         tcx.dcx().emit_fatal(NoOptimizedMir {
 | |
|             span: tcx.def_span(def_id),
 | |
|             crate_name: tcx.crate_name(def_id.krate),
 | |
|         });
 | |
|     }
 | |
| 
 | |
|     true
 | |
| }
 | |
| 
 | |
| /// For a given pair of source and target type that occur in an unsizing coercion,
 | |
| /// this function finds the pair of types that determines the vtable linking
 | |
| /// them.
 | |
| ///
 | |
| /// For example, the source type might be `&SomeStruct` and the target type
 | |
| /// might be `&dyn SomeTrait` in a cast like:
 | |
| ///
 | |
| /// ```rust,ignore (not real code)
 | |
| /// let src: &SomeStruct = ...;
 | |
| /// let target = src as &dyn SomeTrait;
 | |
| /// ```
 | |
| ///
 | |
| /// Then the output of this function would be (SomeStruct, SomeTrait) since for
 | |
| /// constructing the `target` fat-pointer we need the vtable for that pair.
 | |
| ///
 | |
| /// Things can get more complicated though because there's also the case where
 | |
| /// the unsized type occurs as a field:
 | |
| ///
 | |
| /// ```rust
 | |
| /// struct ComplexStruct<T: ?Sized> {
 | |
| ///    a: u32,
 | |
| ///    b: f64,
 | |
| ///    c: T
 | |
| /// }
 | |
| /// ```
 | |
| ///
 | |
| /// In this case, if `T` is sized, `&ComplexStruct<T>` is a thin pointer. If `T`
 | |
| /// is unsized, `&SomeStruct` is a fat pointer, and the vtable it points to is
 | |
| /// for the pair of `T` (which is a trait) and the concrete type that `T` was
 | |
| /// originally coerced from:
 | |
| ///
 | |
| /// ```rust,ignore (not real code)
 | |
| /// let src: &ComplexStruct<SomeStruct> = ...;
 | |
| /// let target = src as &ComplexStruct<dyn SomeTrait>;
 | |
| /// ```
 | |
| ///
 | |
| /// Again, we want this `find_vtable_types_for_unsizing()` to provide the pair
 | |
| /// `(SomeStruct, SomeTrait)`.
 | |
| ///
 | |
| /// Finally, there is also the case of custom unsizing coercions, e.g., for
 | |
| /// smart pointers such as `Rc` and `Arc`.
 | |
| fn find_vtable_types_for_unsizing<'tcx>(
 | |
|     tcx: TyCtxtAt<'tcx>,
 | |
|     source_ty: Ty<'tcx>,
 | |
|     target_ty: Ty<'tcx>,
 | |
| ) -> (Ty<'tcx>, Ty<'tcx>) {
 | |
|     let ptr_vtable = |inner_source: Ty<'tcx>, inner_target: Ty<'tcx>| {
 | |
|         let param_env = ty::ParamEnv::reveal_all();
 | |
|         let type_has_metadata = |ty: Ty<'tcx>| -> bool {
 | |
|             if ty.is_sized(tcx.tcx, param_env) {
 | |
|                 return false;
 | |
|             }
 | |
|             let tail = tcx.struct_tail_erasing_lifetimes(ty, param_env);
 | |
|             match tail.kind() {
 | |
|                 ty::Foreign(..) => false,
 | |
|                 ty::Str | ty::Slice(..) | ty::Dynamic(..) => true,
 | |
|                 _ => bug!("unexpected unsized tail: {:?}", tail),
 | |
|             }
 | |
|         };
 | |
|         if type_has_metadata(inner_source) {
 | |
|             (inner_source, inner_target)
 | |
|         } else {
 | |
|             tcx.struct_lockstep_tails_erasing_lifetimes(inner_source, inner_target, param_env)
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     match (&source_ty.kind(), &target_ty.kind()) {
 | |
|         (&ty::Ref(_, a, _), &ty::Ref(_, b, _) | &ty::RawPtr(ty::TypeAndMut { ty: b, .. }))
 | |
|         | (&ty::RawPtr(ty::TypeAndMut { ty: a, .. }), &ty::RawPtr(ty::TypeAndMut { ty: b, .. })) => {
 | |
|             ptr_vtable(*a, *b)
 | |
|         }
 | |
|         (&ty::Adt(def_a, _), &ty::Adt(def_b, _)) if def_a.is_box() && def_b.is_box() => {
 | |
|             ptr_vtable(source_ty.boxed_ty(), target_ty.boxed_ty())
 | |
|         }
 | |
| 
 | |
|         // T as dyn* Trait
 | |
|         (_, &ty::Dynamic(_, _, ty::DynStar)) => ptr_vtable(source_ty, target_ty),
 | |
| 
 | |
|         (&ty::Adt(source_adt_def, source_args), &ty::Adt(target_adt_def, target_args)) => {
 | |
|             assert_eq!(source_adt_def, target_adt_def);
 | |
| 
 | |
|             let CustomCoerceUnsized::Struct(coerce_index) =
 | |
|                 crate::custom_coerce_unsize_info(tcx, source_ty, target_ty);
 | |
| 
 | |
|             let source_fields = &source_adt_def.non_enum_variant().fields;
 | |
|             let target_fields = &target_adt_def.non_enum_variant().fields;
 | |
| 
 | |
|             assert!(
 | |
|                 coerce_index.index() < source_fields.len()
 | |
|                     && source_fields.len() == target_fields.len()
 | |
|             );
 | |
| 
 | |
|             find_vtable_types_for_unsizing(
 | |
|                 tcx,
 | |
|                 source_fields[coerce_index].ty(*tcx, source_args),
 | |
|                 target_fields[coerce_index].ty(*tcx, target_args),
 | |
|             )
 | |
|         }
 | |
|         _ => bug!(
 | |
|             "find_vtable_types_for_unsizing: invalid coercion {:?} -> {:?}",
 | |
|             source_ty,
 | |
|             target_ty
 | |
|         ),
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[instrument(skip(tcx), level = "debug", ret)]
 | |
| fn create_fn_mono_item<'tcx>(
 | |
|     tcx: TyCtxt<'tcx>,
 | |
|     instance: Instance<'tcx>,
 | |
|     source: Span,
 | |
| ) -> Spanned<MonoItem<'tcx>> {
 | |
|     let def_id = instance.def_id();
 | |
|     if tcx.sess.opts.unstable_opts.profile_closures
 | |
|         && def_id.is_local()
 | |
|         && tcx.is_closure_or_coroutine(def_id)
 | |
|     {
 | |
|         crate::util::dump_closure_profile(tcx, instance);
 | |
|     }
 | |
| 
 | |
|     respan(source, MonoItem::Fn(instance.polymorphize(tcx)))
 | |
| }
 | |
| 
 | |
| /// Creates a `MonoItem` for each method that is referenced by the vtable for
 | |
| /// the given trait/impl pair.
 | |
| fn create_mono_items_for_vtable_methods<'tcx>(
 | |
|     tcx: TyCtxt<'tcx>,
 | |
|     trait_ty: Ty<'tcx>,
 | |
|     impl_ty: Ty<'tcx>,
 | |
|     source: Span,
 | |
|     output: &mut MonoItems<'tcx>,
 | |
| ) {
 | |
|     assert!(!trait_ty.has_escaping_bound_vars() && !impl_ty.has_escaping_bound_vars());
 | |
| 
 | |
|     if let ty::Dynamic(trait_ty, ..) = trait_ty.kind() {
 | |
|         if let Some(principal) = trait_ty.principal() {
 | |
|             let poly_trait_ref = principal.with_self_ty(tcx, impl_ty);
 | |
|             assert!(!poly_trait_ref.has_escaping_bound_vars());
 | |
| 
 | |
|             // Walk all methods of the trait, including those of its supertraits
 | |
|             let entries = tcx.vtable_entries(poly_trait_ref);
 | |
|             let methods = entries
 | |
|                 .iter()
 | |
|                 .filter_map(|entry| match entry {
 | |
|                     VtblEntry::MetadataDropInPlace
 | |
|                     | VtblEntry::MetadataSize
 | |
|                     | VtblEntry::MetadataAlign
 | |
|                     | VtblEntry::Vacant => None,
 | |
|                     VtblEntry::TraitVPtr(_) => {
 | |
|                         // all super trait items already covered, so skip them.
 | |
|                         None
 | |
|                     }
 | |
|                     VtblEntry::Method(instance) => {
 | |
|                         Some(*instance).filter(|instance| should_codegen_locally(tcx, instance))
 | |
|                     }
 | |
|                 })
 | |
|                 .map(|item| create_fn_mono_item(tcx, item, source));
 | |
|             output.extend(methods);
 | |
|         }
 | |
| 
 | |
|         // Also add the destructor.
 | |
|         visit_drop_use(tcx, impl_ty, false, source, output);
 | |
|     }
 | |
| }
 | |
| 
 | |
| //=-----------------------------------------------------------------------------
 | |
| // Root Collection
 | |
| //=-----------------------------------------------------------------------------
 | |
| 
 | |
| struct RootCollector<'a, 'tcx> {
 | |
|     tcx: TyCtxt<'tcx>,
 | |
|     mode: MonoItemCollectionMode,
 | |
|     output: &'a mut MonoItems<'tcx>,
 | |
|     entry_fn: Option<(DefId, EntryFnType)>,
 | |
| }
 | |
| 
 | |
| impl<'v> RootCollector<'_, 'v> {
 | |
|     fn process_item(&mut self, id: hir::ItemId) {
 | |
|         match self.tcx.def_kind(id.owner_id) {
 | |
|             DefKind::Enum | DefKind::Struct | DefKind::Union => {
 | |
|                 if self.mode == MonoItemCollectionMode::Eager
 | |
|                     && self.tcx.generics_of(id.owner_id).count() == 0
 | |
|                 {
 | |
|                     debug!("RootCollector: ADT drop-glue for `{id:?}`",);
 | |
| 
 | |
|                     let ty = self.tcx.type_of(id.owner_id.to_def_id()).no_bound_vars().unwrap();
 | |
|                     visit_drop_use(self.tcx, ty, true, DUMMY_SP, self.output);
 | |
|                 }
 | |
|             }
 | |
|             DefKind::GlobalAsm => {
 | |
|                 debug!(
 | |
|                     "RootCollector: ItemKind::GlobalAsm({})",
 | |
|                     self.tcx.def_path_str(id.owner_id)
 | |
|                 );
 | |
|                 self.output.push(dummy_spanned(MonoItem::GlobalAsm(id)));
 | |
|             }
 | |
|             DefKind::Static(..) => {
 | |
|                 let def_id = id.owner_id.to_def_id();
 | |
|                 debug!("RootCollector: ItemKind::Static({})", self.tcx.def_path_str(def_id));
 | |
|                 self.output.push(dummy_spanned(MonoItem::Static(def_id)));
 | |
|             }
 | |
|             DefKind::Const => {
 | |
|                 // const items only generate mono items if they are
 | |
|                 // actually used somewhere. Just declaring them is insufficient.
 | |
| 
 | |
|                 // but even just declaring them must collect the items they refer to
 | |
|                 if let Ok(val) = self.tcx.const_eval_poly(id.owner_id.to_def_id()) {
 | |
|                     collect_const_value(self.tcx, val, self.output);
 | |
|                 }
 | |
|             }
 | |
|             DefKind::Impl { .. } => {
 | |
|                 if self.mode == MonoItemCollectionMode::Eager {
 | |
|                     create_mono_items_for_default_impls(self.tcx, id, self.output);
 | |
|                 }
 | |
|             }
 | |
|             DefKind::Fn => {
 | |
|                 self.push_if_root(id.owner_id.def_id);
 | |
|             }
 | |
|             _ => {}
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fn process_impl_item(&mut self, id: hir::ImplItemId) {
 | |
|         if matches!(self.tcx.def_kind(id.owner_id), DefKind::AssocFn) {
 | |
|             self.push_if_root(id.owner_id.def_id);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fn is_root(&self, def_id: LocalDefId) -> bool {
 | |
|         !self.tcx.generics_of(def_id).requires_monomorphization(self.tcx)
 | |
|             && match self.mode {
 | |
|                 MonoItemCollectionMode::Eager => true,
 | |
|                 MonoItemCollectionMode::Lazy => {
 | |
|                     self.entry_fn.and_then(|(id, _)| id.as_local()) == Some(def_id)
 | |
|                         || self.tcx.is_reachable_non_generic(def_id)
 | |
|                         || self
 | |
|                             .tcx
 | |
|                             .codegen_fn_attrs(def_id)
 | |
|                             .flags
 | |
|                             .contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL)
 | |
|                 }
 | |
|             }
 | |
|     }
 | |
| 
 | |
|     /// If `def_id` represents a root, pushes it onto the list of
 | |
|     /// outputs. (Note that all roots must be monomorphic.)
 | |
|     #[instrument(skip(self), level = "debug")]
 | |
|     fn push_if_root(&mut self, def_id: LocalDefId) {
 | |
|         if self.is_root(def_id) {
 | |
|             debug!("found root");
 | |
| 
 | |
|             let instance = Instance::mono(self.tcx, def_id.to_def_id());
 | |
|             self.output.push(create_fn_mono_item(self.tcx, instance, DUMMY_SP));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// As a special case, when/if we encounter the
 | |
|     /// `main()` function, we also have to generate a
 | |
|     /// monomorphized copy of the start lang item based on
 | |
|     /// the return type of `main`. This is not needed when
 | |
|     /// the user writes their own `start` manually.
 | |
|     fn push_extra_entry_roots(&mut self) {
 | |
|         let Some((main_def_id, EntryFnType::Main { .. })) = self.entry_fn else {
 | |
|             return;
 | |
|         };
 | |
| 
 | |
|         let start_def_id = self.tcx.require_lang_item(LangItem::Start, None);
 | |
|         let main_ret_ty = self.tcx.fn_sig(main_def_id).no_bound_vars().unwrap().output();
 | |
| 
 | |
|         // Given that `main()` has no arguments,
 | |
|         // then its return type cannot have
 | |
|         // late-bound regions, since late-bound
 | |
|         // regions must appear in the argument
 | |
|         // listing.
 | |
|         let main_ret_ty = self.tcx.normalize_erasing_regions(
 | |
|             ty::ParamEnv::reveal_all(),
 | |
|             main_ret_ty.no_bound_vars().unwrap(),
 | |
|         );
 | |
| 
 | |
|         let start_instance = Instance::resolve(
 | |
|             self.tcx,
 | |
|             ty::ParamEnv::reveal_all(),
 | |
|             start_def_id,
 | |
|             self.tcx.mk_args(&[main_ret_ty.into()]),
 | |
|         )
 | |
|         .unwrap()
 | |
|         .unwrap();
 | |
| 
 | |
|         self.output.push(create_fn_mono_item(self.tcx, start_instance, DUMMY_SP));
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[instrument(level = "debug", skip(tcx, output))]
 | |
| fn create_mono_items_for_default_impls<'tcx>(
 | |
|     tcx: TyCtxt<'tcx>,
 | |
|     item: hir::ItemId,
 | |
|     output: &mut MonoItems<'tcx>,
 | |
| ) {
 | |
|     let polarity = tcx.impl_polarity(item.owner_id);
 | |
|     if matches!(polarity, ty::ImplPolarity::Negative) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if tcx.generics_of(item.owner_id).own_requires_monomorphization() {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     let Some(trait_ref) = tcx.impl_trait_ref(item.owner_id) else {
 | |
|         return;
 | |
|     };
 | |
| 
 | |
|     // Lifetimes never affect trait selection, so we are allowed to eagerly
 | |
|     // instantiate an instance of an impl method if the impl (and method,
 | |
|     // which we check below) is only parameterized over lifetime. In that case,
 | |
|     // we use the ReErased, which has no lifetime information associated with
 | |
|     // it, to validate whether or not the impl is legal to instantiate at all.
 | |
|     let only_region_params = |param: &ty::GenericParamDef, _: &_| match param.kind {
 | |
|         GenericParamDefKind::Lifetime => tcx.lifetimes.re_erased.into(),
 | |
|         GenericParamDefKind::Const { is_host_effect: true, .. } => tcx.consts.true_.into(),
 | |
|         GenericParamDefKind::Type { .. } | GenericParamDefKind::Const { .. } => {
 | |
|             unreachable!(
 | |
|                 "`own_requires_monomorphization` check means that \
 | |
|                 we should have no type/const params"
 | |
|             )
 | |
|         }
 | |
|     };
 | |
|     let impl_args = GenericArgs::for_item(tcx, item.owner_id.to_def_id(), only_region_params);
 | |
|     let trait_ref = trait_ref.instantiate(tcx, impl_args);
 | |
| 
 | |
|     // Unlike 'lazy' monomorphization that begins by collecting items transitively
 | |
|     // called by `main` or other global items, when eagerly monomorphizing impl
 | |
|     // items, we never actually check that the predicates of this impl are satisfied
 | |
|     // in a empty reveal-all param env (i.e. with no assumptions).
 | |
|     //
 | |
|     // Even though this impl has no type or const substitutions, because we don't
 | |
|     // consider higher-ranked predicates such as `for<'a> &'a mut [u8]: Copy` to
 | |
|     // be trivially false. We must now check that the impl has no impossible-to-satisfy
 | |
|     // predicates.
 | |
|     if tcx.subst_and_check_impossible_predicates((item.owner_id.to_def_id(), impl_args)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     let param_env = ty::ParamEnv::reveal_all();
 | |
|     let trait_ref = tcx.normalize_erasing_regions(param_env, trait_ref);
 | |
|     let overridden_methods = tcx.impl_item_implementor_ids(item.owner_id);
 | |
|     for method in tcx.provided_trait_methods(trait_ref.def_id) {
 | |
|         if overridden_methods.contains_key(&method.def_id) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         if tcx.generics_of(method.def_id).own_requires_monomorphization() {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         // As mentioned above, the method is legal to eagerly instantiate if it
 | |
|         // only has lifetime substitutions. This is validated by
 | |
|         let args = trait_ref.args.extend_to(tcx, method.def_id, only_region_params);
 | |
|         let instance = ty::Instance::expect_resolve(tcx, param_env, method.def_id, args);
 | |
| 
 | |
|         let mono_item = create_fn_mono_item(tcx, instance, DUMMY_SP);
 | |
|         if mono_item.node.is_instantiable(tcx) && should_codegen_locally(tcx, &instance) {
 | |
|             output.push(mono_item);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// Scans the CTFE alloc in order to find function calls, closures, and drop-glue.
 | |
| fn collect_alloc<'tcx>(tcx: TyCtxt<'tcx>, alloc_id: AllocId, output: &mut MonoItems<'tcx>) {
 | |
|     match tcx.global_alloc(alloc_id) {
 | |
|         GlobalAlloc::Static(def_id) => {
 | |
|             assert!(!tcx.is_thread_local_static(def_id));
 | |
|             let instance = Instance::mono(tcx, def_id);
 | |
|             if should_codegen_locally(tcx, &instance) {
 | |
|                 trace!("collecting static {:?}", def_id);
 | |
|                 output.push(dummy_spanned(MonoItem::Static(def_id)));
 | |
|             }
 | |
|         }
 | |
|         GlobalAlloc::Memory(alloc) => {
 | |
|             trace!("collecting {:?} with {:#?}", alloc_id, alloc);
 | |
|             for &prov in alloc.inner().provenance().ptrs().values() {
 | |
|                 rustc_data_structures::stack::ensure_sufficient_stack(|| {
 | |
|                     collect_alloc(tcx, prov.alloc_id(), output);
 | |
|                 });
 | |
|             }
 | |
|         }
 | |
|         GlobalAlloc::Function(fn_instance) => {
 | |
|             if should_codegen_locally(tcx, &fn_instance) {
 | |
|                 trace!("collecting {:?} with {:#?}", alloc_id, fn_instance);
 | |
|                 output.push(create_fn_mono_item(tcx, fn_instance, DUMMY_SP));
 | |
|             }
 | |
|         }
 | |
|         GlobalAlloc::VTable(ty, trait_ref) => {
 | |
|             let alloc_id = tcx.vtable_allocation((ty, trait_ref));
 | |
|             collect_alloc(tcx, alloc_id, output)
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| fn assoc_fn_of_type<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId, fn_ident: Ident) -> Option<DefId> {
 | |
|     for impl_def_id in tcx.inherent_impls(def_id) {
 | |
|         if let Some(new) = tcx.associated_items(impl_def_id).find_by_name_and_kind(
 | |
|             tcx,
 | |
|             fn_ident,
 | |
|             AssocKind::Fn,
 | |
|             def_id,
 | |
|         ) {
 | |
|             return Some(new.def_id);
 | |
|         }
 | |
|     }
 | |
|     return None;
 | |
| }
 | |
| 
 | |
| fn build_skip_move_check_fns(tcx: TyCtxt<'_>) -> Vec<DefId> {
 | |
|     let fns = [
 | |
|         (tcx.lang_items().owned_box(), "new"),
 | |
|         (tcx.get_diagnostic_item(sym::Rc), "new"),
 | |
|         (tcx.get_diagnostic_item(sym::Arc), "new"),
 | |
|     ];
 | |
|     fns.into_iter()
 | |
|         .filter_map(|(def_id, fn_name)| {
 | |
|             def_id.and_then(|def_id| assoc_fn_of_type(tcx, def_id, Ident::from_str(fn_name)))
 | |
|         })
 | |
|         .collect::<Vec<_>>()
 | |
| }
 | |
| 
 | |
| /// Scans the MIR in order to find function calls, closures, and drop-glue.
 | |
| #[instrument(skip(tcx, output), level = "debug")]
 | |
| fn collect_used_items<'tcx>(
 | |
|     tcx: TyCtxt<'tcx>,
 | |
|     instance: Instance<'tcx>,
 | |
|     output: &mut MonoItems<'tcx>,
 | |
| ) {
 | |
|     let body = tcx.instance_mir(instance.def);
 | |
| 
 | |
|     // Here we rely on the visitor also visiting `required_consts`, so that we evaluate them
 | |
|     // and abort compilation if any of them errors.
 | |
|     MirUsedCollector {
 | |
|         tcx,
 | |
|         body: body,
 | |
|         output,
 | |
|         instance,
 | |
|         move_size_spans: vec![],
 | |
|         visiting_call_terminator: false,
 | |
|         skip_move_check_fns: None,
 | |
|     }
 | |
|     .visit_body(body);
 | |
| }
 | |
| 
 | |
| #[instrument(skip(tcx, output), level = "debug")]
 | |
| fn collect_const_value<'tcx>(
 | |
|     tcx: TyCtxt<'tcx>,
 | |
|     value: mir::ConstValue<'tcx>,
 | |
|     output: &mut MonoItems<'tcx>,
 | |
| ) {
 | |
|     match value {
 | |
|         mir::ConstValue::Scalar(Scalar::Ptr(ptr, _size)) => {
 | |
|             collect_alloc(tcx, ptr.provenance.alloc_id(), output)
 | |
|         }
 | |
|         mir::ConstValue::Indirect { alloc_id, .. } => collect_alloc(tcx, alloc_id, output),
 | |
|         mir::ConstValue::Slice { data, meta: _ } => {
 | |
|             for &prov in data.inner().provenance().ptrs().values() {
 | |
|                 collect_alloc(tcx, prov.alloc_id(), output);
 | |
|             }
 | |
|         }
 | |
|         _ => {}
 | |
|     }
 | |
| }
 | 
