mirror of
https://github.com/rust-lang/rust.git
synced 2025-10-27 19:16:36 +00:00
Added an associated `const THIS_IMPLEMENTATION_HAS_BEEN_TRIPLE_CHECKED` to the `StableOrd` trait to ensure that implementors carefully consider whether the trait's contract is upheld, as incorrect implementations can cause miscompilations.
768 lines
24 KiB
Rust
768 lines
24 KiB
Rust
use crate::sip128::SipHasher128;
|
|
use rustc_index::bit_set::{self, BitSet};
|
|
use rustc_index::{Idx, IndexSlice, IndexVec};
|
|
use smallvec::SmallVec;
|
|
use std::fmt;
|
|
use std::hash::{BuildHasher, Hash, Hasher};
|
|
use std::marker::PhantomData;
|
|
use std::mem;
|
|
use std::num::NonZero;
|
|
|
|
#[cfg(test)]
|
|
mod tests;
|
|
|
|
pub use crate::hashes::{Hash128, Hash64};
|
|
|
|
/// When hashing something that ends up affecting properties like symbol names,
|
|
/// we want these symbol names to be calculated independently of other factors
|
|
/// like what architecture you're compiling *from*.
|
|
///
|
|
/// To that end we always convert integers to little-endian format before
|
|
/// hashing and the architecture dependent `isize` and `usize` types are
|
|
/// extended to 64 bits if needed.
|
|
pub struct StableHasher {
|
|
state: SipHasher128,
|
|
}
|
|
|
|
impl fmt::Debug for StableHasher {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
write!(f, "{:?}", self.state)
|
|
}
|
|
}
|
|
|
|
pub trait StableHasherResult: Sized {
|
|
fn finish(hasher: StableHasher) -> Self;
|
|
}
|
|
|
|
impl StableHasher {
|
|
#[inline]
|
|
pub fn new() -> Self {
|
|
StableHasher { state: SipHasher128::new_with_keys(0, 0) }
|
|
}
|
|
|
|
#[inline]
|
|
pub fn finish<W: StableHasherResult>(self) -> W {
|
|
W::finish(self)
|
|
}
|
|
}
|
|
|
|
impl StableHasher {
|
|
#[inline]
|
|
pub fn finalize(self) -> (u64, u64) {
|
|
self.state.finish128()
|
|
}
|
|
}
|
|
|
|
impl Hasher for StableHasher {
|
|
fn finish(&self) -> u64 {
|
|
panic!("use StableHasher::finalize instead");
|
|
}
|
|
|
|
#[inline]
|
|
fn write(&mut self, bytes: &[u8]) {
|
|
self.state.write(bytes);
|
|
}
|
|
|
|
#[inline]
|
|
fn write_str(&mut self, s: &str) {
|
|
self.state.write_str(s);
|
|
}
|
|
|
|
#[inline]
|
|
fn write_length_prefix(&mut self, len: usize) {
|
|
// Our impl for `usize` will extend it if needed.
|
|
self.write_usize(len);
|
|
}
|
|
|
|
#[inline]
|
|
fn write_u8(&mut self, i: u8) {
|
|
self.state.write_u8(i);
|
|
}
|
|
|
|
#[inline]
|
|
fn write_u16(&mut self, i: u16) {
|
|
self.state.short_write(i.to_le_bytes());
|
|
}
|
|
|
|
#[inline]
|
|
fn write_u32(&mut self, i: u32) {
|
|
self.state.short_write(i.to_le_bytes());
|
|
}
|
|
|
|
#[inline]
|
|
fn write_u64(&mut self, i: u64) {
|
|
self.state.short_write(i.to_le_bytes());
|
|
}
|
|
|
|
#[inline]
|
|
fn write_u128(&mut self, i: u128) {
|
|
self.write_u64(i as u64);
|
|
self.write_u64((i >> 64) as u64);
|
|
}
|
|
|
|
#[inline]
|
|
fn write_usize(&mut self, i: usize) {
|
|
// Always treat usize as u64 so we get the same results on 32 and 64 bit
|
|
// platforms. This is important for symbol hashes when cross compiling,
|
|
// for example.
|
|
self.state.short_write((i as u64).to_le_bytes());
|
|
}
|
|
|
|
#[inline]
|
|
fn write_i8(&mut self, i: i8) {
|
|
self.state.write_i8(i);
|
|
}
|
|
|
|
#[inline]
|
|
fn write_i16(&mut self, i: i16) {
|
|
self.state.short_write((i as u16).to_le_bytes());
|
|
}
|
|
|
|
#[inline]
|
|
fn write_i32(&mut self, i: i32) {
|
|
self.state.short_write((i as u32).to_le_bytes());
|
|
}
|
|
|
|
#[inline]
|
|
fn write_i64(&mut self, i: i64) {
|
|
self.state.short_write((i as u64).to_le_bytes());
|
|
}
|
|
|
|
#[inline]
|
|
fn write_i128(&mut self, i: i128) {
|
|
self.state.write(&(i as u128).to_le_bytes());
|
|
}
|
|
|
|
#[inline]
|
|
fn write_isize(&mut self, i: isize) {
|
|
// Always treat isize as a 64-bit number so we get the same results on 32 and 64 bit
|
|
// platforms. This is important for symbol hashes when cross compiling,
|
|
// for example. Sign extending here is preferable as it means that the
|
|
// same negative number hashes the same on both 32 and 64 bit platforms.
|
|
let value = i as u64;
|
|
|
|
// Cold path
|
|
#[cold]
|
|
#[inline(never)]
|
|
fn hash_value(state: &mut SipHasher128, value: u64) {
|
|
state.write_u8(0xFF);
|
|
state.short_write(value.to_le_bytes());
|
|
}
|
|
|
|
// `isize` values often seem to have a small (positive) numeric value in practice.
|
|
// To exploit this, if the value is small, we will hash a smaller amount of bytes.
|
|
// However, we cannot just skip the leading zero bytes, as that would produce the same hash
|
|
// e.g. if you hash two values that have the same bit pattern when they are swapped.
|
|
// See https://github.com/rust-lang/rust/pull/93014 for context.
|
|
//
|
|
// Therefore, we employ the following strategy:
|
|
// 1) When we encounter a value that fits within a single byte (the most common case), we
|
|
// hash just that byte. This is the most common case that is being optimized. However, we do
|
|
// not do this for the value 0xFF, as that is a reserved prefix (a bit like in UTF-8).
|
|
// 2) When we encounter a larger value, we hash a "marker" 0xFF and then the corresponding
|
|
// 8 bytes. Since this prefix cannot occur when we hash a single byte, when we hash two
|
|
// `isize`s that fit within a different amount of bytes, they should always produce a different
|
|
// byte stream for the hasher.
|
|
if value < 0xFF {
|
|
self.state.write_u8(value as u8);
|
|
} else {
|
|
hash_value(&mut self.state, value);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Something that implements `HashStable<CTX>` can be hashed in a way that is
|
|
/// stable across multiple compilation sessions.
|
|
///
|
|
/// Note that `HashStable` imposes rather more strict requirements than usual
|
|
/// hash functions:
|
|
///
|
|
/// - Stable hashes are sometimes used as identifiers. Therefore they must
|
|
/// conform to the corresponding `PartialEq` implementations:
|
|
///
|
|
/// - `x == y` implies `hash_stable(x) == hash_stable(y)`, and
|
|
/// - `x != y` implies `hash_stable(x) != hash_stable(y)`.
|
|
///
|
|
/// That second condition is usually not required for hash functions
|
|
/// (e.g. `Hash`). In practice this means that `hash_stable` must feed any
|
|
/// information into the hasher that a `PartialEq` comparison takes into
|
|
/// account. See [#49300](https://github.com/rust-lang/rust/issues/49300)
|
|
/// for an example where violating this invariant has caused trouble in the
|
|
/// past.
|
|
///
|
|
/// - `hash_stable()` must be independent of the current
|
|
/// compilation session. E.g. they must not hash memory addresses or other
|
|
/// things that are "randomly" assigned per compilation session.
|
|
///
|
|
/// - `hash_stable()` must be independent of the host architecture. The
|
|
/// `StableHasher` takes care of endianness and `isize`/`usize` platform
|
|
/// differences.
|
|
pub trait HashStable<CTX> {
|
|
fn hash_stable(&self, hcx: &mut CTX, hasher: &mut StableHasher);
|
|
}
|
|
|
|
/// Implement this for types that can be turned into stable keys like, for
|
|
/// example, for DefId that can be converted to a DefPathHash. This is used for
|
|
/// bringing maps into a predictable order before hashing them.
|
|
pub trait ToStableHashKey<HCX> {
|
|
type KeyType: Ord + Sized + HashStable<HCX>;
|
|
fn to_stable_hash_key(&self, hcx: &HCX) -> Self::KeyType;
|
|
}
|
|
|
|
/// Trait for marking a type as having a sort order that is
|
|
/// stable across compilation session boundaries. More formally:
|
|
///
|
|
/// ```txt
|
|
/// Ord::cmp(a1, b1) == Ord::cmp(a2, b2)
|
|
/// where a2 = decode(encode(a1, context1), context2)
|
|
/// b2 = decode(encode(b1, context1), context2)
|
|
/// ```
|
|
///
|
|
/// i.e. the result of `Ord::cmp` is not influenced by encoding
|
|
/// the values in one session and then decoding them in another
|
|
/// session.
|
|
///
|
|
/// This is trivially true for types where encoding and decoding
|
|
/// don't change the bytes of the values that are used during
|
|
/// comparison and comparison only depends on these bytes (as
|
|
/// opposed to some non-local state). Examples are u32, String,
|
|
/// Path, etc.
|
|
///
|
|
/// But it is not true for:
|
|
/// - `*const T` and `*mut T` because the values of these pointers
|
|
/// will change between sessions.
|
|
/// - `DefIndex`, `CrateNum`, `LocalDefId`, because their concrete
|
|
/// values depend on state that might be different between
|
|
/// compilation sessions.
|
|
///
|
|
/// The associated constant `CAN_USE_UNSTABLE_SORT` denotes whether
|
|
/// unstable sorting can be used for this type. Set to true if and
|
|
/// only if `a == b` implies `a` and `b` are fully indistinguishable.
|
|
pub trait StableOrd: Ord {
|
|
const CAN_USE_UNSTABLE_SORT: bool;
|
|
|
|
/// Marker to ensure that implementors have carefully considered
|
|
/// whether their `Ord` implementation obeys this trait's contract.
|
|
const THIS_IMPLEMENTATION_HAS_BEEN_TRIPLE_CHECKED: ();
|
|
}
|
|
|
|
impl<T: StableOrd> StableOrd for &T {
|
|
const CAN_USE_UNSTABLE_SORT: bool = T::CAN_USE_UNSTABLE_SORT;
|
|
|
|
// Ordering of a reference is exactly that of the referent, and since
|
|
// the ordering of the referet is stable so must be the ordering of the
|
|
// reference.
|
|
const THIS_IMPLEMENTATION_HAS_BEEN_TRIPLE_CHECKED: () = ();
|
|
}
|
|
|
|
/// This is a companion trait to `StableOrd`. Some types like `Symbol` can be
|
|
/// compared in a cross-session stable way, but their `Ord` implementation is
|
|
/// not stable. In such cases, a `StableOrd` implementation can be provided
|
|
/// to offer a lightweight way for stable sorting. (The more heavyweight option
|
|
/// is to sort via `ToStableHashKey`, but then sorting needs to have access to
|
|
/// a stable hashing context and `ToStableHashKey` can also be expensive as in
|
|
/// the case of `Symbol` where it has to allocate a `String`.)
|
|
///
|
|
/// See the documentation of [StableOrd] for how stable sort order is defined.
|
|
/// The same definition applies here. Be careful when implementing this trait.
|
|
pub trait StableCompare {
|
|
const CAN_USE_UNSTABLE_SORT: bool;
|
|
|
|
fn stable_cmp(&self, other: &Self) -> std::cmp::Ordering;
|
|
}
|
|
|
|
/// `StableOrd` denotes that the type's `Ord` implementation is stable, so
|
|
/// we can implement `StableCompare` by just delegating to `Ord`.
|
|
impl<T: StableOrd> StableCompare for T {
|
|
const CAN_USE_UNSTABLE_SORT: bool = T::CAN_USE_UNSTABLE_SORT;
|
|
|
|
fn stable_cmp(&self, other: &Self) -> std::cmp::Ordering {
|
|
self.cmp(other)
|
|
}
|
|
}
|
|
|
|
/// Implement HashStable by just calling `Hash::hash()`. Also implement `StableOrd` for the type since
|
|
/// that has the same requirements.
|
|
///
|
|
/// **WARNING** This is only valid for types that *really* don't need any context for fingerprinting.
|
|
/// But it is easy to misuse this macro (see [#96013](https://github.com/rust-lang/rust/issues/96013)
|
|
/// for examples). Therefore this macro is not exported and should only be used in the limited cases
|
|
/// here in this module.
|
|
///
|
|
/// Use `#[derive(HashStable_Generic)]` instead.
|
|
macro_rules! impl_stable_traits_for_trivial_type {
|
|
($t:ty) => {
|
|
impl<CTX> $crate::stable_hasher::HashStable<CTX> for $t {
|
|
#[inline]
|
|
fn hash_stable(&self, _: &mut CTX, hasher: &mut $crate::stable_hasher::StableHasher) {
|
|
::std::hash::Hash::hash(self, hasher);
|
|
}
|
|
}
|
|
|
|
impl $crate::stable_hasher::StableOrd for $t {
|
|
const CAN_USE_UNSTABLE_SORT: bool = true;
|
|
|
|
// Encoding and decoding doesn't change the bytes of trivial types
|
|
// and `Ord::cmp` depends only on those bytes.
|
|
const THIS_IMPLEMENTATION_HAS_BEEN_TRIPLE_CHECKED: () = ();
|
|
}
|
|
};
|
|
}
|
|
|
|
pub(crate) use impl_stable_traits_for_trivial_type;
|
|
|
|
impl_stable_traits_for_trivial_type!(i8);
|
|
impl_stable_traits_for_trivial_type!(i16);
|
|
impl_stable_traits_for_trivial_type!(i32);
|
|
impl_stable_traits_for_trivial_type!(i64);
|
|
impl_stable_traits_for_trivial_type!(isize);
|
|
|
|
impl_stable_traits_for_trivial_type!(u8);
|
|
impl_stable_traits_for_trivial_type!(u16);
|
|
impl_stable_traits_for_trivial_type!(u32);
|
|
impl_stable_traits_for_trivial_type!(u64);
|
|
impl_stable_traits_for_trivial_type!(usize);
|
|
|
|
impl_stable_traits_for_trivial_type!(u128);
|
|
impl_stable_traits_for_trivial_type!(i128);
|
|
|
|
impl_stable_traits_for_trivial_type!(char);
|
|
impl_stable_traits_for_trivial_type!(());
|
|
|
|
impl_stable_traits_for_trivial_type!(Hash64);
|
|
|
|
// We need a custom impl as the default hash function will only hash half the bits. For stable
|
|
// hashing we want to hash the full 128-bit hash.
|
|
impl<CTX> HashStable<CTX> for Hash128 {
|
|
#[inline]
|
|
fn hash_stable(&self, _: &mut CTX, hasher: &mut StableHasher) {
|
|
self.as_u128().hash(hasher);
|
|
}
|
|
}
|
|
|
|
impl StableOrd for Hash128 {
|
|
const CAN_USE_UNSTABLE_SORT: bool = true;
|
|
|
|
// Encoding and decoding doesn't change the bytes of `Hash128`
|
|
// and `Ord::cmp` depends only on those bytes.
|
|
const THIS_IMPLEMENTATION_HAS_BEEN_TRIPLE_CHECKED: () = ();
|
|
}
|
|
|
|
impl<CTX> HashStable<CTX> for ! {
|
|
fn hash_stable(&self, _ctx: &mut CTX, _hasher: &mut StableHasher) {
|
|
unreachable!()
|
|
}
|
|
}
|
|
|
|
impl<CTX, T> HashStable<CTX> for PhantomData<T> {
|
|
fn hash_stable(&self, _ctx: &mut CTX, _hasher: &mut StableHasher) {}
|
|
}
|
|
|
|
impl<CTX> HashStable<CTX> for NonZero<u32> {
|
|
#[inline]
|
|
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
|
|
self.get().hash_stable(ctx, hasher)
|
|
}
|
|
}
|
|
|
|
impl<CTX> HashStable<CTX> for NonZero<usize> {
|
|
#[inline]
|
|
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
|
|
self.get().hash_stable(ctx, hasher)
|
|
}
|
|
}
|
|
|
|
impl<CTX> HashStable<CTX> for f32 {
|
|
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
|
|
let val: u32 = self.to_bits();
|
|
val.hash_stable(ctx, hasher);
|
|
}
|
|
}
|
|
|
|
impl<CTX> HashStable<CTX> for f64 {
|
|
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
|
|
let val: u64 = self.to_bits();
|
|
val.hash_stable(ctx, hasher);
|
|
}
|
|
}
|
|
|
|
impl<CTX> HashStable<CTX> for ::std::cmp::Ordering {
|
|
#[inline]
|
|
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
|
|
(*self as i8).hash_stable(ctx, hasher);
|
|
}
|
|
}
|
|
|
|
impl<T1: HashStable<CTX>, CTX> HashStable<CTX> for (T1,) {
|
|
#[inline]
|
|
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
|
|
let (ref _0,) = *self;
|
|
_0.hash_stable(ctx, hasher);
|
|
}
|
|
}
|
|
|
|
impl<T1: HashStable<CTX>, T2: HashStable<CTX>, CTX> HashStable<CTX> for (T1, T2) {
|
|
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
|
|
let (ref _0, ref _1) = *self;
|
|
_0.hash_stable(ctx, hasher);
|
|
_1.hash_stable(ctx, hasher);
|
|
}
|
|
}
|
|
|
|
impl<T1: StableOrd, T2: StableOrd> StableOrd for (T1, T2) {
|
|
const CAN_USE_UNSTABLE_SORT: bool = T1::CAN_USE_UNSTABLE_SORT && T2::CAN_USE_UNSTABLE_SORT;
|
|
|
|
// Ordering of tuples is a pure function of their elements' ordering, and since
|
|
// the ordering of each element is stable so must be the ordering of the tuple.
|
|
const THIS_IMPLEMENTATION_HAS_BEEN_TRIPLE_CHECKED: () = ();
|
|
}
|
|
|
|
impl<T1, T2, T3, CTX> HashStable<CTX> for (T1, T2, T3)
|
|
where
|
|
T1: HashStable<CTX>,
|
|
T2: HashStable<CTX>,
|
|
T3: HashStable<CTX>,
|
|
{
|
|
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
|
|
let (ref _0, ref _1, ref _2) = *self;
|
|
_0.hash_stable(ctx, hasher);
|
|
_1.hash_stable(ctx, hasher);
|
|
_2.hash_stable(ctx, hasher);
|
|
}
|
|
}
|
|
|
|
impl<T1: StableOrd, T2: StableOrd, T3: StableOrd> StableOrd for (T1, T2, T3) {
|
|
const CAN_USE_UNSTABLE_SORT: bool =
|
|
T1::CAN_USE_UNSTABLE_SORT && T2::CAN_USE_UNSTABLE_SORT && T3::CAN_USE_UNSTABLE_SORT;
|
|
|
|
// Ordering of tuples is a pure function of their elements' ordering, and since
|
|
// the ordering of each element is stable so must be the ordering of the tuple.
|
|
const THIS_IMPLEMENTATION_HAS_BEEN_TRIPLE_CHECKED: () = ();
|
|
}
|
|
|
|
impl<T1, T2, T3, T4, CTX> HashStable<CTX> for (T1, T2, T3, T4)
|
|
where
|
|
T1: HashStable<CTX>,
|
|
T2: HashStable<CTX>,
|
|
T3: HashStable<CTX>,
|
|
T4: HashStable<CTX>,
|
|
{
|
|
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
|
|
let (ref _0, ref _1, ref _2, ref _3) = *self;
|
|
_0.hash_stable(ctx, hasher);
|
|
_1.hash_stable(ctx, hasher);
|
|
_2.hash_stable(ctx, hasher);
|
|
_3.hash_stable(ctx, hasher);
|
|
}
|
|
}
|
|
|
|
impl<T1: StableOrd, T2: StableOrd, T3: StableOrd, T4: StableOrd> StableOrd for (T1, T2, T3, T4) {
|
|
const CAN_USE_UNSTABLE_SORT: bool = T1::CAN_USE_UNSTABLE_SORT
|
|
&& T2::CAN_USE_UNSTABLE_SORT
|
|
&& T3::CAN_USE_UNSTABLE_SORT
|
|
&& T4::CAN_USE_UNSTABLE_SORT;
|
|
|
|
// Ordering of tuples is a pure function of their elements' ordering, and since
|
|
// the ordering of each element is stable so must be the ordering of the tuple.
|
|
const THIS_IMPLEMENTATION_HAS_BEEN_TRIPLE_CHECKED: () = ();
|
|
}
|
|
|
|
impl<T: HashStable<CTX>, CTX> HashStable<CTX> for [T] {
|
|
default fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
|
|
self.len().hash_stable(ctx, hasher);
|
|
for item in self {
|
|
item.hash_stable(ctx, hasher);
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<CTX> HashStable<CTX> for [u8] {
|
|
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
|
|
self.len().hash_stable(ctx, hasher);
|
|
hasher.write(self);
|
|
}
|
|
}
|
|
|
|
impl<T: HashStable<CTX>, CTX> HashStable<CTX> for Vec<T> {
|
|
#[inline]
|
|
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
|
|
self[..].hash_stable(ctx, hasher);
|
|
}
|
|
}
|
|
|
|
impl<K, V, R, CTX> HashStable<CTX> for indexmap::IndexMap<K, V, R>
|
|
where
|
|
K: HashStable<CTX> + Eq + Hash,
|
|
V: HashStable<CTX>,
|
|
R: BuildHasher,
|
|
{
|
|
#[inline]
|
|
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
|
|
self.len().hash_stable(ctx, hasher);
|
|
for kv in self {
|
|
kv.hash_stable(ctx, hasher);
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<K, R, CTX> HashStable<CTX> for indexmap::IndexSet<K, R>
|
|
where
|
|
K: HashStable<CTX> + Eq + Hash,
|
|
R: BuildHasher,
|
|
{
|
|
#[inline]
|
|
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
|
|
self.len().hash_stable(ctx, hasher);
|
|
for key in self {
|
|
key.hash_stable(ctx, hasher);
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<A, const N: usize, CTX> HashStable<CTX> for SmallVec<[A; N]>
|
|
where
|
|
A: HashStable<CTX>,
|
|
{
|
|
#[inline]
|
|
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
|
|
self[..].hash_stable(ctx, hasher);
|
|
}
|
|
}
|
|
|
|
impl<T: ?Sized + HashStable<CTX>, CTX> HashStable<CTX> for Box<T> {
|
|
#[inline]
|
|
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
|
|
(**self).hash_stable(ctx, hasher);
|
|
}
|
|
}
|
|
|
|
impl<T: ?Sized + HashStable<CTX>, CTX> HashStable<CTX> for ::std::rc::Rc<T> {
|
|
#[inline]
|
|
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
|
|
(**self).hash_stable(ctx, hasher);
|
|
}
|
|
}
|
|
|
|
impl<T: ?Sized + HashStable<CTX>, CTX> HashStable<CTX> for ::std::sync::Arc<T> {
|
|
#[inline]
|
|
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
|
|
(**self).hash_stable(ctx, hasher);
|
|
}
|
|
}
|
|
|
|
impl<CTX> HashStable<CTX> for str {
|
|
#[inline]
|
|
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
|
|
self.as_bytes().hash_stable(ctx, hasher);
|
|
}
|
|
}
|
|
|
|
impl StableOrd for &str {
|
|
const CAN_USE_UNSTABLE_SORT: bool = true;
|
|
|
|
// Encoding and decoding doesn't change the bytes of string slices
|
|
// and `Ord::cmp` depends only on those bytes.
|
|
const THIS_IMPLEMENTATION_HAS_BEEN_TRIPLE_CHECKED: () = ();
|
|
}
|
|
|
|
impl<CTX> HashStable<CTX> for String {
|
|
#[inline]
|
|
fn hash_stable(&self, hcx: &mut CTX, hasher: &mut StableHasher) {
|
|
self[..].hash_stable(hcx, hasher);
|
|
}
|
|
}
|
|
|
|
impl StableOrd for String {
|
|
const CAN_USE_UNSTABLE_SORT: bool = true;
|
|
|
|
// String comparison only depends on their contents and the
|
|
// contents are not changed by (de-)serialization.
|
|
const THIS_IMPLEMENTATION_HAS_BEEN_TRIPLE_CHECKED: () = ();
|
|
}
|
|
|
|
impl<HCX> ToStableHashKey<HCX> for String {
|
|
type KeyType = String;
|
|
#[inline]
|
|
fn to_stable_hash_key(&self, _: &HCX) -> Self::KeyType {
|
|
self.clone()
|
|
}
|
|
}
|
|
|
|
impl<HCX, T1: ToStableHashKey<HCX>, T2: ToStableHashKey<HCX>> ToStableHashKey<HCX> for (T1, T2) {
|
|
type KeyType = (T1::KeyType, T2::KeyType);
|
|
#[inline]
|
|
fn to_stable_hash_key(&self, hcx: &HCX) -> Self::KeyType {
|
|
(self.0.to_stable_hash_key(hcx), self.1.to_stable_hash_key(hcx))
|
|
}
|
|
}
|
|
|
|
impl<CTX> HashStable<CTX> for bool {
|
|
#[inline]
|
|
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
|
|
(if *self { 1u8 } else { 0u8 }).hash_stable(ctx, hasher);
|
|
}
|
|
}
|
|
|
|
impl StableOrd for bool {
|
|
const CAN_USE_UNSTABLE_SORT: bool = true;
|
|
|
|
// sort order of bools is not changed by (de-)serialization.
|
|
const THIS_IMPLEMENTATION_HAS_BEEN_TRIPLE_CHECKED: () = ();
|
|
}
|
|
|
|
impl<T, CTX> HashStable<CTX> for Option<T>
|
|
where
|
|
T: HashStable<CTX>,
|
|
{
|
|
#[inline]
|
|
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
|
|
if let Some(ref value) = *self {
|
|
1u8.hash_stable(ctx, hasher);
|
|
value.hash_stable(ctx, hasher);
|
|
} else {
|
|
0u8.hash_stable(ctx, hasher);
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<T: StableOrd> StableOrd for Option<T> {
|
|
const CAN_USE_UNSTABLE_SORT: bool = T::CAN_USE_UNSTABLE_SORT;
|
|
|
|
// the Option wrapper does not add instability to comparison.
|
|
const THIS_IMPLEMENTATION_HAS_BEEN_TRIPLE_CHECKED: () = ();
|
|
}
|
|
|
|
impl<T1, T2, CTX> HashStable<CTX> for Result<T1, T2>
|
|
where
|
|
T1: HashStable<CTX>,
|
|
T2: HashStable<CTX>,
|
|
{
|
|
#[inline]
|
|
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
|
|
mem::discriminant(self).hash_stable(ctx, hasher);
|
|
match *self {
|
|
Ok(ref x) => x.hash_stable(ctx, hasher),
|
|
Err(ref x) => x.hash_stable(ctx, hasher),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a, T, CTX> HashStable<CTX> for &'a T
|
|
where
|
|
T: HashStable<CTX> + ?Sized,
|
|
{
|
|
#[inline]
|
|
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
|
|
(**self).hash_stable(ctx, hasher);
|
|
}
|
|
}
|
|
|
|
impl<T, CTX> HashStable<CTX> for ::std::mem::Discriminant<T> {
|
|
#[inline]
|
|
fn hash_stable(&self, _: &mut CTX, hasher: &mut StableHasher) {
|
|
::std::hash::Hash::hash(self, hasher);
|
|
}
|
|
}
|
|
|
|
impl<T, CTX> HashStable<CTX> for ::std::ops::RangeInclusive<T>
|
|
where
|
|
T: HashStable<CTX>,
|
|
{
|
|
#[inline]
|
|
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
|
|
self.start().hash_stable(ctx, hasher);
|
|
self.end().hash_stable(ctx, hasher);
|
|
}
|
|
}
|
|
|
|
impl<I: Idx, T, CTX> HashStable<CTX> for IndexSlice<I, T>
|
|
where
|
|
T: HashStable<CTX>,
|
|
{
|
|
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
|
|
self.len().hash_stable(ctx, hasher);
|
|
for v in &self.raw {
|
|
v.hash_stable(ctx, hasher);
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<I: Idx, T, CTX> HashStable<CTX> for IndexVec<I, T>
|
|
where
|
|
T: HashStable<CTX>,
|
|
{
|
|
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
|
|
self.len().hash_stable(ctx, hasher);
|
|
for v in &self.raw {
|
|
v.hash_stable(ctx, hasher);
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<I: Idx, CTX> HashStable<CTX> for BitSet<I> {
|
|
fn hash_stable(&self, _ctx: &mut CTX, hasher: &mut StableHasher) {
|
|
::std::hash::Hash::hash(self, hasher);
|
|
}
|
|
}
|
|
|
|
impl<R: Idx, C: Idx, CTX> HashStable<CTX> for bit_set::BitMatrix<R, C> {
|
|
fn hash_stable(&self, _ctx: &mut CTX, hasher: &mut StableHasher) {
|
|
::std::hash::Hash::hash(self, hasher);
|
|
}
|
|
}
|
|
|
|
impl<T, CTX> HashStable<CTX> for bit_set::FiniteBitSet<T>
|
|
where
|
|
T: HashStable<CTX> + bit_set::FiniteBitSetTy,
|
|
{
|
|
fn hash_stable(&self, hcx: &mut CTX, hasher: &mut StableHasher) {
|
|
self.0.hash_stable(hcx, hasher);
|
|
}
|
|
}
|
|
|
|
impl_stable_traits_for_trivial_type!(::std::path::Path);
|
|
impl_stable_traits_for_trivial_type!(::std::path::PathBuf);
|
|
|
|
// It is not safe to implement HashStable for HashSet, HashMap or any other collection type
|
|
// with unstable but observable iteration order.
|
|
// See https://github.com/rust-lang/compiler-team/issues/533 for further information.
|
|
impl<V, HCX> !HashStable<HCX> for std::collections::HashSet<V> {}
|
|
impl<K, V, HCX> !HashStable<HCX> for std::collections::HashMap<K, V> {}
|
|
|
|
impl<K, V, HCX> HashStable<HCX> for ::std::collections::BTreeMap<K, V>
|
|
where
|
|
K: HashStable<HCX> + StableOrd,
|
|
V: HashStable<HCX>,
|
|
{
|
|
fn hash_stable(&self, hcx: &mut HCX, hasher: &mut StableHasher) {
|
|
self.len().hash_stable(hcx, hasher);
|
|
for entry in self.iter() {
|
|
entry.hash_stable(hcx, hasher);
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<K, HCX> HashStable<HCX> for ::std::collections::BTreeSet<K>
|
|
where
|
|
K: HashStable<HCX> + StableOrd,
|
|
{
|
|
fn hash_stable(&self, hcx: &mut HCX, hasher: &mut StableHasher) {
|
|
self.len().hash_stable(hcx, hasher);
|
|
for entry in self.iter() {
|
|
entry.hash_stable(hcx, hasher);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Controls what data we do or do not hash.
|
|
/// Whenever a `HashStable` implementation caches its
|
|
/// result, it needs to include `HashingControls` as part
|
|
/// of the key, to ensure that it does not produce an incorrect
|
|
/// result (for example, using a `Fingerprint` produced while
|
|
/// hashing `Span`s when a `Fingerprint` without `Span`s is
|
|
/// being requested)
|
|
#[derive(Clone, Hash, Eq, PartialEq, Debug)]
|
|
pub struct HashingControls {
|
|
pub hash_spans: bool,
|
|
}
|