rust/compiler/rustc_parse/src/parser/attr_wrapper.rs
2025-02-08 22:12:13 +00:00

576 lines
26 KiB
Rust

use std::borrow::Cow;
use std::{iter, mem};
use rustc_ast::token::{Delimiter, Token, TokenKind};
use rustc_ast::tokenstream::{
AttrTokenStream, AttrTokenTree, AttrsTarget, DelimSpacing, DelimSpan, LazyAttrTokenStream,
Spacing, ToAttrTokenStream,
};
use rustc_ast::{self as ast, AttrVec, Attribute, HasAttrs, HasTokens};
use rustc_data_structures::fx::FxHashSet;
use rustc_errors::PResult;
use rustc_session::parse::ParseSess;
use rustc_span::{DUMMY_SP, Span, sym};
use super::{
Capturing, FlatToken, ForceCollect, NodeRange, NodeReplacement, Parser, ParserRange,
TokenCursor, Trailing,
};
// When collecting tokens, this fully captures the start point. Usually its
// just after outer attributes, but occasionally it's before.
#[derive(Clone, Debug)]
pub(super) struct CollectPos {
start_token: (Token, Spacing),
cursor_snapshot: TokenCursor,
start_pos: u32,
}
pub(super) enum UsePreAttrPos {
No,
Yes,
}
/// A wrapper type to ensure that the parser handles outer attributes correctly.
/// When we parse outer attributes, we need to ensure that we capture tokens
/// for the attribute target. This allows us to perform cfg-expansion on
/// a token stream before we invoke a derive proc-macro.
///
/// This wrapper prevents direct access to the underlying `ast::AttrVec`.
/// Parsing code can only get access to the underlying attributes
/// by passing an `AttrWrapper` to `collect_tokens`.
/// This makes it difficult to accidentally construct an AST node
/// (which stores an `ast::AttrVec`) without first collecting tokens.
///
/// This struct has its own module, to ensure that the parser code
/// cannot directly access the `attrs` field.
#[derive(Debug, Clone)]
pub(super) struct AttrWrapper {
attrs: AttrVec,
// The start of the outer attributes in the parser's token stream.
// This lets us create a `NodeReplacement` for the entire attribute
// target, including outer attributes. `None` if there are no outer
// attributes.
start_pos: Option<u32>,
}
impl AttrWrapper {
pub(super) fn new(attrs: AttrVec, start_pos: u32) -> AttrWrapper {
AttrWrapper { attrs, start_pos: Some(start_pos) }
}
pub(super) fn empty() -> AttrWrapper {
AttrWrapper { attrs: AttrVec::new(), start_pos: None }
}
pub(super) fn take_for_recovery(self, psess: &ParseSess) -> AttrVec {
psess.dcx().span_delayed_bug(
self.attrs.get(0).map(|attr| attr.span).unwrap_or(DUMMY_SP),
"AttrVec is taken for recovery but no error is produced",
);
self.attrs
}
/// Prepend `self.attrs` to `attrs`.
// FIXME: require passing an NT to prevent misuse of this method
pub(super) fn prepend_to_nt_inner(mut self, attrs: &mut AttrVec) {
mem::swap(attrs, &mut self.attrs);
attrs.extend(self.attrs);
}
pub(super) fn is_empty(&self) -> bool {
self.attrs.is_empty()
}
}
/// Returns `true` if `attrs` contains a `cfg` or `cfg_attr` attribute
fn has_cfg_or_cfg_attr(attrs: &[Attribute]) -> bool {
// NOTE: Builtin attributes like `cfg` and `cfg_attr` cannot be renamed via imports.
// Therefore, the absence of a literal `cfg` or `cfg_attr` guarantees that
// we don't need to do any eager expansion.
attrs.iter().any(|attr| {
attr.ident().is_some_and(|ident| ident.name == sym::cfg || ident.name == sym::cfg_attr)
})
}
// From a value of this type we can reconstruct the `TokenStream` seen by the
// `f` callback passed to a call to `Parser::collect_tokens`, by
// replaying the getting of the tokens. This saves us producing a `TokenStream`
// if it is never needed, e.g. a captured `macro_rules!` argument that is never
// passed to a proc macro. In practice, token stream creation happens rarely
// compared to calls to `collect_tokens` (see some statistics in #78736) so we
// are doing as little up-front work as possible.
//
// This also makes `Parser` very cheap to clone, since
// there is no intermediate collection buffer to clone.
struct LazyAttrTokenStreamImpl {
start_token: (Token, Spacing),
cursor_snapshot: TokenCursor,
num_calls: u32,
break_last_token: u32,
node_replacements: Box<[NodeReplacement]>,
}
impl ToAttrTokenStream for LazyAttrTokenStreamImpl {
fn to_attr_token_stream(&self) -> AttrTokenStream {
// The token produced by the final call to `{,inlined_}next` was not
// actually consumed by the callback. The combination of chaining the
// initial token and using `take` produces the desired result - we
// produce an empty `TokenStream` if no calls were made, and omit the
// final token otherwise.
let mut cursor_snapshot = self.cursor_snapshot.clone();
let tokens = iter::once(FlatToken::Token(self.start_token.clone()))
.chain(iter::repeat_with(|| FlatToken::Token(cursor_snapshot.next())))
.take(self.num_calls as usize);
if self.node_replacements.is_empty() {
make_attr_token_stream(tokens, self.break_last_token)
} else {
let mut tokens: Vec<_> = tokens.collect();
let mut node_replacements = self.node_replacements.to_vec();
node_replacements.sort_by_key(|(range, _)| range.0.start);
#[cfg(debug_assertions)]
for [(node_range, tokens), (next_node_range, next_tokens)] in
node_replacements.array_windows()
{
assert!(
node_range.0.end <= next_node_range.0.start
|| node_range.0.end >= next_node_range.0.end,
"Node ranges should be disjoint or nested: ({:?}, {:?}) ({:?}, {:?})",
node_range,
tokens,
next_node_range,
next_tokens,
);
}
// Process the replace ranges, starting from the highest start
// position and working our way back. If have tokens like:
//
// `#[cfg(FALSE)] struct Foo { #[cfg(FALSE)] field: bool }`
//
// Then we will generate replace ranges for both
// the `#[cfg(FALSE)] field: bool` and the entire
// `#[cfg(FALSE)] struct Foo { #[cfg(FALSE)] field: bool }`
//
// By starting processing from the replace range with the greatest
// start position, we ensure that any (outer) replace range which
// encloses another (inner) replace range will fully overwrite the
// inner range's replacement.
for (node_range, target) in node_replacements.into_iter().rev() {
assert!(
!node_range.0.is_empty(),
"Cannot replace an empty node range: {:?}",
node_range.0
);
// Replace the tokens in range with zero or one `FlatToken::AttrsTarget`s, plus
// enough `FlatToken::Empty`s to fill up the rest of the range. This keeps the
// total length of `tokens` constant throughout the replacement process, allowing
// us to do all replacements without adjusting indices.
let target_len = target.is_some() as usize;
tokens.splice(
(node_range.0.start as usize)..(node_range.0.end as usize),
target.into_iter().map(|target| FlatToken::AttrsTarget(target)).chain(
iter::repeat(FlatToken::Empty).take(node_range.0.len() - target_len),
),
);
}
make_attr_token_stream(tokens.into_iter(), self.break_last_token)
}
}
}
impl<'a> Parser<'a> {
pub(super) fn collect_pos(&self) -> CollectPos {
CollectPos {
start_token: (self.token.clone(), self.token_spacing),
cursor_snapshot: self.token_cursor.clone(),
start_pos: self.num_bump_calls,
}
}
/// Parses code with `f`. If appropriate, it records the tokens (in
/// `LazyAttrTokenStream` form) that were parsed in the result, accessible
/// via the `HasTokens` trait. The `Trailing` part of the callback's
/// result indicates if an extra token should be captured, e.g. a comma or
/// semicolon. The `UsePreAttrPos` part of the callback's result indicates
/// if we should use `pre_attr_pos` as the collection start position (only
/// required in a few cases).
///
/// The `attrs` passed in are in `AttrWrapper` form, which is opaque. The
/// `AttrVec` within is passed to `f`. See the comment on `AttrWrapper` for
/// details.
///
/// `pre_attr_pos` is the position before the outer attributes (or the node
/// itself, if no outer attributes are present). It is only needed if `f`
/// can return `UsePreAttrPos::Yes`.
///
/// Note: If your callback consumes an opening delimiter (including the
/// case where `self.token` is an opening delimiter on entry to this
/// function), you must also consume the corresponding closing delimiter.
/// E.g. you can consume `something ([{ }])` or `([{}])`, but not `([{}]`.
/// This restriction isn't a problem in practice, because parsed AST items
/// always have matching delimiters.
///
/// The following example code will be used to explain things in comments
/// below. It has an outer attribute and an inner attribute. Parsing it
/// involves two calls to this method, one of which is indirectly
/// recursive.
/// ```ignore (fake attributes)
/// #[cfg_eval] // token pos
/// mod m { // 0.. 3
/// #[cfg_attr(cond1, attr1)] // 3..12
/// fn g() { // 12..17
/// #![cfg_attr(cond2, attr2)] // 17..27
/// let _x = 3; // 27..32
/// } // 32..33
/// } // 33..34
/// ```
pub(super) fn collect_tokens<R: HasAttrs + HasTokens>(
&mut self,
pre_attr_pos: Option<CollectPos>,
attrs: AttrWrapper,
force_collect: ForceCollect,
f: impl FnOnce(&mut Self, AttrVec) -> PResult<'a, (R, Trailing, UsePreAttrPos)>,
) -> PResult<'a, R> {
let possible_capture_mode = self.capture_cfg;
// We must collect if anything could observe the collected tokens, i.e.
// if any of the following conditions hold.
// - We are force collecting tokens (because force collection requires
// tokens by definition).
let needs_collection = matches!(force_collect, ForceCollect::Yes)
// - Any of our outer attributes require tokens.
|| needs_tokens(&attrs.attrs)
// - Our target supports custom inner attributes (custom
// inner attribute invocation might require token capturing).
|| R::SUPPORTS_CUSTOM_INNER_ATTRS
// - We are in "possible capture mode" (which requires tokens if
// the parsed node has `#[cfg]` or `#[cfg_attr]` attributes).
|| possible_capture_mode;
if !needs_collection {
return Ok(f(self, attrs.attrs)?.0);
}
let mut collect_pos = self.collect_pos();
let has_outer_attrs = !attrs.attrs.is_empty();
let parser_replacements_start = self.capture_state.parser_replacements.len();
// We set and restore `Capturing::Yes` on either side of the call to
// `f`, so we can distinguish the outermost call to `collect_tokens`
// (e.g. parsing `m` in the example above) from any inner (indirectly
// recursive) calls (e.g. parsing `g` in the example above). This
// distinction is used below and in `Parser::parse_inner_attributes`.
let (mut ret, capture_trailing, use_pre_attr_pos) = {
let prev_capturing = mem::replace(&mut self.capture_state.capturing, Capturing::Yes);
let res = f(self, attrs.attrs);
self.capture_state.capturing = prev_capturing;
res?
};
// - `None`: Our target doesn't support tokens at all (e.g. `NtIdent`).
// - `Some(None)`: Our target supports tokens and has none.
// - `Some(Some(_))`: Our target already has tokens set (e.g. we've
// parsed something like `#[my_attr] $item`).
let ret_can_hold_tokens = matches!(ret.tokens_mut(), Some(None));
// Ignore any attributes we've previously processed. This happens when
// an inner call to `collect_tokens` returns an AST node and then an
// outer call ends up with the same AST node without any additional
// wrapping layer.
let mut seen_indices = FxHashSet::default();
for (i, attr) in ret.attrs().iter().enumerate() {
let is_unseen = self.capture_state.seen_attrs.insert(attr.id);
if !is_unseen {
seen_indices.insert(i);
}
}
let ret_attrs: Cow<'_, [Attribute]> =
if seen_indices.is_empty() {
Cow::Borrowed(ret.attrs())
} else {
let ret_attrs =
ret.attrs()
.iter()
.enumerate()
.filter_map(|(i, attr)| {
if seen_indices.contains(&i) { None } else { Some(attr.clone()) }
})
.collect();
Cow::Owned(ret_attrs)
};
// When we're not in "definite capture mode", then skip collecting and
// return early if `ret` doesn't support tokens or already has some.
//
// Note that this check is independent of `force_collect`. There's no
// need to collect tokens when we don't support tokens or already have
// tokens.
let definite_capture_mode = self.capture_cfg
&& matches!(self.capture_state.capturing, Capturing::Yes)
&& has_cfg_or_cfg_attr(&ret_attrs);
if !definite_capture_mode && !ret_can_hold_tokens {
return Ok(ret);
}
// This is similar to the `needs_collection` check at the start of this
// function, but now that we've parsed an AST node we have complete
// information available. (If we return early here that means the
// setup, such as cloning the token cursor, was unnecessary. That's
// hard to avoid.)
//
// We must collect if anything could observe the collected tokens, i.e.
// if any of the following conditions hold.
// - We are force collecting tokens.
let needs_collection = matches!(force_collect, ForceCollect::Yes)
// - Any of our outer *or* inner attributes require tokens.
// (`attr.attrs` was just outer attributes, but `ret.attrs()` is
// outer and inner attributes. So this check is more precise than
// the earlier `needs_tokens` check, and we don't need to
// check `R::SUPPORTS_CUSTOM_INNER_ATTRS`.)
|| needs_tokens(&ret_attrs)
// - We are in "definite capture mode", which requires that there
// are `#[cfg]` or `#[cfg_attr]` attributes. (During normal
// non-`capture_cfg` parsing, we don't need any special capturing
// for those attributes, because they're builtin.)
|| definite_capture_mode;
if !needs_collection {
return Ok(ret);
}
// Replace the post-attribute collection start position with the
// pre-attribute position supplied, if `f` indicated it is necessary.
// (The caller is responsible for providing a non-`None` `pre_attr_pos`
// if this is a possibility.)
if matches!(use_pre_attr_pos, UsePreAttrPos::Yes) {
collect_pos = pre_attr_pos.unwrap();
}
let parser_replacements_end = self.capture_state.parser_replacements.len();
assert!(
!(self.break_last_token > 0 && matches!(capture_trailing, Trailing::Yes)),
"Cannot have break_last_token > 0 and have trailing token"
);
assert!(self.break_last_token <= 2, "cannot break token more than twice");
let end_pos = self.num_bump_calls
+ capture_trailing as u32
// If we "broke" the last token (e.g. breaking a `>>` token once into `>` + `>`, or
// breaking a `>>=` token twice into `>` + `>` + `=`), then extend the range of
// captured tokens to include it, because the parser was not actually bumped past it.
// (Even if we broke twice, it was still just one token originally, hence the `1`.)
// When the `LazyAttrTokenStream` gets converted into an `AttrTokenStream`, we will
// rebreak that final token once or twice.
+ if self.break_last_token == 0 { 0 } else { 1 };
let num_calls = end_pos - collect_pos.start_pos;
// Take the captured `ParserRange`s for any inner attributes that we parsed in
// `Parser::parse_inner_attributes`, and pair them in a `ParserReplacement` with `None`,
// which means the relevant tokens will be removed. (More details below.)
let mut inner_attr_parser_replacements = Vec::new();
for attr in ret_attrs.iter() {
if attr.style == ast::AttrStyle::Inner {
if let Some(inner_attr_parser_range) =
self.capture_state.inner_attr_parser_ranges.remove(&attr.id)
{
inner_attr_parser_replacements.push((inner_attr_parser_range, None));
} else {
self.dcx().span_delayed_bug(attr.span, "Missing token range for attribute");
}
}
}
// This is hot enough for `deep-vector` that checking the conditions for an empty iterator
// is measurably faster than actually executing the iterator.
let node_replacements: Box<[_]> = if parser_replacements_start == parser_replacements_end
&& inner_attr_parser_replacements.is_empty()
{
Box::new([])
} else {
// Grab any replace ranges that occur *inside* the current AST node. Convert them
// from `ParserRange` form to `NodeRange` form. We will perform the actual
// replacement only when we convert the `LazyAttrTokenStream` to an
// `AttrTokenStream`.
self.capture_state.parser_replacements
[parser_replacements_start..parser_replacements_end]
.iter()
.cloned()
.chain(inner_attr_parser_replacements)
.map(|(parser_range, data)| {
(NodeRange::new(parser_range, collect_pos.start_pos), data)
})
.collect()
};
// What is the status here when parsing the example code at the top of this method?
//
// When parsing `g`:
// - `start_pos..end_pos` is `12..33` (`fn g { ... }`, excluding the outer attr).
// - `inner_attr_parser_replacements` has one entry (`ParserRange(17..27)`), to
// delete the inner attr's tokens.
// - This entry is converted to `NodeRange(5..15)` (relative to the `fn`) and put into
// the lazy tokens for `g`, i.e. deleting the inner attr from those tokens (if they get
// evaluated).
// - Those lazy tokens are also put into an `AttrsTarget` that is appended to `self`'s
// replace ranges at the bottom of this function, for processing when parsing `m`.
// - `parser_replacements_start..parser_replacements_end` is empty.
//
// When parsing `m`:
// - `start_pos..end_pos` is `0..34` (`mod m`, excluding the `#[cfg_eval]` attribute).
// - `inner_attr_parser_replacements` is empty.
// - `parser_replacements_start..parser_replacements_end` has one entry.
// - One `AttrsTarget` (added below when parsing `g`) to replace all of `g` (`3..33`,
// including its outer attribute), with:
// - `attrs`: includes the outer and the inner attr.
// - `tokens`: lazy tokens for `g` (with its inner attr deleted).
let tokens = LazyAttrTokenStream::new(LazyAttrTokenStreamImpl {
start_token: collect_pos.start_token,
cursor_snapshot: collect_pos.cursor_snapshot,
num_calls,
break_last_token: self.break_last_token,
node_replacements,
});
let mut tokens_used = false;
// If in "definite capture mode" we need to register a replace range
// for the `#[cfg]` and/or `#[cfg_attr]` attrs. This allows us to run
// eager cfg-expansion on the captured token stream.
if definite_capture_mode {
assert!(self.break_last_token == 0, "Should not have unglued last token with cfg attr");
// What is the status here when parsing the example code at the top of this method?
//
// When parsing `g`, we add one entry:
// - The pushed entry (`ParserRange(3..33)`) has a new `AttrsTarget` with:
// - `attrs`: includes the outer and the inner attr.
// - `tokens`: lazy tokens for `g` (with its inner attr deleted).
//
// When parsing `m`, we do nothing here.
// Set things up so that the entire AST node that we just parsed, including attributes,
// will be replaced with `target` in the lazy token stream. This will allow us to
// cfg-expand this AST node.
let start_pos =
if has_outer_attrs { attrs.start_pos.unwrap() } else { collect_pos.start_pos };
let target =
AttrsTarget { attrs: ret_attrs.iter().cloned().collect(), tokens: tokens.clone() };
tokens_used = true;
self.capture_state
.parser_replacements
.push((ParserRange(start_pos..end_pos), Some(target)));
} else if matches!(self.capture_state.capturing, Capturing::No) {
// Only clear the ranges once we've finished capturing entirely, i.e. we've finished
// the outermost call to this method.
self.capture_state.parser_replacements.clear();
self.capture_state.inner_attr_parser_ranges.clear();
self.capture_state.seen_attrs.clear();
}
// If we support tokens and don't already have them, store the newly captured tokens.
if let Some(target_tokens @ None) = ret.tokens_mut() {
tokens_used = true;
*target_tokens = Some(tokens);
}
assert!(tokens_used); // check we didn't create `tokens` unnecessarily
Ok(ret)
}
}
/// Converts a flattened iterator of tokens (including open and close delimiter tokens) into an
/// `AttrTokenStream`, creating an `AttrTokenTree::Delimited` for each matching pair of open and
/// close delims.
fn make_attr_token_stream(
iter: impl Iterator<Item = FlatToken>,
break_last_token: u32,
) -> AttrTokenStream {
#[derive(Debug)]
struct FrameData {
// This is `None` for the first frame, `Some` for all others.
open_delim_sp: Option<(Delimiter, Span, Spacing)>,
inner: Vec<AttrTokenTree>,
}
// The stack always has at least one element. Storing it separately makes for shorter code.
let mut stack_top = FrameData { open_delim_sp: None, inner: vec![] };
let mut stack_rest = vec![];
for flat_token in iter {
match flat_token {
FlatToken::Token((Token { kind: TokenKind::OpenDelim(delim), span }, spacing)) => {
stack_rest.push(mem::replace(
&mut stack_top,
FrameData { open_delim_sp: Some((delim, span, spacing)), inner: vec![] },
));
}
FlatToken::Token((Token { kind: TokenKind::CloseDelim(delim), span }, spacing)) => {
let frame_data = mem::replace(&mut stack_top, stack_rest.pop().unwrap());
let (open_delim, open_sp, open_spacing) = frame_data.open_delim_sp.unwrap();
assert!(
open_delim.eq_ignoring_invisible_origin(&delim),
"Mismatched open/close delims: open={open_delim:?} close={span:?}"
);
let dspan = DelimSpan::from_pair(open_sp, span);
let dspacing = DelimSpacing::new(open_spacing, spacing);
let stream = AttrTokenStream::new(frame_data.inner);
let delimited = AttrTokenTree::Delimited(dspan, dspacing, delim, stream);
stack_top.inner.push(delimited);
}
FlatToken::Token((token, spacing)) => {
stack_top.inner.push(AttrTokenTree::Token(token, spacing))
}
FlatToken::AttrsTarget(target) => {
stack_top.inner.push(AttrTokenTree::AttrsTarget(target))
}
FlatToken::Empty => {}
}
}
if break_last_token > 0 {
let last_token = stack_top.inner.pop().unwrap();
if let AttrTokenTree::Token(last_token, spacing) = last_token {
let (unglued, _) = last_token.kind.break_two_token_op(break_last_token).unwrap();
// Tokens are always ASCII chars, so we can use byte arithmetic here.
let mut first_span = last_token.span.shrink_to_lo();
first_span =
first_span.with_hi(first_span.lo() + rustc_span::BytePos(break_last_token));
stack_top.inner.push(AttrTokenTree::Token(Token::new(unglued, first_span), spacing));
} else {
panic!("Unexpected last token {last_token:?}")
}
}
AttrTokenStream::new(stack_top.inner)
}
/// Tokens are needed if:
/// - any non-single-segment attributes (other than doc comments) are present,
/// e.g. `rustfmt::skip`; or
/// - any `cfg_attr` attributes are present; or
/// - any single-segment, non-builtin attributes are present, e.g. `derive`,
/// `test`, `global_allocator`.
fn needs_tokens(attrs: &[ast::Attribute]) -> bool {
attrs.iter().any(|attr| match attr.ident() {
None => !attr.is_doc_comment(),
Some(ident) => {
ident.name == sym::cfg_attr || !rustc_feature::is_builtin_attr_name(ident.name)
}
})
}
// Some types are used a lot. Make sure they don't unintentionally get bigger.
#[cfg(target_pointer_width = "64")]
mod size_asserts {
use rustc_data_structures::static_assert_size;
use super::*;
// tidy-alphabetical-start
static_assert_size!(LazyAttrTokenStreamImpl, 96);
// tidy-alphabetical-end
}