mirror of
				https://github.com/rust-lang/rust.git
				synced 2025-10-31 13:04:42 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1223 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			1223 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
| use std::cmp;
 | ||
| use std::collections::BTreeSet;
 | ||
| use std::sync::Arc;
 | ||
| use std::time::{Duration, Instant};
 | ||
| 
 | ||
| use itertools::Itertools;
 | ||
| use rustc_abi::FIRST_VARIANT;
 | ||
| use rustc_ast as ast;
 | ||
| use rustc_ast::expand::allocator::{ALLOCATOR_METHODS, AllocatorKind, global_fn_name};
 | ||
| use rustc_attr_data_structures::OptimizeAttr;
 | ||
| use rustc_data_structures::fx::{FxHashMap, FxIndexSet};
 | ||
| use rustc_data_structures::profiling::{get_resident_set_size, print_time_passes_entry};
 | ||
| use rustc_data_structures::sync::{IntoDynSyncSend, par_map};
 | ||
| use rustc_data_structures::unord::UnordMap;
 | ||
| use rustc_hir::def_id::{DefId, LOCAL_CRATE};
 | ||
| use rustc_hir::lang_items::LangItem;
 | ||
| use rustc_hir::{ItemId, Target};
 | ||
| use rustc_metadata::EncodedMetadata;
 | ||
| use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrs;
 | ||
| use rustc_middle::middle::debugger_visualizer::{DebuggerVisualizerFile, DebuggerVisualizerType};
 | ||
| use rustc_middle::middle::exported_symbols::SymbolExportKind;
 | ||
| use rustc_middle::middle::{exported_symbols, lang_items};
 | ||
| use rustc_middle::mir::BinOp;
 | ||
| use rustc_middle::mir::interpret::ErrorHandled;
 | ||
| use rustc_middle::mir::mono::{CodegenUnit, CodegenUnitNameBuilder, MonoItem, MonoItemPartitions};
 | ||
| use rustc_middle::query::Providers;
 | ||
| use rustc_middle::ty::layout::{HasTyCtxt, HasTypingEnv, LayoutOf, TyAndLayout};
 | ||
| use rustc_middle::ty::{self, Instance, Ty, TyCtxt};
 | ||
| use rustc_middle::{bug, span_bug};
 | ||
| use rustc_session::Session;
 | ||
| use rustc_session::config::{self, CrateType, EntryFnType, OutputType};
 | ||
| use rustc_span::{DUMMY_SP, Symbol, sym};
 | ||
| use rustc_symbol_mangling::mangle_internal_symbol;
 | ||
| use rustc_trait_selection::infer::{BoundRegionConversionTime, TyCtxtInferExt};
 | ||
| use rustc_trait_selection::traits::{ObligationCause, ObligationCtxt};
 | ||
| use tracing::{debug, info};
 | ||
| 
 | ||
| use crate::assert_module_sources::CguReuse;
 | ||
| use crate::back::link::are_upstream_rust_objects_already_included;
 | ||
| use crate::back::metadata::create_compressed_metadata_file;
 | ||
| use crate::back::write::{
 | ||
|     ComputedLtoType, OngoingCodegen, compute_per_cgu_lto_type, start_async_codegen,
 | ||
|     submit_codegened_module_to_llvm, submit_post_lto_module_to_llvm, submit_pre_lto_module_to_llvm,
 | ||
| };
 | ||
| use crate::common::{self, IntPredicate, RealPredicate, TypeKind};
 | ||
| use crate::meth::load_vtable;
 | ||
| use crate::mir::operand::OperandValue;
 | ||
| use crate::mir::place::PlaceRef;
 | ||
| use crate::traits::*;
 | ||
| use crate::{
 | ||
|     CachedModuleCodegen, CodegenLintLevels, CompiledModule, CrateInfo, ModuleCodegen, ModuleKind,
 | ||
|     errors, meth, mir,
 | ||
| };
 | ||
| 
 | ||
| pub(crate) fn bin_op_to_icmp_predicate(op: BinOp, signed: bool) -> IntPredicate {
 | ||
|     match (op, signed) {
 | ||
|         (BinOp::Eq, _) => IntPredicate::IntEQ,
 | ||
|         (BinOp::Ne, _) => IntPredicate::IntNE,
 | ||
|         (BinOp::Lt, true) => IntPredicate::IntSLT,
 | ||
|         (BinOp::Lt, false) => IntPredicate::IntULT,
 | ||
|         (BinOp::Le, true) => IntPredicate::IntSLE,
 | ||
|         (BinOp::Le, false) => IntPredicate::IntULE,
 | ||
|         (BinOp::Gt, true) => IntPredicate::IntSGT,
 | ||
|         (BinOp::Gt, false) => IntPredicate::IntUGT,
 | ||
|         (BinOp::Ge, true) => IntPredicate::IntSGE,
 | ||
|         (BinOp::Ge, false) => IntPredicate::IntUGE,
 | ||
|         op => bug!("bin_op_to_icmp_predicate: expected comparison operator, found {:?}", op),
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| pub(crate) fn bin_op_to_fcmp_predicate(op: BinOp) -> RealPredicate {
 | ||
|     match op {
 | ||
|         BinOp::Eq => RealPredicate::RealOEQ,
 | ||
|         BinOp::Ne => RealPredicate::RealUNE,
 | ||
|         BinOp::Lt => RealPredicate::RealOLT,
 | ||
|         BinOp::Le => RealPredicate::RealOLE,
 | ||
|         BinOp::Gt => RealPredicate::RealOGT,
 | ||
|         BinOp::Ge => RealPredicate::RealOGE,
 | ||
|         op => bug!("bin_op_to_fcmp_predicate: expected comparison operator, found {:?}", op),
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| pub fn compare_simd_types<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
 | ||
|     bx: &mut Bx,
 | ||
|     lhs: Bx::Value,
 | ||
|     rhs: Bx::Value,
 | ||
|     t: Ty<'tcx>,
 | ||
|     ret_ty: Bx::Type,
 | ||
|     op: BinOp,
 | ||
| ) -> Bx::Value {
 | ||
|     let signed = match t.kind() {
 | ||
|         ty::Float(_) => {
 | ||
|             let cmp = bin_op_to_fcmp_predicate(op);
 | ||
|             let cmp = bx.fcmp(cmp, lhs, rhs);
 | ||
|             return bx.sext(cmp, ret_ty);
 | ||
|         }
 | ||
|         ty::Uint(_) => false,
 | ||
|         ty::Int(_) => true,
 | ||
|         _ => bug!("compare_simd_types: invalid SIMD type"),
 | ||
|     };
 | ||
| 
 | ||
|     let cmp = bin_op_to_icmp_predicate(op, signed);
 | ||
|     let cmp = bx.icmp(cmp, lhs, rhs);
 | ||
|     // LLVM outputs an `< size x i1 >`, so we need to perform a sign extension
 | ||
|     // to get the correctly sized type. This will compile to a single instruction
 | ||
|     // once the IR is converted to assembly if the SIMD instruction is supported
 | ||
|     // by the target architecture.
 | ||
|     bx.sext(cmp, ret_ty)
 | ||
| }
 | ||
| 
 | ||
| /// Codegen takes advantage of the additional assumption, where if the
 | ||
| /// principal trait def id of what's being casted doesn't change,
 | ||
| /// then we don't need to adjust the vtable at all. This
 | ||
| /// corresponds to the fact that `dyn Tr<A>: Unsize<dyn Tr<B>>`
 | ||
| /// requires that `A = B`; we don't allow *upcasting* objects
 | ||
| /// between the same trait with different args. If we, for
 | ||
| /// some reason, were to relax the `Unsize` trait, it could become
 | ||
| /// unsound, so let's validate here that the trait refs are subtypes.
 | ||
| pub fn validate_trivial_unsize<'tcx>(
 | ||
|     tcx: TyCtxt<'tcx>,
 | ||
|     source_data: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
 | ||
|     target_data: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
 | ||
| ) -> bool {
 | ||
|     match (source_data.principal(), target_data.principal()) {
 | ||
|         (Some(hr_source_principal), Some(hr_target_principal)) => {
 | ||
|             let (infcx, param_env) =
 | ||
|                 tcx.infer_ctxt().build_with_typing_env(ty::TypingEnv::fully_monomorphized());
 | ||
|             let universe = infcx.universe();
 | ||
|             let ocx = ObligationCtxt::new(&infcx);
 | ||
|             infcx.enter_forall(hr_target_principal, |target_principal| {
 | ||
|                 let source_principal = infcx.instantiate_binder_with_fresh_vars(
 | ||
|                     DUMMY_SP,
 | ||
|                     BoundRegionConversionTime::HigherRankedType,
 | ||
|                     hr_source_principal,
 | ||
|                 );
 | ||
|                 let Ok(()) = ocx.eq(
 | ||
|                     &ObligationCause::dummy(),
 | ||
|                     param_env,
 | ||
|                     target_principal,
 | ||
|                     source_principal,
 | ||
|                 ) else {
 | ||
|                     return false;
 | ||
|                 };
 | ||
|                 if !ocx.select_all_or_error().is_empty() {
 | ||
|                     return false;
 | ||
|                 }
 | ||
|                 infcx.leak_check(universe, None).is_ok()
 | ||
|             })
 | ||
|         }
 | ||
|         (_, None) => true,
 | ||
|         _ => false,
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /// Retrieves the information we are losing (making dynamic) in an unsizing
 | ||
| /// adjustment.
 | ||
| ///
 | ||
| /// The `old_info` argument is a bit odd. It is intended for use in an upcast,
 | ||
| /// where the new vtable for an object will be derived from the old one.
 | ||
| fn unsized_info<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
 | ||
|     bx: &mut Bx,
 | ||
|     source: Ty<'tcx>,
 | ||
|     target: Ty<'tcx>,
 | ||
|     old_info: Option<Bx::Value>,
 | ||
| ) -> Bx::Value {
 | ||
|     let cx = bx.cx();
 | ||
|     let (source, target) =
 | ||
|         cx.tcx().struct_lockstep_tails_for_codegen(source, target, bx.typing_env());
 | ||
|     match (source.kind(), target.kind()) {
 | ||
|         (&ty::Array(_, len), &ty::Slice(_)) => cx.const_usize(
 | ||
|             len.try_to_target_usize(cx.tcx()).expect("expected monomorphic const in codegen"),
 | ||
|         ),
 | ||
|         (&ty::Dynamic(data_a, _, src_dyn_kind), &ty::Dynamic(data_b, _, target_dyn_kind))
 | ||
|             if src_dyn_kind == target_dyn_kind =>
 | ||
|         {
 | ||
|             let old_info =
 | ||
|                 old_info.expect("unsized_info: missing old info for trait upcasting coercion");
 | ||
|             let b_principal_def_id = data_b.principal_def_id();
 | ||
|             if data_a.principal_def_id() == b_principal_def_id || b_principal_def_id.is_none() {
 | ||
|                 // Codegen takes advantage of the additional assumption, where if the
 | ||
|                 // principal trait def id of what's being casted doesn't change,
 | ||
|                 // then we don't need to adjust the vtable at all. This
 | ||
|                 // corresponds to the fact that `dyn Tr<A>: Unsize<dyn Tr<B>>`
 | ||
|                 // requires that `A = B`; we don't allow *upcasting* objects
 | ||
|                 // between the same trait with different args. If we, for
 | ||
|                 // some reason, were to relax the `Unsize` trait, it could become
 | ||
|                 // unsound, so let's assert here that the trait refs are *equal*.
 | ||
|                 debug_assert!(
 | ||
|                     validate_trivial_unsize(cx.tcx(), data_a, data_b),
 | ||
|                     "NOP unsize vtable changed principal trait ref: {data_a} -> {data_b}"
 | ||
|                 );
 | ||
| 
 | ||
|                 // A NOP cast that doesn't actually change anything, let's avoid any
 | ||
|                 // unnecessary work. This relies on the assumption that if the principal
 | ||
|                 // traits are equal, then the associated type bounds (`dyn Trait<Assoc=T>`)
 | ||
|                 // are also equal, which is ensured by the fact that normalization is
 | ||
|                 // a function and we do not allow overlapping impls.
 | ||
|                 return old_info;
 | ||
|             }
 | ||
| 
 | ||
|             // trait upcasting coercion
 | ||
| 
 | ||
|             let vptr_entry_idx = cx.tcx().supertrait_vtable_slot((source, target));
 | ||
| 
 | ||
|             if let Some(entry_idx) = vptr_entry_idx {
 | ||
|                 let ptr_size = bx.data_layout().pointer_size;
 | ||
|                 let vtable_byte_offset = u64::try_from(entry_idx).unwrap() * ptr_size.bytes();
 | ||
|                 load_vtable(bx, old_info, bx.type_ptr(), vtable_byte_offset, source, true)
 | ||
|             } else {
 | ||
|                 old_info
 | ||
|             }
 | ||
|         }
 | ||
|         (_, ty::Dynamic(data, _, _)) => meth::get_vtable(
 | ||
|             cx,
 | ||
|             source,
 | ||
|             data.principal()
 | ||
|                 .map(|principal| bx.tcx().instantiate_bound_regions_with_erased(principal)),
 | ||
|         ),
 | ||
|         _ => bug!("unsized_info: invalid unsizing {:?} -> {:?}", source, target),
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /// Coerces `src` to `dst_ty`. `src_ty` must be a pointer.
 | ||
| pub(crate) fn unsize_ptr<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
 | ||
|     bx: &mut Bx,
 | ||
|     src: Bx::Value,
 | ||
|     src_ty: Ty<'tcx>,
 | ||
|     dst_ty: Ty<'tcx>,
 | ||
|     old_info: Option<Bx::Value>,
 | ||
| ) -> (Bx::Value, Bx::Value) {
 | ||
|     debug!("unsize_ptr: {:?} => {:?}", src_ty, dst_ty);
 | ||
|     match (src_ty.kind(), dst_ty.kind()) {
 | ||
|         (&ty::Ref(_, a, _), &ty::Ref(_, b, _) | &ty::RawPtr(b, _))
 | ||
|         | (&ty::RawPtr(a, _), &ty::RawPtr(b, _)) => {
 | ||
|             assert_eq!(bx.cx().type_is_sized(a), old_info.is_none());
 | ||
|             (src, unsized_info(bx, a, b, old_info))
 | ||
|         }
 | ||
|         (&ty::Adt(def_a, _), &ty::Adt(def_b, _)) => {
 | ||
|             assert_eq!(def_a, def_b); // implies same number of fields
 | ||
|             let src_layout = bx.cx().layout_of(src_ty);
 | ||
|             let dst_layout = bx.cx().layout_of(dst_ty);
 | ||
|             if src_ty == dst_ty {
 | ||
|                 return (src, old_info.unwrap());
 | ||
|             }
 | ||
|             let mut result = None;
 | ||
|             for i in 0..src_layout.fields.count() {
 | ||
|                 let src_f = src_layout.field(bx.cx(), i);
 | ||
|                 if src_f.is_1zst() {
 | ||
|                     // We are looking for the one non-1-ZST field; this is not it.
 | ||
|                     continue;
 | ||
|                 }
 | ||
| 
 | ||
|                 assert_eq!(src_layout.fields.offset(i).bytes(), 0);
 | ||
|                 assert_eq!(dst_layout.fields.offset(i).bytes(), 0);
 | ||
|                 assert_eq!(src_layout.size, src_f.size);
 | ||
| 
 | ||
|                 let dst_f = dst_layout.field(bx.cx(), i);
 | ||
|                 assert_ne!(src_f.ty, dst_f.ty);
 | ||
|                 assert_eq!(result, None);
 | ||
|                 result = Some(unsize_ptr(bx, src, src_f.ty, dst_f.ty, old_info));
 | ||
|             }
 | ||
|             result.unwrap()
 | ||
|         }
 | ||
|         _ => bug!("unsize_ptr: called on bad types"),
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /// Coerces `src` to `dst_ty` which is guaranteed to be a `dyn*` type.
 | ||
| pub(crate) fn cast_to_dyn_star<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
 | ||
|     bx: &mut Bx,
 | ||
|     src: Bx::Value,
 | ||
|     src_ty_and_layout: TyAndLayout<'tcx>,
 | ||
|     dst_ty: Ty<'tcx>,
 | ||
|     old_info: Option<Bx::Value>,
 | ||
| ) -> (Bx::Value, Bx::Value) {
 | ||
|     debug!("cast_to_dyn_star: {:?} => {:?}", src_ty_and_layout.ty, dst_ty);
 | ||
|     assert!(
 | ||
|         matches!(dst_ty.kind(), ty::Dynamic(_, _, ty::DynStar)),
 | ||
|         "destination type must be a dyn*"
 | ||
|     );
 | ||
|     let src = match bx.cx().type_kind(bx.cx().backend_type(src_ty_and_layout)) {
 | ||
|         TypeKind::Pointer => src,
 | ||
|         TypeKind::Integer => bx.inttoptr(src, bx.type_ptr()),
 | ||
|         // FIXME(dyn-star): We probably have to do a bitcast first, then inttoptr.
 | ||
|         kind => bug!("unexpected TypeKind for left-hand side of `dyn*` cast: {kind:?}"),
 | ||
|     };
 | ||
|     (src, unsized_info(bx, src_ty_and_layout.ty, dst_ty, old_info))
 | ||
| }
 | ||
| 
 | ||
| /// Coerces `src`, which is a reference to a value of type `src_ty`,
 | ||
| /// to a value of type `dst_ty`, and stores the result in `dst`.
 | ||
| pub(crate) fn coerce_unsized_into<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
 | ||
|     bx: &mut Bx,
 | ||
|     src: PlaceRef<'tcx, Bx::Value>,
 | ||
|     dst: PlaceRef<'tcx, Bx::Value>,
 | ||
| ) {
 | ||
|     let src_ty = src.layout.ty;
 | ||
|     let dst_ty = dst.layout.ty;
 | ||
|     match (src_ty.kind(), dst_ty.kind()) {
 | ||
|         (&ty::Ref(..), &ty::Ref(..) | &ty::RawPtr(..)) | (&ty::RawPtr(..), &ty::RawPtr(..)) => {
 | ||
|             let (base, info) = match bx.load_operand(src).val {
 | ||
|                 OperandValue::Pair(base, info) => unsize_ptr(bx, base, src_ty, dst_ty, Some(info)),
 | ||
|                 OperandValue::Immediate(base) => unsize_ptr(bx, base, src_ty, dst_ty, None),
 | ||
|                 OperandValue::Ref(..) | OperandValue::ZeroSized => bug!(),
 | ||
|             };
 | ||
|             OperandValue::Pair(base, info).store(bx, dst);
 | ||
|         }
 | ||
| 
 | ||
|         (&ty::Adt(def_a, _), &ty::Adt(def_b, _)) => {
 | ||
|             assert_eq!(def_a, def_b); // implies same number of fields
 | ||
| 
 | ||
|             for i in def_a.variant(FIRST_VARIANT).fields.indices() {
 | ||
|                 let src_f = src.project_field(bx, i.as_usize());
 | ||
|                 let dst_f = dst.project_field(bx, i.as_usize());
 | ||
| 
 | ||
|                 if dst_f.layout.is_zst() {
 | ||
|                     // No data here, nothing to copy/coerce.
 | ||
|                     continue;
 | ||
|                 }
 | ||
| 
 | ||
|                 if src_f.layout.ty == dst_f.layout.ty {
 | ||
|                     bx.typed_place_copy(dst_f.val, src_f.val, src_f.layout);
 | ||
|                 } else {
 | ||
|                     coerce_unsized_into(bx, src_f, dst_f);
 | ||
|                 }
 | ||
|             }
 | ||
|         }
 | ||
|         _ => bug!("coerce_unsized_into: invalid coercion {:?} -> {:?}", src_ty, dst_ty,),
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /// Returns `rhs` sufficiently masked, truncated, and/or extended so that it can be used to shift
 | ||
| /// `lhs`: it has the same size as `lhs`, and the value, when interpreted unsigned (no matter its
 | ||
| /// type), will not exceed the size of `lhs`.
 | ||
| ///
 | ||
| /// Shifts in MIR are all allowed to have mismatched LHS & RHS types, and signed RHS.
 | ||
| /// The shift methods in `BuilderMethods`, however, are fully homogeneous
 | ||
| /// (both parameters and the return type are all the same size) and assume an unsigned RHS.
 | ||
| ///
 | ||
| /// If `is_unchecked` is false, this masks the RHS to ensure it stays in-bounds,
 | ||
| /// as the `BuilderMethods` shifts are UB for out-of-bounds shift amounts.
 | ||
| /// For 32- and 64-bit types, this matches the semantics
 | ||
| /// of Java. (See related discussion on #1877 and #10183.)
 | ||
| ///
 | ||
| /// If `is_unchecked` is true, this does no masking, and adds sufficient `assume`
 | ||
| /// calls or operation flags to preserve as much freedom to optimize as possible.
 | ||
| pub(crate) fn build_shift_expr_rhs<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
 | ||
|     bx: &mut Bx,
 | ||
|     lhs: Bx::Value,
 | ||
|     mut rhs: Bx::Value,
 | ||
|     is_unchecked: bool,
 | ||
| ) -> Bx::Value {
 | ||
|     // Shifts may have any size int on the rhs
 | ||
|     let mut rhs_llty = bx.cx().val_ty(rhs);
 | ||
|     let mut lhs_llty = bx.cx().val_ty(lhs);
 | ||
| 
 | ||
|     let mask = common::shift_mask_val(bx, lhs_llty, rhs_llty, false);
 | ||
|     if !is_unchecked {
 | ||
|         rhs = bx.and(rhs, mask);
 | ||
|     }
 | ||
| 
 | ||
|     if bx.cx().type_kind(rhs_llty) == TypeKind::Vector {
 | ||
|         rhs_llty = bx.cx().element_type(rhs_llty)
 | ||
|     }
 | ||
|     if bx.cx().type_kind(lhs_llty) == TypeKind::Vector {
 | ||
|         lhs_llty = bx.cx().element_type(lhs_llty)
 | ||
|     }
 | ||
|     let rhs_sz = bx.cx().int_width(rhs_llty);
 | ||
|     let lhs_sz = bx.cx().int_width(lhs_llty);
 | ||
|     if lhs_sz < rhs_sz {
 | ||
|         if is_unchecked { bx.unchecked_utrunc(rhs, lhs_llty) } else { bx.trunc(rhs, lhs_llty) }
 | ||
|     } else if lhs_sz > rhs_sz {
 | ||
|         // We zero-extend even if the RHS is signed. So e.g. `(x: i32) << -1i8` will zero-extend the
 | ||
|         // RHS to `255i32`. But then we mask the shift amount to be within the size of the LHS
 | ||
|         // anyway so the result is `31` as it should be. All the extra bits introduced by zext
 | ||
|         // are masked off so their value does not matter.
 | ||
|         // FIXME: if we ever support 512bit integers, this will be wrong! For such large integers,
 | ||
|         // the extra bits introduced by zext are *not* all masked away any more.
 | ||
|         assert!(lhs_sz <= 256);
 | ||
|         bx.zext(rhs, lhs_llty)
 | ||
|     } else {
 | ||
|         rhs
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| // Returns `true` if this session's target will use native wasm
 | ||
| // exceptions. This means that the VM does the unwinding for
 | ||
| // us
 | ||
| pub fn wants_wasm_eh(sess: &Session) -> bool {
 | ||
|     sess.target.is_like_wasm
 | ||
|         && (sess.target.os != "emscripten" || sess.opts.unstable_opts.emscripten_wasm_eh)
 | ||
| }
 | ||
| 
 | ||
| /// Returns `true` if this session's target will use SEH-based unwinding.
 | ||
| ///
 | ||
| /// This is only true for MSVC targets, and even then the 64-bit MSVC target
 | ||
| /// currently uses SEH-ish unwinding with DWARF info tables to the side (same as
 | ||
| /// 64-bit MinGW) instead of "full SEH".
 | ||
| pub fn wants_msvc_seh(sess: &Session) -> bool {
 | ||
|     sess.target.is_like_msvc
 | ||
| }
 | ||
| 
 | ||
| /// Returns `true` if this session's target requires the new exception
 | ||
| /// handling LLVM IR instructions (catchpad / cleanuppad / ... instead
 | ||
| /// of landingpad)
 | ||
| pub(crate) fn wants_new_eh_instructions(sess: &Session) -> bool {
 | ||
|     wants_wasm_eh(sess) || wants_msvc_seh(sess)
 | ||
| }
 | ||
| 
 | ||
| pub(crate) fn codegen_instance<'a, 'tcx: 'a, Bx: BuilderMethods<'a, 'tcx>>(
 | ||
|     cx: &'a Bx::CodegenCx,
 | ||
|     instance: Instance<'tcx>,
 | ||
| ) {
 | ||
|     // this is an info! to allow collecting monomorphization statistics
 | ||
|     // and to allow finding the last function before LLVM aborts from
 | ||
|     // release builds.
 | ||
|     info!("codegen_instance({})", instance);
 | ||
| 
 | ||
|     mir::codegen_mir::<Bx>(cx, instance);
 | ||
| }
 | ||
| 
 | ||
| pub fn codegen_global_asm<'tcx, Cx>(cx: &mut Cx, item_id: ItemId)
 | ||
| where
 | ||
|     Cx: LayoutOf<'tcx, LayoutOfResult = TyAndLayout<'tcx>> + AsmCodegenMethods<'tcx>,
 | ||
| {
 | ||
|     let item = cx.tcx().hir_item(item_id);
 | ||
|     if let rustc_hir::ItemKind::GlobalAsm { asm, .. } = item.kind {
 | ||
|         let operands: Vec<_> = asm
 | ||
|             .operands
 | ||
|             .iter()
 | ||
|             .map(|(op, op_sp)| match *op {
 | ||
|                 rustc_hir::InlineAsmOperand::Const { ref anon_const } => {
 | ||
|                     match cx.tcx().const_eval_poly(anon_const.def_id.to_def_id()) {
 | ||
|                         Ok(const_value) => {
 | ||
|                             let ty =
 | ||
|                                 cx.tcx().typeck_body(anon_const.body).node_type(anon_const.hir_id);
 | ||
|                             let string = common::asm_const_to_str(
 | ||
|                                 cx.tcx(),
 | ||
|                                 *op_sp,
 | ||
|                                 const_value,
 | ||
|                                 cx.layout_of(ty),
 | ||
|                             );
 | ||
|                             GlobalAsmOperandRef::Const { string }
 | ||
|                         }
 | ||
|                         Err(ErrorHandled::Reported { .. }) => {
 | ||
|                             // An error has already been reported and
 | ||
|                             // compilation is guaranteed to fail if execution
 | ||
|                             // hits this path. So an empty string instead of
 | ||
|                             // a stringified constant value will suffice.
 | ||
|                             GlobalAsmOperandRef::Const { string: String::new() }
 | ||
|                         }
 | ||
|                         Err(ErrorHandled::TooGeneric(_)) => {
 | ||
|                             span_bug!(*op_sp, "asm const cannot be resolved; too generic")
 | ||
|                         }
 | ||
|                     }
 | ||
|                 }
 | ||
|                 rustc_hir::InlineAsmOperand::SymFn { expr } => {
 | ||
|                     let ty = cx.tcx().typeck(item_id.owner_id).expr_ty(expr);
 | ||
|                     let instance = match ty.kind() {
 | ||
|                         &ty::FnDef(def_id, args) => Instance::expect_resolve(
 | ||
|                             cx.tcx(),
 | ||
|                             ty::TypingEnv::fully_monomorphized(),
 | ||
|                             def_id,
 | ||
|                             args,
 | ||
|                             expr.span,
 | ||
|                         ),
 | ||
|                         _ => span_bug!(*op_sp, "asm sym is not a function"),
 | ||
|                     };
 | ||
| 
 | ||
|                     GlobalAsmOperandRef::SymFn { instance }
 | ||
|                 }
 | ||
|                 rustc_hir::InlineAsmOperand::SymStatic { path: _, def_id } => {
 | ||
|                     GlobalAsmOperandRef::SymStatic { def_id }
 | ||
|                 }
 | ||
|                 rustc_hir::InlineAsmOperand::In { .. }
 | ||
|                 | rustc_hir::InlineAsmOperand::Out { .. }
 | ||
|                 | rustc_hir::InlineAsmOperand::InOut { .. }
 | ||
|                 | rustc_hir::InlineAsmOperand::SplitInOut { .. }
 | ||
|                 | rustc_hir::InlineAsmOperand::Label { .. } => {
 | ||
|                     span_bug!(*op_sp, "invalid operand type for global_asm!")
 | ||
|                 }
 | ||
|             })
 | ||
|             .collect();
 | ||
| 
 | ||
|         cx.codegen_global_asm(asm.template, &operands, asm.options, asm.line_spans);
 | ||
|     } else {
 | ||
|         span_bug!(item.span, "Mismatch between hir::Item type and MonoItem type")
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /// Creates the `main` function which will initialize the rust runtime and call
 | ||
| /// users main function.
 | ||
| pub fn maybe_create_entry_wrapper<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
 | ||
|     cx: &'a Bx::CodegenCx,
 | ||
| ) -> Option<Bx::Function> {
 | ||
|     let (main_def_id, entry_type) = cx.tcx().entry_fn(())?;
 | ||
|     let main_is_local = main_def_id.is_local();
 | ||
|     let instance = Instance::mono(cx.tcx(), main_def_id);
 | ||
| 
 | ||
|     if main_is_local {
 | ||
|         // We want to create the wrapper in the same codegen unit as Rust's main
 | ||
|         // function.
 | ||
|         if !cx.codegen_unit().contains_item(&MonoItem::Fn(instance)) {
 | ||
|             return None;
 | ||
|         }
 | ||
|     } else if !cx.codegen_unit().is_primary() {
 | ||
|         // We want to create the wrapper only when the codegen unit is the primary one
 | ||
|         return None;
 | ||
|     }
 | ||
| 
 | ||
|     let main_llfn = cx.get_fn_addr(instance);
 | ||
| 
 | ||
|     let entry_fn = create_entry_fn::<Bx>(cx, main_llfn, main_def_id, entry_type);
 | ||
|     return Some(entry_fn);
 | ||
| 
 | ||
|     fn create_entry_fn<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
 | ||
|         cx: &'a Bx::CodegenCx,
 | ||
|         rust_main: Bx::Value,
 | ||
|         rust_main_def_id: DefId,
 | ||
|         entry_type: EntryFnType,
 | ||
|     ) -> Bx::Function {
 | ||
|         // The entry function is either `int main(void)` or `int main(int argc, char **argv)`, or
 | ||
|         // `usize efi_main(void *handle, void *system_table)` depending on the target.
 | ||
|         let llfty = if cx.sess().target.os.contains("uefi") {
 | ||
|             cx.type_func(&[cx.type_ptr(), cx.type_ptr()], cx.type_isize())
 | ||
|         } else if cx.sess().target.main_needs_argc_argv {
 | ||
|             cx.type_func(&[cx.type_int(), cx.type_ptr()], cx.type_int())
 | ||
|         } else {
 | ||
|             cx.type_func(&[], cx.type_int())
 | ||
|         };
 | ||
| 
 | ||
|         let main_ret_ty = cx.tcx().fn_sig(rust_main_def_id).no_bound_vars().unwrap().output();
 | ||
|         // Given that `main()` has no arguments,
 | ||
|         // then its return type cannot have
 | ||
|         // late-bound regions, since late-bound
 | ||
|         // regions must appear in the argument
 | ||
|         // listing.
 | ||
|         let main_ret_ty = cx
 | ||
|             .tcx()
 | ||
|             .normalize_erasing_regions(cx.typing_env(), main_ret_ty.no_bound_vars().unwrap());
 | ||
| 
 | ||
|         let Some(llfn) = cx.declare_c_main(llfty) else {
 | ||
|             // FIXME: We should be smart and show a better diagnostic here.
 | ||
|             let span = cx.tcx().def_span(rust_main_def_id);
 | ||
|             cx.tcx().dcx().emit_fatal(errors::MultipleMainFunctions { span });
 | ||
|         };
 | ||
| 
 | ||
|         // `main` should respect same config for frame pointer elimination as rest of code
 | ||
|         cx.set_frame_pointer_type(llfn);
 | ||
|         cx.apply_target_cpu_attr(llfn);
 | ||
| 
 | ||
|         let llbb = Bx::append_block(cx, llfn, "top");
 | ||
|         let mut bx = Bx::build(cx, llbb);
 | ||
| 
 | ||
|         bx.insert_reference_to_gdb_debug_scripts_section_global();
 | ||
| 
 | ||
|         let isize_ty = cx.type_isize();
 | ||
|         let ptr_ty = cx.type_ptr();
 | ||
|         let (arg_argc, arg_argv) = get_argc_argv(&mut bx);
 | ||
| 
 | ||
|         let EntryFnType::Main { sigpipe } = entry_type;
 | ||
|         let (start_fn, start_ty, args, instance) = {
 | ||
|             let start_def_id = cx.tcx().require_lang_item(LangItem::Start, None);
 | ||
|             let start_instance = ty::Instance::expect_resolve(
 | ||
|                 cx.tcx(),
 | ||
|                 cx.typing_env(),
 | ||
|                 start_def_id,
 | ||
|                 cx.tcx().mk_args(&[main_ret_ty.into()]),
 | ||
|                 DUMMY_SP,
 | ||
|             );
 | ||
|             let start_fn = cx.get_fn_addr(start_instance);
 | ||
| 
 | ||
|             let i8_ty = cx.type_i8();
 | ||
|             let arg_sigpipe = bx.const_u8(sigpipe);
 | ||
| 
 | ||
|             let start_ty = cx.type_func(&[cx.val_ty(rust_main), isize_ty, ptr_ty, i8_ty], isize_ty);
 | ||
|             (
 | ||
|                 start_fn,
 | ||
|                 start_ty,
 | ||
|                 vec![rust_main, arg_argc, arg_argv, arg_sigpipe],
 | ||
|                 Some(start_instance),
 | ||
|             )
 | ||
|         };
 | ||
| 
 | ||
|         let result = bx.call(start_ty, None, None, start_fn, &args, None, instance);
 | ||
|         if cx.sess().target.os.contains("uefi") {
 | ||
|             bx.ret(result);
 | ||
|         } else {
 | ||
|             let cast = bx.intcast(result, cx.type_int(), true);
 | ||
|             bx.ret(cast);
 | ||
|         }
 | ||
| 
 | ||
|         llfn
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /// Obtain the `argc` and `argv` values to pass to the rust start function
 | ||
| /// (i.e., the "start" lang item).
 | ||
| fn get_argc_argv<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(bx: &mut Bx) -> (Bx::Value, Bx::Value) {
 | ||
|     if bx.cx().sess().target.os.contains("uefi") {
 | ||
|         // Params for UEFI
 | ||
|         let param_handle = bx.get_param(0);
 | ||
|         let param_system_table = bx.get_param(1);
 | ||
|         let ptr_size = bx.tcx().data_layout.pointer_size;
 | ||
|         let ptr_align = bx.tcx().data_layout.pointer_align.abi;
 | ||
|         let arg_argc = bx.const_int(bx.cx().type_isize(), 2);
 | ||
|         let arg_argv = bx.alloca(2 * ptr_size, ptr_align);
 | ||
|         bx.store(param_handle, arg_argv, ptr_align);
 | ||
|         let arg_argv_el1 = bx.inbounds_ptradd(arg_argv, bx.const_usize(ptr_size.bytes()));
 | ||
|         bx.store(param_system_table, arg_argv_el1, ptr_align);
 | ||
|         (arg_argc, arg_argv)
 | ||
|     } else if bx.cx().sess().target.main_needs_argc_argv {
 | ||
|         // Params from native `main()` used as args for rust start function
 | ||
|         let param_argc = bx.get_param(0);
 | ||
|         let param_argv = bx.get_param(1);
 | ||
|         let arg_argc = bx.intcast(param_argc, bx.cx().type_isize(), true);
 | ||
|         let arg_argv = param_argv;
 | ||
|         (arg_argc, arg_argv)
 | ||
|     } else {
 | ||
|         // The Rust start function doesn't need `argc` and `argv`, so just pass zeros.
 | ||
|         let arg_argc = bx.const_int(bx.cx().type_int(), 0);
 | ||
|         let arg_argv = bx.const_null(bx.cx().type_ptr());
 | ||
|         (arg_argc, arg_argv)
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /// This function returns all of the debugger visualizers specified for the
 | ||
| /// current crate as well as all upstream crates transitively that match the
 | ||
| /// `visualizer_type` specified.
 | ||
| pub fn collect_debugger_visualizers_transitive(
 | ||
|     tcx: TyCtxt<'_>,
 | ||
|     visualizer_type: DebuggerVisualizerType,
 | ||
| ) -> BTreeSet<DebuggerVisualizerFile> {
 | ||
|     tcx.debugger_visualizers(LOCAL_CRATE)
 | ||
|         .iter()
 | ||
|         .chain(
 | ||
|             tcx.crates(())
 | ||
|                 .iter()
 | ||
|                 .filter(|&cnum| {
 | ||
|                     let used_crate_source = tcx.used_crate_source(*cnum);
 | ||
|                     used_crate_source.rlib.is_some() || used_crate_source.rmeta.is_some()
 | ||
|                 })
 | ||
|                 .flat_map(|&cnum| tcx.debugger_visualizers(cnum)),
 | ||
|         )
 | ||
|         .filter(|visualizer| visualizer.visualizer_type == visualizer_type)
 | ||
|         .cloned()
 | ||
|         .collect::<BTreeSet<_>>()
 | ||
| }
 | ||
| 
 | ||
| /// Decide allocator kind to codegen. If `Some(_)` this will be the same as
 | ||
| /// `tcx.allocator_kind`, but it may be `None` in more cases (e.g. if using
 | ||
| /// allocator definitions from a dylib dependency).
 | ||
| pub fn allocator_kind_for_codegen(tcx: TyCtxt<'_>) -> Option<AllocatorKind> {
 | ||
|     // If the crate doesn't have an `allocator_kind` set then there's definitely
 | ||
|     // no shim to generate. Otherwise we also check our dependency graph for all
 | ||
|     // our output crate types. If anything there looks like its a `Dynamic`
 | ||
|     // linkage, then it's already got an allocator shim and we'll be using that
 | ||
|     // one instead. If nothing exists then it's our job to generate the
 | ||
|     // allocator!
 | ||
|     let any_dynamic_crate = tcx.dependency_formats(()).iter().any(|(_, list)| {
 | ||
|         use rustc_middle::middle::dependency_format::Linkage;
 | ||
|         list.iter().any(|&linkage| linkage == Linkage::Dynamic)
 | ||
|     });
 | ||
|     if any_dynamic_crate { None } else { tcx.allocator_kind(()) }
 | ||
| }
 | ||
| 
 | ||
| pub fn codegen_crate<B: ExtraBackendMethods>(
 | ||
|     backend: B,
 | ||
|     tcx: TyCtxt<'_>,
 | ||
|     target_cpu: String,
 | ||
|     metadata: EncodedMetadata,
 | ||
|     need_metadata_module: bool,
 | ||
| ) -> OngoingCodegen<B> {
 | ||
|     // Skip crate items and just output metadata in -Z no-codegen mode.
 | ||
|     if tcx.sess.opts.unstable_opts.no_codegen || !tcx.sess.opts.output_types.should_codegen() {
 | ||
|         let ongoing_codegen = start_async_codegen(backend, tcx, target_cpu, metadata, None);
 | ||
| 
 | ||
|         ongoing_codegen.codegen_finished(tcx);
 | ||
| 
 | ||
|         ongoing_codegen.check_for_errors(tcx.sess);
 | ||
| 
 | ||
|         return ongoing_codegen;
 | ||
|     }
 | ||
| 
 | ||
|     if tcx.sess.target.need_explicit_cpu && tcx.sess.opts.cg.target_cpu.is_none() {
 | ||
|         // The target has no default cpu, but none is set explicitly
 | ||
|         tcx.dcx().emit_fatal(errors::CpuRequired);
 | ||
|     }
 | ||
| 
 | ||
|     let cgu_name_builder = &mut CodegenUnitNameBuilder::new(tcx);
 | ||
| 
 | ||
|     // Run the monomorphization collector and partition the collected items into
 | ||
|     // codegen units.
 | ||
|     let MonoItemPartitions { codegen_units, autodiff_items, .. } =
 | ||
|         tcx.collect_and_partition_mono_items(());
 | ||
|     let autodiff_fncs = autodiff_items.to_vec();
 | ||
| 
 | ||
|     // Force all codegen_unit queries so they are already either red or green
 | ||
|     // when compile_codegen_unit accesses them. We are not able to re-execute
 | ||
|     // the codegen_unit query from just the DepNode, so an unknown color would
 | ||
|     // lead to having to re-execute compile_codegen_unit, possibly
 | ||
|     // unnecessarily.
 | ||
|     if tcx.dep_graph.is_fully_enabled() {
 | ||
|         for cgu in codegen_units {
 | ||
|             tcx.ensure_ok().codegen_unit(cgu.name());
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     let metadata_module = need_metadata_module.then(|| {
 | ||
|         // Emit compressed metadata object.
 | ||
|         let metadata_cgu_name =
 | ||
|             cgu_name_builder.build_cgu_name(LOCAL_CRATE, &["crate"], Some("metadata")).to_string();
 | ||
|         tcx.sess.time("write_compressed_metadata", || {
 | ||
|             let file_name = tcx.output_filenames(()).temp_path_for_cgu(
 | ||
|                 OutputType::Metadata,
 | ||
|                 &metadata_cgu_name,
 | ||
|                 tcx.sess.invocation_temp.as_deref(),
 | ||
|             );
 | ||
|             let data = create_compressed_metadata_file(
 | ||
|                 tcx.sess,
 | ||
|                 &metadata,
 | ||
|                 &exported_symbols::metadata_symbol_name(tcx),
 | ||
|             );
 | ||
|             if let Err(error) = std::fs::write(&file_name, data) {
 | ||
|                 tcx.dcx().emit_fatal(errors::MetadataObjectFileWrite { error });
 | ||
|             }
 | ||
|             CompiledModule {
 | ||
|                 name: metadata_cgu_name,
 | ||
|                 kind: ModuleKind::Metadata,
 | ||
|                 object: Some(file_name),
 | ||
|                 dwarf_object: None,
 | ||
|                 bytecode: None,
 | ||
|                 assembly: None,
 | ||
|                 llvm_ir: None,
 | ||
|                 links_from_incr_cache: Vec::new(),
 | ||
|             }
 | ||
|         })
 | ||
|     });
 | ||
| 
 | ||
|     let ongoing_codegen =
 | ||
|         start_async_codegen(backend.clone(), tcx, target_cpu, metadata, metadata_module);
 | ||
| 
 | ||
|     // Codegen an allocator shim, if necessary.
 | ||
|     if let Some(kind) = allocator_kind_for_codegen(tcx) {
 | ||
|         let llmod_id =
 | ||
|             cgu_name_builder.build_cgu_name(LOCAL_CRATE, &["crate"], Some("allocator")).to_string();
 | ||
|         let module_llvm = tcx.sess.time("write_allocator_module", || {
 | ||
|             backend.codegen_allocator(
 | ||
|                 tcx,
 | ||
|                 &llmod_id,
 | ||
|                 kind,
 | ||
|                 // If allocator_kind is Some then alloc_error_handler_kind must
 | ||
|                 // also be Some.
 | ||
|                 tcx.alloc_error_handler_kind(()).unwrap(),
 | ||
|             )
 | ||
|         });
 | ||
| 
 | ||
|         ongoing_codegen.wait_for_signal_to_codegen_item();
 | ||
|         ongoing_codegen.check_for_errors(tcx.sess);
 | ||
| 
 | ||
|         // These modules are generally cheap and won't throw off scheduling.
 | ||
|         let cost = 0;
 | ||
|         submit_codegened_module_to_llvm(
 | ||
|             &backend,
 | ||
|             &ongoing_codegen.coordinator.sender,
 | ||
|             ModuleCodegen::new_allocator(llmod_id, module_llvm),
 | ||
|             cost,
 | ||
|         );
 | ||
|     }
 | ||
| 
 | ||
|     if !autodiff_fncs.is_empty() {
 | ||
|         ongoing_codegen.submit_autodiff_items(autodiff_fncs);
 | ||
|     }
 | ||
| 
 | ||
|     // For better throughput during parallel processing by LLVM, we used to sort
 | ||
|     // CGUs largest to smallest. This would lead to better thread utilization
 | ||
|     // by, for example, preventing a large CGU from being processed last and
 | ||
|     // having only one LLVM thread working while the rest remained idle.
 | ||
|     //
 | ||
|     // However, this strategy would lead to high memory usage, as it meant the
 | ||
|     // LLVM-IR for all of the largest CGUs would be resident in memory at once.
 | ||
|     //
 | ||
|     // Instead, we can compromise by ordering CGUs such that the largest and
 | ||
|     // smallest are first, second largest and smallest are next, etc. If there
 | ||
|     // are large size variations, this can reduce memory usage significantly.
 | ||
|     let codegen_units: Vec<_> = {
 | ||
|         let mut sorted_cgus = codegen_units.iter().collect::<Vec<_>>();
 | ||
|         sorted_cgus.sort_by_key(|cgu| cmp::Reverse(cgu.size_estimate()));
 | ||
| 
 | ||
|         let (first_half, second_half) = sorted_cgus.split_at(sorted_cgus.len() / 2);
 | ||
|         first_half.iter().interleave(second_half.iter().rev()).copied().collect()
 | ||
|     };
 | ||
| 
 | ||
|     // Calculate the CGU reuse
 | ||
|     let cgu_reuse = tcx.sess.time("find_cgu_reuse", || {
 | ||
|         codegen_units.iter().map(|cgu| determine_cgu_reuse(tcx, cgu)).collect::<Vec<_>>()
 | ||
|     });
 | ||
| 
 | ||
|     crate::assert_module_sources::assert_module_sources(tcx, &|cgu_reuse_tracker| {
 | ||
|         for (i, cgu) in codegen_units.iter().enumerate() {
 | ||
|             let cgu_reuse = cgu_reuse[i];
 | ||
|             cgu_reuse_tracker.set_actual_reuse(cgu.name().as_str(), cgu_reuse);
 | ||
|         }
 | ||
|     });
 | ||
| 
 | ||
|     let mut total_codegen_time = Duration::new(0, 0);
 | ||
|     let start_rss = tcx.sess.opts.unstable_opts.time_passes.then(|| get_resident_set_size());
 | ||
| 
 | ||
|     // The non-parallel compiler can only translate codegen units to LLVM IR
 | ||
|     // on a single thread, leading to a staircase effect where the N LLVM
 | ||
|     // threads have to wait on the single codegen threads to generate work
 | ||
|     // for them. The parallel compiler does not have this restriction, so
 | ||
|     // we can pre-load the LLVM queue in parallel before handing off
 | ||
|     // coordination to the OnGoingCodegen scheduler.
 | ||
|     //
 | ||
|     // This likely is a temporary measure. Once we don't have to support the
 | ||
|     // non-parallel compiler anymore, we can compile CGUs end-to-end in
 | ||
|     // parallel and get rid of the complicated scheduling logic.
 | ||
|     let mut pre_compiled_cgus = if tcx.sess.threads() > 1 {
 | ||
|         tcx.sess.time("compile_first_CGU_batch", || {
 | ||
|             // Try to find one CGU to compile per thread.
 | ||
|             let cgus: Vec<_> = cgu_reuse
 | ||
|                 .iter()
 | ||
|                 .enumerate()
 | ||
|                 .filter(|&(_, reuse)| reuse == &CguReuse::No)
 | ||
|                 .take(tcx.sess.threads())
 | ||
|                 .collect();
 | ||
| 
 | ||
|             // Compile the found CGUs in parallel.
 | ||
|             let start_time = Instant::now();
 | ||
| 
 | ||
|             let pre_compiled_cgus = par_map(cgus, |(i, _)| {
 | ||
|                 let module = backend.compile_codegen_unit(tcx, codegen_units[i].name());
 | ||
|                 (i, IntoDynSyncSend(module))
 | ||
|             });
 | ||
| 
 | ||
|             total_codegen_time += start_time.elapsed();
 | ||
| 
 | ||
|             pre_compiled_cgus
 | ||
|         })
 | ||
|     } else {
 | ||
|         FxHashMap::default()
 | ||
|     };
 | ||
| 
 | ||
|     for (i, cgu) in codegen_units.iter().enumerate() {
 | ||
|         ongoing_codegen.wait_for_signal_to_codegen_item();
 | ||
|         ongoing_codegen.check_for_errors(tcx.sess);
 | ||
| 
 | ||
|         let cgu_reuse = cgu_reuse[i];
 | ||
| 
 | ||
|         match cgu_reuse {
 | ||
|             CguReuse::No => {
 | ||
|                 let (module, cost) = if let Some(cgu) = pre_compiled_cgus.remove(&i) {
 | ||
|                     cgu.0
 | ||
|                 } else {
 | ||
|                     let start_time = Instant::now();
 | ||
|                     let module = backend.compile_codegen_unit(tcx, cgu.name());
 | ||
|                     total_codegen_time += start_time.elapsed();
 | ||
|                     module
 | ||
|                 };
 | ||
|                 // This will unwind if there are errors, which triggers our `AbortCodegenOnDrop`
 | ||
|                 // guard. Unfortunately, just skipping the `submit_codegened_module_to_llvm` makes
 | ||
|                 // compilation hang on post-monomorphization errors.
 | ||
|                 tcx.dcx().abort_if_errors();
 | ||
| 
 | ||
|                 submit_codegened_module_to_llvm(
 | ||
|                     &backend,
 | ||
|                     &ongoing_codegen.coordinator.sender,
 | ||
|                     module,
 | ||
|                     cost,
 | ||
|                 );
 | ||
|             }
 | ||
|             CguReuse::PreLto => {
 | ||
|                 submit_pre_lto_module_to_llvm(
 | ||
|                     &backend,
 | ||
|                     tcx,
 | ||
|                     &ongoing_codegen.coordinator.sender,
 | ||
|                     CachedModuleCodegen {
 | ||
|                         name: cgu.name().to_string(),
 | ||
|                         source: cgu.previous_work_product(tcx),
 | ||
|                     },
 | ||
|                 );
 | ||
|             }
 | ||
|             CguReuse::PostLto => {
 | ||
|                 submit_post_lto_module_to_llvm(
 | ||
|                     &backend,
 | ||
|                     &ongoing_codegen.coordinator.sender,
 | ||
|                     CachedModuleCodegen {
 | ||
|                         name: cgu.name().to_string(),
 | ||
|                         source: cgu.previous_work_product(tcx),
 | ||
|                     },
 | ||
|                 );
 | ||
|             }
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     ongoing_codegen.codegen_finished(tcx);
 | ||
| 
 | ||
|     // Since the main thread is sometimes blocked during codegen, we keep track
 | ||
|     // -Ztime-passes output manually.
 | ||
|     if tcx.sess.opts.unstable_opts.time_passes {
 | ||
|         let end_rss = get_resident_set_size();
 | ||
| 
 | ||
|         print_time_passes_entry(
 | ||
|             "codegen_to_LLVM_IR",
 | ||
|             total_codegen_time,
 | ||
|             start_rss.unwrap(),
 | ||
|             end_rss,
 | ||
|             tcx.sess.opts.unstable_opts.time_passes_format,
 | ||
|         );
 | ||
|     }
 | ||
| 
 | ||
|     ongoing_codegen.check_for_errors(tcx.sess);
 | ||
|     ongoing_codegen
 | ||
| }
 | ||
| 
 | ||
| /// Returns whether a call from the current crate to the [`Instance`] would produce a call
 | ||
| /// from `compiler_builtins` to a symbol the linker must resolve.
 | ||
| ///
 | ||
| /// Such calls from `compiler_bultins` are effectively impossible for the linker to handle. Some
 | ||
| /// linkers will optimize such that dead calls to unresolved symbols are not an error, but this is
 | ||
| /// not guaranteed. So we used this function in codegen backends to ensure we do not generate any
 | ||
| /// unlinkable calls.
 | ||
| ///
 | ||
| /// Note that calls to LLVM intrinsics are uniquely okay because they won't make it to the linker.
 | ||
| pub fn is_call_from_compiler_builtins_to_upstream_monomorphization<'tcx>(
 | ||
|     tcx: TyCtxt<'tcx>,
 | ||
|     instance: Instance<'tcx>,
 | ||
| ) -> bool {
 | ||
|     fn is_llvm_intrinsic(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
 | ||
|         if let Some(name) = tcx.codegen_fn_attrs(def_id).link_name {
 | ||
|             name.as_str().starts_with("llvm.")
 | ||
|         } else {
 | ||
|             false
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     let def_id = instance.def_id();
 | ||
|     !def_id.is_local()
 | ||
|         && tcx.is_compiler_builtins(LOCAL_CRATE)
 | ||
|         && !is_llvm_intrinsic(tcx, def_id)
 | ||
|         && !tcx.should_codegen_locally(instance)
 | ||
| }
 | ||
| 
 | ||
| impl CrateInfo {
 | ||
|     pub fn new(tcx: TyCtxt<'_>, target_cpu: String) -> CrateInfo {
 | ||
|         let crate_types = tcx.crate_types().to_vec();
 | ||
|         let exported_symbols = crate_types
 | ||
|             .iter()
 | ||
|             .map(|&c| (c, crate::back::linker::exported_symbols(tcx, c)))
 | ||
|             .collect();
 | ||
|         let linked_symbols =
 | ||
|             crate_types.iter().map(|&c| (c, crate::back::linker::linked_symbols(tcx, c))).collect();
 | ||
|         let local_crate_name = tcx.crate_name(LOCAL_CRATE);
 | ||
|         let crate_attrs = tcx.hir_attrs(rustc_hir::CRATE_HIR_ID);
 | ||
|         let subsystem =
 | ||
|             ast::attr::first_attr_value_str_by_name(crate_attrs, sym::windows_subsystem);
 | ||
|         let windows_subsystem = subsystem.map(|subsystem| {
 | ||
|             if subsystem != sym::windows && subsystem != sym::console {
 | ||
|                 tcx.dcx().emit_fatal(errors::InvalidWindowsSubsystem { subsystem });
 | ||
|             }
 | ||
|             subsystem.to_string()
 | ||
|         });
 | ||
| 
 | ||
|         // This list is used when generating the command line to pass through to
 | ||
|         // system linker. The linker expects undefined symbols on the left of the
 | ||
|         // command line to be defined in libraries on the right, not the other way
 | ||
|         // around. For more info, see some comments in the add_used_library function
 | ||
|         // below.
 | ||
|         //
 | ||
|         // In order to get this left-to-right dependency ordering, we use the reverse
 | ||
|         // postorder of all crates putting the leaves at the rightmost positions.
 | ||
|         let mut compiler_builtins = None;
 | ||
|         let mut used_crates: Vec<_> = tcx
 | ||
|             .postorder_cnums(())
 | ||
|             .iter()
 | ||
|             .rev()
 | ||
|             .copied()
 | ||
|             .filter(|&cnum| {
 | ||
|                 let link = !tcx.dep_kind(cnum).macros_only();
 | ||
|                 if link && tcx.is_compiler_builtins(cnum) {
 | ||
|                     compiler_builtins = Some(cnum);
 | ||
|                     return false;
 | ||
|                 }
 | ||
|                 link
 | ||
|             })
 | ||
|             .collect();
 | ||
|         // `compiler_builtins` are always placed last to ensure that they're linked correctly.
 | ||
|         used_crates.extend(compiler_builtins);
 | ||
| 
 | ||
|         let crates = tcx.crates(());
 | ||
|         let n_crates = crates.len();
 | ||
|         let mut info = CrateInfo {
 | ||
|             target_cpu,
 | ||
|             target_features: tcx.global_backend_features(()).clone(),
 | ||
|             crate_types,
 | ||
|             exported_symbols,
 | ||
|             linked_symbols,
 | ||
|             local_crate_name,
 | ||
|             compiler_builtins,
 | ||
|             profiler_runtime: None,
 | ||
|             is_no_builtins: Default::default(),
 | ||
|             native_libraries: Default::default(),
 | ||
|             used_libraries: tcx.native_libraries(LOCAL_CRATE).iter().map(Into::into).collect(),
 | ||
|             crate_name: UnordMap::with_capacity(n_crates),
 | ||
|             used_crates,
 | ||
|             used_crate_source: UnordMap::with_capacity(n_crates),
 | ||
|             dependency_formats: Arc::clone(tcx.dependency_formats(())),
 | ||
|             windows_subsystem,
 | ||
|             natvis_debugger_visualizers: Default::default(),
 | ||
|             lint_levels: CodegenLintLevels::from_tcx(tcx),
 | ||
|         };
 | ||
| 
 | ||
|         info.native_libraries.reserve(n_crates);
 | ||
| 
 | ||
|         for &cnum in crates.iter() {
 | ||
|             info.native_libraries
 | ||
|                 .insert(cnum, tcx.native_libraries(cnum).iter().map(Into::into).collect());
 | ||
|             info.crate_name.insert(cnum, tcx.crate_name(cnum));
 | ||
| 
 | ||
|             let used_crate_source = tcx.used_crate_source(cnum);
 | ||
|             info.used_crate_source.insert(cnum, Arc::clone(used_crate_source));
 | ||
|             if tcx.is_profiler_runtime(cnum) {
 | ||
|                 info.profiler_runtime = Some(cnum);
 | ||
|             }
 | ||
|             if tcx.is_no_builtins(cnum) {
 | ||
|                 info.is_no_builtins.insert(cnum);
 | ||
|             }
 | ||
|         }
 | ||
| 
 | ||
|         // Handle circular dependencies in the standard library.
 | ||
|         // See comment before `add_linked_symbol_object` function for the details.
 | ||
|         // If global LTO is enabled then almost everything (*) is glued into a single object file,
 | ||
|         // so this logic is not necessary and can cause issues on some targets (due to weak lang
 | ||
|         // item symbols being "privatized" to that object file), so we disable it.
 | ||
|         // (*) Native libs, and `#[compiler_builtins]` and `#[no_builtins]` crates are not glued,
 | ||
|         // and we assume that they cannot define weak lang items. This is not currently enforced
 | ||
|         // by the compiler, but that's ok because all this stuff is unstable anyway.
 | ||
|         let target = &tcx.sess.target;
 | ||
|         if !are_upstream_rust_objects_already_included(tcx.sess) {
 | ||
|             let add_prefix = match (target.is_like_windows, target.arch.as_ref()) {
 | ||
|                 (true, "x86") => |name: String, _: SymbolExportKind| format!("_{name}"),
 | ||
|                 (true, "arm64ec") => {
 | ||
|                     // Only functions are decorated for arm64ec.
 | ||
|                     |name: String, export_kind: SymbolExportKind| match export_kind {
 | ||
|                         SymbolExportKind::Text => format!("#{name}"),
 | ||
|                         _ => name,
 | ||
|                     }
 | ||
|                 }
 | ||
|                 _ => |name: String, _: SymbolExportKind| name,
 | ||
|             };
 | ||
|             let missing_weak_lang_items: FxIndexSet<(Symbol, SymbolExportKind)> = info
 | ||
|                 .used_crates
 | ||
|                 .iter()
 | ||
|                 .flat_map(|&cnum| tcx.missing_lang_items(cnum))
 | ||
|                 .filter(|l| l.is_weak())
 | ||
|                 .filter_map(|&l| {
 | ||
|                     let name = l.link_name()?;
 | ||
|                     let export_kind = match l.target() {
 | ||
|                         Target::Fn => SymbolExportKind::Text,
 | ||
|                         Target::Static => SymbolExportKind::Data,
 | ||
|                         _ => bug!(
 | ||
|                             "Don't know what the export kind is for lang item of kind {:?}",
 | ||
|                             l.target()
 | ||
|                         ),
 | ||
|                     };
 | ||
|                     lang_items::required(tcx, l).then_some((name, export_kind))
 | ||
|                 })
 | ||
|                 .collect();
 | ||
| 
 | ||
|             // This loop only adds new items to values of the hash map, so the order in which we
 | ||
|             // iterate over the values is not important.
 | ||
|             #[allow(rustc::potential_query_instability)]
 | ||
|             info.linked_symbols
 | ||
|                 .iter_mut()
 | ||
|                 .filter(|(crate_type, _)| {
 | ||
|                     !matches!(crate_type, CrateType::Rlib | CrateType::Staticlib)
 | ||
|                 })
 | ||
|                 .for_each(|(_, linked_symbols)| {
 | ||
|                     let mut symbols = missing_weak_lang_items
 | ||
|                         .iter()
 | ||
|                         .map(|(item, export_kind)| {
 | ||
|                             (
 | ||
|                                 add_prefix(
 | ||
|                                     mangle_internal_symbol(tcx, item.as_str()),
 | ||
|                                     *export_kind,
 | ||
|                                 ),
 | ||
|                                 *export_kind,
 | ||
|                             )
 | ||
|                         })
 | ||
|                         .collect::<Vec<_>>();
 | ||
|                     symbols.sort_unstable_by(|a, b| a.0.cmp(&b.0));
 | ||
|                     linked_symbols.extend(symbols);
 | ||
|                     if tcx.allocator_kind(()).is_some() {
 | ||
|                         // At least one crate needs a global allocator. This crate may be placed
 | ||
|                         // after the crate that defines it in the linker order, in which case some
 | ||
|                         // linkers return an error. By adding the global allocator shim methods to
 | ||
|                         // the linked_symbols list, linking the generated symbols.o will ensure that
 | ||
|                         // circular dependencies involving the global allocator don't lead to linker
 | ||
|                         // errors.
 | ||
|                         linked_symbols.extend(ALLOCATOR_METHODS.iter().map(|method| {
 | ||
|                             (
 | ||
|                                 add_prefix(
 | ||
|                                     mangle_internal_symbol(
 | ||
|                                         tcx,
 | ||
|                                         global_fn_name(method.name).as_str(),
 | ||
|                                     ),
 | ||
|                                     SymbolExportKind::Text,
 | ||
|                                 ),
 | ||
|                                 SymbolExportKind::Text,
 | ||
|                             )
 | ||
|                         }));
 | ||
|                     }
 | ||
|                 });
 | ||
|         }
 | ||
| 
 | ||
|         let embed_visualizers = tcx.crate_types().iter().any(|&crate_type| match crate_type {
 | ||
|             CrateType::Executable | CrateType::Dylib | CrateType::Cdylib | CrateType::Sdylib => {
 | ||
|                 // These are crate types for which we invoke the linker and can embed
 | ||
|                 // NatVis visualizers.
 | ||
|                 true
 | ||
|             }
 | ||
|             CrateType::ProcMacro => {
 | ||
|                 // We could embed NatVis for proc macro crates too (to improve the debugging
 | ||
|                 // experience for them) but it does not seem like a good default, since
 | ||
|                 // this is a rare use case and we don't want to slow down the common case.
 | ||
|                 false
 | ||
|             }
 | ||
|             CrateType::Staticlib | CrateType::Rlib => {
 | ||
|                 // We don't invoke the linker for these, so we don't need to collect the NatVis for
 | ||
|                 // them.
 | ||
|                 false
 | ||
|             }
 | ||
|         });
 | ||
| 
 | ||
|         if target.is_like_msvc && embed_visualizers {
 | ||
|             info.natvis_debugger_visualizers =
 | ||
|                 collect_debugger_visualizers_transitive(tcx, DebuggerVisualizerType::Natvis);
 | ||
|         }
 | ||
| 
 | ||
|         info
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| pub(crate) fn provide(providers: &mut Providers) {
 | ||
|     providers.backend_optimization_level = |tcx, cratenum| {
 | ||
|         let for_speed = match tcx.sess.opts.optimize {
 | ||
|             // If globally no optimisation is done, #[optimize] has no effect.
 | ||
|             //
 | ||
|             // This is done because if we ended up "upgrading" to `-O2` here, we’d populate the
 | ||
|             // pass manager and it is likely that some module-wide passes (such as inliner or
 | ||
|             // cross-function constant propagation) would ignore the `optnone` annotation we put
 | ||
|             // on the functions, thus necessarily involving these functions into optimisations.
 | ||
|             config::OptLevel::No => return config::OptLevel::No,
 | ||
|             // If globally optimise-speed is already specified, just use that level.
 | ||
|             config::OptLevel::Less => return config::OptLevel::Less,
 | ||
|             config::OptLevel::More => return config::OptLevel::More,
 | ||
|             config::OptLevel::Aggressive => return config::OptLevel::Aggressive,
 | ||
|             // If globally optimize-for-size has been requested, use -O2 instead (if optimize(size)
 | ||
|             // are present).
 | ||
|             config::OptLevel::Size => config::OptLevel::More,
 | ||
|             config::OptLevel::SizeMin => config::OptLevel::More,
 | ||
|         };
 | ||
| 
 | ||
|         let defids = tcx.collect_and_partition_mono_items(cratenum).all_mono_items;
 | ||
| 
 | ||
|         let any_for_speed = defids.items().any(|id| {
 | ||
|             let CodegenFnAttrs { optimize, .. } = tcx.codegen_fn_attrs(*id);
 | ||
|             matches!(optimize, OptimizeAttr::Speed)
 | ||
|         });
 | ||
| 
 | ||
|         if any_for_speed {
 | ||
|             return for_speed;
 | ||
|         }
 | ||
| 
 | ||
|         tcx.sess.opts.optimize
 | ||
|     };
 | ||
| }
 | ||
| 
 | ||
| pub fn determine_cgu_reuse<'tcx>(tcx: TyCtxt<'tcx>, cgu: &CodegenUnit<'tcx>) -> CguReuse {
 | ||
|     if !tcx.dep_graph.is_fully_enabled() {
 | ||
|         return CguReuse::No;
 | ||
|     }
 | ||
| 
 | ||
|     let work_product_id = &cgu.work_product_id();
 | ||
|     if tcx.dep_graph.previous_work_product(work_product_id).is_none() {
 | ||
|         // We don't have anything cached for this CGU. This can happen
 | ||
|         // if the CGU did not exist in the previous session.
 | ||
|         return CguReuse::No;
 | ||
|     }
 | ||
| 
 | ||
|     // Try to mark the CGU as green. If it we can do so, it means that nothing
 | ||
|     // affecting the LLVM module has changed and we can re-use a cached version.
 | ||
|     // If we compile with any kind of LTO, this means we can re-use the bitcode
 | ||
|     // of the Pre-LTO stage (possibly also the Post-LTO version but we'll only
 | ||
|     // know that later). If we are not doing LTO, there is only one optimized
 | ||
|     // version of each module, so we re-use that.
 | ||
|     let dep_node = cgu.codegen_dep_node(tcx);
 | ||
|     tcx.dep_graph.assert_dep_node_not_yet_allocated_in_current_session(&dep_node, || {
 | ||
|         format!(
 | ||
|             "CompileCodegenUnit dep-node for CGU `{}` already exists before marking.",
 | ||
|             cgu.name()
 | ||
|         )
 | ||
|     });
 | ||
| 
 | ||
|     if tcx.try_mark_green(&dep_node) {
 | ||
|         // We can re-use either the pre- or the post-thinlto state. If no LTO is
 | ||
|         // being performed then we can use post-LTO artifacts, otherwise we must
 | ||
|         // reuse pre-LTO artifacts
 | ||
|         match compute_per_cgu_lto_type(
 | ||
|             &tcx.sess.lto(),
 | ||
|             &tcx.sess.opts,
 | ||
|             tcx.crate_types(),
 | ||
|             ModuleKind::Regular,
 | ||
|         ) {
 | ||
|             ComputedLtoType::No => CguReuse::PostLto,
 | ||
|             _ => CguReuse::PreLto,
 | ||
|         }
 | ||
|     } else {
 | ||
|         CguReuse::No
 | ||
|     }
 | ||
| }
 | 
