mirror of
				https://github.com/rust-lang/rust.git
				synced 2025-10-31 13:04:42 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1304 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			1304 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
| //! Partitioning Codegen Units for Incremental Compilation
 | |
| //! ======================================================
 | |
| //!
 | |
| //! The task of this module is to take the complete set of monomorphizations of
 | |
| //! a crate and produce a set of codegen units from it, where a codegen unit
 | |
| //! is a named set of (mono-item, linkage) pairs. That is, this module
 | |
| //! decides which monomorphization appears in which codegen units with which
 | |
| //! linkage. The following paragraphs describe some of the background on the
 | |
| //! partitioning scheme.
 | |
| //!
 | |
| //! The most important opportunity for saving on compilation time with
 | |
| //! incremental compilation is to avoid re-codegenning and re-optimizing code.
 | |
| //! Since the unit of codegen and optimization for LLVM is "modules" or, how
 | |
| //! we call them "codegen units", the particulars of how much time can be saved
 | |
| //! by incremental compilation are tightly linked to how the output program is
 | |
| //! partitioned into these codegen units prior to passing it to LLVM --
 | |
| //! especially because we have to treat codegen units as opaque entities once
 | |
| //! they are created: There is no way for us to incrementally update an existing
 | |
| //! LLVM module and so we have to build any such module from scratch if it was
 | |
| //! affected by some change in the source code.
 | |
| //!
 | |
| //! From that point of view it would make sense to maximize the number of
 | |
| //! codegen units by, for example, putting each function into its own module.
 | |
| //! That way only those modules would have to be re-compiled that were actually
 | |
| //! affected by some change, minimizing the number of functions that could have
 | |
| //! been re-used but just happened to be located in a module that is
 | |
| //! re-compiled.
 | |
| //!
 | |
| //! However, since LLVM optimization does not work across module boundaries,
 | |
| //! using such a highly granular partitioning would lead to very slow runtime
 | |
| //! code since it would effectively prohibit inlining and other inter-procedure
 | |
| //! optimizations. We want to avoid that as much as possible.
 | |
| //!
 | |
| //! Thus we end up with a trade-off: The bigger the codegen units, the better
 | |
| //! LLVM's optimizer can do its work, but also the smaller the compilation time
 | |
| //! reduction we get from incremental compilation.
 | |
| //!
 | |
| //! Ideally, we would create a partitioning such that there are few big codegen
 | |
| //! units with few interdependencies between them. For now though, we use the
 | |
| //! following heuristic to determine the partitioning:
 | |
| //!
 | |
| //! - There are two codegen units for every source-level module:
 | |
| //! - One for "stable", that is non-generic, code
 | |
| //! - One for more "volatile" code, i.e., monomorphized instances of functions
 | |
| //!   defined in that module
 | |
| //!
 | |
| //! In order to see why this heuristic makes sense, let's take a look at when a
 | |
| //! codegen unit can get invalidated:
 | |
| //!
 | |
| //! 1. The most straightforward case is when the BODY of a function or global
 | |
| //! changes. Then any codegen unit containing the code for that item has to be
 | |
| //! re-compiled. Note that this includes all codegen units where the function
 | |
| //! has been inlined.
 | |
| //!
 | |
| //! 2. The next case is when the SIGNATURE of a function or global changes. In
 | |
| //! this case, all codegen units containing a REFERENCE to that item have to be
 | |
| //! re-compiled. This is a superset of case 1.
 | |
| //!
 | |
| //! 3. The final and most subtle case is when a REFERENCE to a generic function
 | |
| //! is added or removed somewhere. Even though the definition of the function
 | |
| //! might be unchanged, a new REFERENCE might introduce a new monomorphized
 | |
| //! instance of this function which has to be placed and compiled somewhere.
 | |
| //! Conversely, when removing a REFERENCE, it might have been the last one with
 | |
| //! that particular set of generic arguments and thus we have to remove it.
 | |
| //!
 | |
| //! From the above we see that just using one codegen unit per source-level
 | |
| //! module is not such a good idea, since just adding a REFERENCE to some
 | |
| //! generic item somewhere else would invalidate everything within the module
 | |
| //! containing the generic item. The heuristic above reduces this detrimental
 | |
| //! side-effect of references a little by at least not touching the non-generic
 | |
| //! code of the module.
 | |
| //!
 | |
| //! A Note on Inlining
 | |
| //! ------------------
 | |
| //! As briefly mentioned above, in order for LLVM to be able to inline a
 | |
| //! function call, the body of the function has to be available in the LLVM
 | |
| //! module where the call is made. This has a few consequences for partitioning:
 | |
| //!
 | |
| //! - The partitioning algorithm has to take care of placing functions into all
 | |
| //!   codegen units where they should be available for inlining. It also has to
 | |
| //!   decide on the correct linkage for these functions.
 | |
| //!
 | |
| //! - The partitioning algorithm has to know which functions are likely to get
 | |
| //!   inlined, so it can distribute function instantiations accordingly. Since
 | |
| //!   there is no way of knowing for sure which functions LLVM will decide to
 | |
| //!   inline in the end, we apply a heuristic here: Only functions marked with
 | |
| //!   `#[inline]` are considered for inlining by the partitioner. The current
 | |
| //!   implementation will not try to determine if a function is likely to be
 | |
| //!   inlined by looking at the functions definition.
 | |
| //!
 | |
| //! Note though that as a side-effect of creating a codegen units per
 | |
| //! source-level module, functions from the same module will be available for
 | |
| //! inlining, even when they are not marked `#[inline]`.
 | |
| 
 | |
| use std::cmp;
 | |
| use std::collections::hash_map::Entry;
 | |
| use std::fs::{self, File};
 | |
| use std::io::{BufWriter, Write};
 | |
| use std::path::{Path, PathBuf};
 | |
| 
 | |
| use rustc_data_structures::fx::{FxHashMap, FxHashSet};
 | |
| use rustc_data_structures::sync;
 | |
| use rustc_hir::def::DefKind;
 | |
| use rustc_hir::def_id::{DefId, DefIdSet, LOCAL_CRATE};
 | |
| use rustc_hir::definitions::DefPathDataName;
 | |
| use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags;
 | |
| use rustc_middle::middle::exported_symbols::{SymbolExportInfo, SymbolExportLevel};
 | |
| use rustc_middle::mir::mono::{
 | |
|     CodegenUnit, CodegenUnitNameBuilder, InstantiationMode, Linkage, MonoItem, MonoItemData,
 | |
|     Visibility,
 | |
| };
 | |
| use rustc_middle::query::Providers;
 | |
| use rustc_middle::ty::print::{characteristic_def_id_of_type, with_no_trimmed_paths};
 | |
| use rustc_middle::ty::{self, visit::TypeVisitableExt, InstanceDef, TyCtxt};
 | |
| use rustc_session::config::{DumpMonoStatsFormat, SwitchWithOptPath};
 | |
| use rustc_session::CodegenUnits;
 | |
| use rustc_span::symbol::Symbol;
 | |
| 
 | |
| use crate::collector::UsageMap;
 | |
| use crate::collector::{self, MonoItemCollectionMode};
 | |
| use crate::errors::{CouldntDumpMonoStats, SymbolAlreadyDefined, UnknownCguCollectionMode};
 | |
| 
 | |
| struct PartitioningCx<'a, 'tcx> {
 | |
|     tcx: TyCtxt<'tcx>,
 | |
|     usage_map: &'a UsageMap<'tcx>,
 | |
| }
 | |
| 
 | |
| struct PlacedMonoItems<'tcx> {
 | |
|     /// The codegen units, sorted by name to make things deterministic.
 | |
|     codegen_units: Vec<CodegenUnit<'tcx>>,
 | |
| 
 | |
|     internalization_candidates: FxHashSet<MonoItem<'tcx>>,
 | |
| }
 | |
| 
 | |
| // The output CGUs are sorted by name.
 | |
| fn partition<'tcx, I>(
 | |
|     tcx: TyCtxt<'tcx>,
 | |
|     mono_items: I,
 | |
|     usage_map: &UsageMap<'tcx>,
 | |
| ) -> Vec<CodegenUnit<'tcx>>
 | |
| where
 | |
|     I: Iterator<Item = MonoItem<'tcx>>,
 | |
| {
 | |
|     let _prof_timer = tcx.prof.generic_activity("cgu_partitioning");
 | |
| 
 | |
|     let cx = &PartitioningCx { tcx, usage_map };
 | |
| 
 | |
|     // Place all mono items into a codegen unit. `place_mono_items` is
 | |
|     // responsible for initializing the CGU size estimates.
 | |
|     let PlacedMonoItems { mut codegen_units, internalization_candidates } = {
 | |
|         let _prof_timer = tcx.prof.generic_activity("cgu_partitioning_place_items");
 | |
|         let placed = place_mono_items(cx, mono_items);
 | |
| 
 | |
|         debug_dump(tcx, "PLACE", &placed.codegen_units);
 | |
| 
 | |
|         placed
 | |
|     };
 | |
| 
 | |
|     // Merge until we don't exceed the max CGU count.
 | |
|     // `merge_codegen_units` is responsible for updating the CGU size
 | |
|     // estimates.
 | |
|     {
 | |
|         let _prof_timer = tcx.prof.generic_activity("cgu_partitioning_merge_cgus");
 | |
|         merge_codegen_units(cx, &mut codegen_units);
 | |
|         debug_dump(tcx, "MERGE", &codegen_units);
 | |
|     }
 | |
| 
 | |
|     // Make as many symbols "internal" as possible, so LLVM has more freedom to
 | |
|     // optimize.
 | |
|     if !tcx.sess.link_dead_code() {
 | |
|         let _prof_timer = tcx.prof.generic_activity("cgu_partitioning_internalize_symbols");
 | |
|         internalize_symbols(cx, &mut codegen_units, internalization_candidates);
 | |
| 
 | |
|         debug_dump(tcx, "INTERNALIZE", &codegen_units);
 | |
|     }
 | |
| 
 | |
|     // Mark one CGU for dead code, if necessary.
 | |
|     if tcx.sess.instrument_coverage() {
 | |
|         mark_code_coverage_dead_code_cgu(&mut codegen_units);
 | |
|     }
 | |
| 
 | |
|     // Ensure CGUs are sorted by name, so that we get deterministic results.
 | |
|     if !codegen_units.is_sorted_by(|a, b| a.name().as_str() <= b.name().as_str()) {
 | |
|         let mut names = String::new();
 | |
|         for cgu in codegen_units.iter() {
 | |
|             names += &format!("- {}\n", cgu.name());
 | |
|         }
 | |
|         bug!("unsorted CGUs:\n{names}");
 | |
|     }
 | |
| 
 | |
|     codegen_units
 | |
| }
 | |
| 
 | |
| fn place_mono_items<'tcx, I>(cx: &PartitioningCx<'_, 'tcx>, mono_items: I) -> PlacedMonoItems<'tcx>
 | |
| where
 | |
|     I: Iterator<Item = MonoItem<'tcx>>,
 | |
| {
 | |
|     let mut codegen_units = FxHashMap::default();
 | |
|     let is_incremental_build = cx.tcx.sess.opts.incremental.is_some();
 | |
|     let mut internalization_candidates = FxHashSet::default();
 | |
| 
 | |
|     // Determine if monomorphizations instantiated in this crate will be made
 | |
|     // available to downstream crates. This depends on whether we are in
 | |
|     // share-generics mode and whether the current crate can even have
 | |
|     // downstream crates.
 | |
|     let export_generics =
 | |
|         cx.tcx.sess.opts.share_generics() && cx.tcx.local_crate_exports_generics();
 | |
| 
 | |
|     let cgu_name_builder = &mut CodegenUnitNameBuilder::new(cx.tcx);
 | |
|     let cgu_name_cache = &mut FxHashMap::default();
 | |
| 
 | |
|     for mono_item in mono_items {
 | |
|         // Handle only root (GloballyShared) items directly here. Inlined (LocalCopy) items
 | |
|         // are handled at the bottom of the loop based on reachability, with one exception.
 | |
|         // The #[lang = "start"] item is the program entrypoint, so there are no calls to it in MIR.
 | |
|         // So even if its mode is LocalCopy, we need to treat it like a root.
 | |
|         match mono_item.instantiation_mode(cx.tcx) {
 | |
|             InstantiationMode::GloballyShared { .. } => {}
 | |
|             InstantiationMode::LocalCopy => {
 | |
|                 if Some(mono_item.def_id()) != cx.tcx.lang_items().start_fn() {
 | |
|                     continue;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         let characteristic_def_id = characteristic_def_id_of_mono_item(cx.tcx, mono_item);
 | |
|         let is_volatile = is_incremental_build && mono_item.is_generic_fn(cx.tcx);
 | |
| 
 | |
|         let cgu_name = match characteristic_def_id {
 | |
|             Some(def_id) => compute_codegen_unit_name(
 | |
|                 cx.tcx,
 | |
|                 cgu_name_builder,
 | |
|                 def_id,
 | |
|                 is_volatile,
 | |
|                 cgu_name_cache,
 | |
|             ),
 | |
|             None => fallback_cgu_name(cgu_name_builder),
 | |
|         };
 | |
| 
 | |
|         let cgu = codegen_units.entry(cgu_name).or_insert_with(|| CodegenUnit::new(cgu_name));
 | |
| 
 | |
|         let mut can_be_internalized = true;
 | |
|         let (linkage, visibility) = mono_item_linkage_and_visibility(
 | |
|             cx.tcx,
 | |
|             &mono_item,
 | |
|             &mut can_be_internalized,
 | |
|             export_generics,
 | |
|         );
 | |
|         if visibility == Visibility::Hidden && can_be_internalized {
 | |
|             internalization_candidates.insert(mono_item);
 | |
|         }
 | |
|         let size_estimate = mono_item.size_estimate(cx.tcx);
 | |
| 
 | |
|         cgu.items_mut()
 | |
|             .insert(mono_item, MonoItemData { inlined: false, linkage, visibility, size_estimate });
 | |
| 
 | |
|         // Get all inlined items that are reachable from `mono_item` without
 | |
|         // going via another root item. This includes drop-glue, functions from
 | |
|         // external crates, and local functions the definition of which is
 | |
|         // marked with `#[inline]`.
 | |
|         let mut reachable_inlined_items = FxHashSet::default();
 | |
|         get_reachable_inlined_items(cx.tcx, mono_item, cx.usage_map, &mut reachable_inlined_items);
 | |
| 
 | |
|         // Add those inlined items. It's possible an inlined item is reachable
 | |
|         // from multiple root items within a CGU, which is fine, it just means
 | |
|         // the `insert` will be a no-op.
 | |
|         for inlined_item in reachable_inlined_items {
 | |
|             // This is a CGU-private copy.
 | |
|             cgu.items_mut().entry(inlined_item).or_insert_with(|| MonoItemData {
 | |
|                 inlined: true,
 | |
|                 linkage: Linkage::Internal,
 | |
|                 visibility: Visibility::Default,
 | |
|                 size_estimate: inlined_item.size_estimate(cx.tcx),
 | |
|             });
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Always ensure we have at least one CGU; otherwise, if we have a
 | |
|     // crate with just types (for example), we could wind up with no CGU.
 | |
|     if codegen_units.is_empty() {
 | |
|         let cgu_name = fallback_cgu_name(cgu_name_builder);
 | |
|         codegen_units.insert(cgu_name, CodegenUnit::new(cgu_name));
 | |
|     }
 | |
| 
 | |
|     let mut codegen_units: Vec<_> = codegen_units.into_values().collect();
 | |
|     codegen_units.sort_by(|a, b| a.name().as_str().cmp(b.name().as_str()));
 | |
| 
 | |
|     for cgu in codegen_units.iter_mut() {
 | |
|         cgu.compute_size_estimate();
 | |
|     }
 | |
| 
 | |
|     return PlacedMonoItems { codegen_units, internalization_candidates };
 | |
| 
 | |
|     fn get_reachable_inlined_items<'tcx>(
 | |
|         tcx: TyCtxt<'tcx>,
 | |
|         item: MonoItem<'tcx>,
 | |
|         usage_map: &UsageMap<'tcx>,
 | |
|         visited: &mut FxHashSet<MonoItem<'tcx>>,
 | |
|     ) {
 | |
|         usage_map.for_each_inlined_used_item(tcx, item, |inlined_item| {
 | |
|             let is_new = visited.insert(inlined_item);
 | |
|             if is_new {
 | |
|                 get_reachable_inlined_items(tcx, inlined_item, usage_map, visited);
 | |
|             }
 | |
|         });
 | |
|     }
 | |
| }
 | |
| 
 | |
| // This function requires the CGUs to be sorted by name on input, and ensures
 | |
| // they are sorted by name on return, for deterministic behaviour.
 | |
| fn merge_codegen_units<'tcx>(
 | |
|     cx: &PartitioningCx<'_, 'tcx>,
 | |
|     codegen_units: &mut Vec<CodegenUnit<'tcx>>,
 | |
| ) {
 | |
|     assert!(cx.tcx.sess.codegen_units().as_usize() >= 1);
 | |
| 
 | |
|     // A sorted order here ensures merging is deterministic.
 | |
|     assert!(codegen_units.is_sorted_by(|a, b| a.name().as_str() <= b.name().as_str()));
 | |
| 
 | |
|     // This map keeps track of what got merged into what.
 | |
|     let mut cgu_contents: FxHashMap<Symbol, Vec<Symbol>> =
 | |
|         codegen_units.iter().map(|cgu| (cgu.name(), vec![cgu.name()])).collect();
 | |
| 
 | |
|     // If N is the maximum number of CGUs, and the CGUs are sorted from largest
 | |
|     // to smallest, we repeatedly find which CGU in codegen_units[N..] has the
 | |
|     // greatest overlap of inlined items with codegen_units[N-1], merge that
 | |
|     // CGU into codegen_units[N-1], then re-sort by size and repeat.
 | |
|     //
 | |
|     // We use inlined item overlap to guide this merging because it minimizes
 | |
|     // duplication of inlined items, which makes LLVM be faster and generate
 | |
|     // better and smaller machine code.
 | |
|     //
 | |
|     // Why merge into codegen_units[N-1]? We want CGUs to have similar sizes,
 | |
|     // which means we don't want codegen_units[0..N] (the already big ones)
 | |
|     // getting any bigger, if we can avoid it. When we have more than N CGUs
 | |
|     // then at least one of the biggest N will have to grow. codegen_units[N-1]
 | |
|     // is the smallest of those, and so has the most room to grow.
 | |
|     let max_codegen_units = cx.tcx.sess.codegen_units().as_usize();
 | |
|     while codegen_units.len() > max_codegen_units {
 | |
|         // Sort small CGUs to the back.
 | |
|         codegen_units.sort_by_key(|cgu| cmp::Reverse(cgu.size_estimate()));
 | |
| 
 | |
|         let cgu_dst = &codegen_units[max_codegen_units - 1];
 | |
| 
 | |
|         // Find the CGU that overlaps the most with `cgu_dst`. In the case of a
 | |
|         // tie, favour the earlier (bigger) CGU.
 | |
|         let mut max_overlap = 0;
 | |
|         let mut max_overlap_i = max_codegen_units;
 | |
|         for (i, cgu_src) in codegen_units.iter().enumerate().skip(max_codegen_units) {
 | |
|             if cgu_src.size_estimate() <= max_overlap {
 | |
|                 // None of the remaining overlaps can exceed `max_overlap`, so
 | |
|                 // stop looking.
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             let overlap = compute_inlined_overlap(cgu_dst, cgu_src);
 | |
|             if overlap > max_overlap {
 | |
|                 max_overlap = overlap;
 | |
|                 max_overlap_i = i;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         let mut cgu_src = codegen_units.swap_remove(max_overlap_i);
 | |
|         let cgu_dst = &mut codegen_units[max_codegen_units - 1];
 | |
| 
 | |
|         // Move the items from `cgu_src` to `cgu_dst`. Some of them may be
 | |
|         // duplicate inlined items, in which case the destination CGU is
 | |
|         // unaffected. Recalculate size estimates afterwards.
 | |
|         cgu_dst.items_mut().extend(cgu_src.items_mut().drain(..));
 | |
|         cgu_dst.compute_size_estimate();
 | |
| 
 | |
|         // Record that `cgu_dst` now contains all the stuff that was in
 | |
|         // `cgu_src` before.
 | |
|         let mut consumed_cgu_names = cgu_contents.remove(&cgu_src.name()).unwrap();
 | |
|         cgu_contents.get_mut(&cgu_dst.name()).unwrap().append(&mut consumed_cgu_names);
 | |
|     }
 | |
| 
 | |
|     // Having multiple CGUs can drastically speed up compilation. But for
 | |
|     // non-incremental builds, tiny CGUs slow down compilation *and* result in
 | |
|     // worse generated code. So we don't allow CGUs smaller than this (unless
 | |
|     // there is just one CGU, of course). Note that CGU sizes of 100,000+ are
 | |
|     // common in larger programs, so this isn't all that large.
 | |
|     const NON_INCR_MIN_CGU_SIZE: usize = 1800;
 | |
| 
 | |
|     // Repeatedly merge the two smallest codegen units as long as: it's a
 | |
|     // non-incremental build, and the user didn't specify a CGU count, and
 | |
|     // there are multiple CGUs, and some are below the minimum size.
 | |
|     //
 | |
|     // The "didn't specify a CGU count" condition is because when an explicit
 | |
|     // count is requested we observe it as closely as possible. For example,
 | |
|     // the `compiler_builtins` crate sets `codegen-units = 10000` and it's
 | |
|     // critical they aren't merged. Also, some tests use explicit small values
 | |
|     // and likewise won't work if small CGUs are merged.
 | |
|     while cx.tcx.sess.opts.incremental.is_none()
 | |
|         && matches!(cx.tcx.sess.codegen_units(), CodegenUnits::Default(_))
 | |
|         && codegen_units.len() > 1
 | |
|         && codegen_units.iter().any(|cgu| cgu.size_estimate() < NON_INCR_MIN_CGU_SIZE)
 | |
|     {
 | |
|         // Sort small cgus to the back.
 | |
|         codegen_units.sort_by_key(|cgu| cmp::Reverse(cgu.size_estimate()));
 | |
| 
 | |
|         let mut smallest = codegen_units.pop().unwrap();
 | |
|         let second_smallest = codegen_units.last_mut().unwrap();
 | |
| 
 | |
|         // Move the items from `smallest` to `second_smallest`. Some of them
 | |
|         // may be duplicate inlined items, in which case the destination CGU is
 | |
|         // unaffected. Recalculate size estimates afterwards.
 | |
|         second_smallest.items_mut().extend(smallest.items_mut().drain(..));
 | |
|         second_smallest.compute_size_estimate();
 | |
| 
 | |
|         // Don't update `cgu_contents`, that's only for incremental builds.
 | |
|     }
 | |
| 
 | |
|     let cgu_name_builder = &mut CodegenUnitNameBuilder::new(cx.tcx);
 | |
| 
 | |
|     // Rename the newly merged CGUs.
 | |
|     if cx.tcx.sess.opts.incremental.is_some() {
 | |
|         // If we are doing incremental compilation, we want CGU names to
 | |
|         // reflect the path of the source level module they correspond to.
 | |
|         // For CGUs that contain the code of multiple modules because of the
 | |
|         // merging done above, we use a concatenation of the names of all
 | |
|         // contained CGUs.
 | |
|         let new_cgu_names: FxHashMap<Symbol, String> = cgu_contents
 | |
|             .into_iter()
 | |
|             // This `filter` makes sure we only update the name of CGUs that
 | |
|             // were actually modified by merging.
 | |
|             .filter(|(_, cgu_contents)| cgu_contents.len() > 1)
 | |
|             .map(|(current_cgu_name, cgu_contents)| {
 | |
|                 let mut cgu_contents: Vec<&str> = cgu_contents.iter().map(|s| s.as_str()).collect();
 | |
| 
 | |
|                 // Sort the names, so things are deterministic and easy to
 | |
|                 // predict. We are sorting primitive `&str`s here so we can
 | |
|                 // use unstable sort.
 | |
|                 cgu_contents.sort_unstable();
 | |
| 
 | |
|                 (current_cgu_name, cgu_contents.join("--"))
 | |
|             })
 | |
|             .collect();
 | |
| 
 | |
|         for cgu in codegen_units.iter_mut() {
 | |
|             if let Some(new_cgu_name) = new_cgu_names.get(&cgu.name()) {
 | |
|                 if cx.tcx.sess.opts.unstable_opts.human_readable_cgu_names {
 | |
|                     cgu.set_name(Symbol::intern(new_cgu_name));
 | |
|                 } else {
 | |
|                     // If we don't require CGU names to be human-readable,
 | |
|                     // we use a fixed length hash of the composite CGU name
 | |
|                     // instead.
 | |
|                     let new_cgu_name = CodegenUnit::mangle_name(new_cgu_name);
 | |
|                     cgu.set_name(Symbol::intern(&new_cgu_name));
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // A sorted order here ensures what follows can be deterministic.
 | |
|         codegen_units.sort_by(|a, b| a.name().as_str().cmp(b.name().as_str()));
 | |
|     } else {
 | |
|         // When compiling non-incrementally, we rename the CGUS so they have
 | |
|         // identical names except for the numeric suffix, something like
 | |
|         // `regex.f10ba03eb5ec7975-cgu.N`, where `N` varies.
 | |
|         //
 | |
|         // It is useful for debugging and profiling purposes if the resulting
 | |
|         // CGUs are sorted by name *and* reverse sorted by size. (CGU 0 is the
 | |
|         // biggest, CGU 1 is the second biggest, etc.)
 | |
|         //
 | |
|         // So first we reverse sort by size. Then we generate the names with
 | |
|         // zero-padded suffixes, which means they are automatically sorted by
 | |
|         // names. The numeric suffix width depends on the number of CGUs, which
 | |
|         // is always greater than zero:
 | |
|         // - [1,9]     CGUs: `0`, `1`, `2`, ...
 | |
|         // - [10,99]   CGUs: `00`, `01`, `02`, ...
 | |
|         // - [100,999] CGUs: `000`, `001`, `002`, ...
 | |
|         // - etc.
 | |
|         //
 | |
|         // If we didn't zero-pad the sorted-by-name order would be `XYZ-cgu.0`,
 | |
|         // `XYZ-cgu.1`, `XYZ-cgu.10`, `XYZ-cgu.11`, ..., `XYZ-cgu.2`, etc.
 | |
|         codegen_units.sort_by_key(|cgu| cmp::Reverse(cgu.size_estimate()));
 | |
|         let num_digits = codegen_units.len().ilog10() as usize + 1;
 | |
|         for (index, cgu) in codegen_units.iter_mut().enumerate() {
 | |
|             // Note: `WorkItem::short_description` depends on this name ending
 | |
|             // with `-cgu.` followed by a numeric suffix. Please keep it in
 | |
|             // sync with this code.
 | |
|             let suffix = format!("{index:0num_digits$}");
 | |
|             let numbered_codegen_unit_name =
 | |
|                 cgu_name_builder.build_cgu_name_no_mangle(LOCAL_CRATE, &["cgu"], Some(suffix));
 | |
|             cgu.set_name(numbered_codegen_unit_name);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// Compute the combined size of all inlined items that appear in both `cgu1`
 | |
| /// and `cgu2`.
 | |
| fn compute_inlined_overlap<'tcx>(cgu1: &CodegenUnit<'tcx>, cgu2: &CodegenUnit<'tcx>) -> usize {
 | |
|     // Either order works. We pick the one that involves iterating over fewer
 | |
|     // items.
 | |
|     let (src_cgu, dst_cgu) =
 | |
|         if cgu1.items().len() <= cgu2.items().len() { (cgu1, cgu2) } else { (cgu2, cgu1) };
 | |
| 
 | |
|     let mut overlap = 0;
 | |
|     for (item, data) in src_cgu.items().iter() {
 | |
|         if data.inlined {
 | |
|             if dst_cgu.items().contains_key(item) {
 | |
|                 overlap += data.size_estimate;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     overlap
 | |
| }
 | |
| 
 | |
| fn internalize_symbols<'tcx>(
 | |
|     cx: &PartitioningCx<'_, 'tcx>,
 | |
|     codegen_units: &mut [CodegenUnit<'tcx>],
 | |
|     internalization_candidates: FxHashSet<MonoItem<'tcx>>,
 | |
| ) {
 | |
|     /// For symbol internalization, we need to know whether a symbol/mono-item
 | |
|     /// is used from outside the codegen unit it is defined in. This type is
 | |
|     /// used to keep track of that.
 | |
|     #[derive(Clone, PartialEq, Eq, Debug)]
 | |
|     enum MonoItemPlacement {
 | |
|         SingleCgu(Symbol),
 | |
|         MultipleCgus,
 | |
|     }
 | |
| 
 | |
|     let mut mono_item_placements = FxHashMap::default();
 | |
|     let single_codegen_unit = codegen_units.len() == 1;
 | |
| 
 | |
|     if !single_codegen_unit {
 | |
|         for cgu in codegen_units.iter() {
 | |
|             for item in cgu.items().keys() {
 | |
|                 // If there is more than one codegen unit, we need to keep track
 | |
|                 // in which codegen units each monomorphization is placed.
 | |
|                 match mono_item_placements.entry(*item) {
 | |
|                     Entry::Occupied(e) => {
 | |
|                         let placement = e.into_mut();
 | |
|                         debug_assert!(match *placement {
 | |
|                             MonoItemPlacement::SingleCgu(cgu_name) => cgu_name != cgu.name(),
 | |
|                             MonoItemPlacement::MultipleCgus => true,
 | |
|                         });
 | |
|                         *placement = MonoItemPlacement::MultipleCgus;
 | |
|                     }
 | |
|                     Entry::Vacant(e) => {
 | |
|                         e.insert(MonoItemPlacement::SingleCgu(cgu.name()));
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // For each internalization candidates in each codegen unit, check if it is
 | |
|     // used from outside its defining codegen unit.
 | |
|     for cgu in codegen_units {
 | |
|         let home_cgu = MonoItemPlacement::SingleCgu(cgu.name());
 | |
| 
 | |
|         for (item, data) in cgu.items_mut() {
 | |
|             if !internalization_candidates.contains(item) {
 | |
|                 // This item is no candidate for internalizing, so skip it.
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             if !single_codegen_unit {
 | |
|                 debug_assert_eq!(mono_item_placements[item], home_cgu);
 | |
| 
 | |
|                 if cx
 | |
|                     .usage_map
 | |
|                     .get_user_items(*item)
 | |
|                     .iter()
 | |
|                     .filter_map(|user_item| {
 | |
|                         // Some user mono items might not have been
 | |
|                         // instantiated. We can safely ignore those.
 | |
|                         mono_item_placements.get(user_item)
 | |
|                     })
 | |
|                     .any(|placement| *placement != home_cgu)
 | |
|                 {
 | |
|                     // Found a user from another CGU, so skip to the next item
 | |
|                     // without marking this one as internal.
 | |
|                     continue;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // If we got here, we did not find any uses from other CGUs, so
 | |
|             // it's fine to make this monomorphization internal.
 | |
|             data.linkage = Linkage::Internal;
 | |
|             data.visibility = Visibility::Default;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| fn mark_code_coverage_dead_code_cgu<'tcx>(codegen_units: &mut [CodegenUnit<'tcx>]) {
 | |
|     assert!(!codegen_units.is_empty());
 | |
| 
 | |
|     // Find the smallest CGU that has exported symbols and put the dead
 | |
|     // function stubs in that CGU. We look for exported symbols to increase
 | |
|     // the likelihood the linker won't throw away the dead functions.
 | |
|     // FIXME(#92165): In order to truly resolve this, we need to make sure
 | |
|     // the object file (CGU) containing the dead function stubs is included
 | |
|     // in the final binary. This will probably require forcing these
 | |
|     // function symbols to be included via `-u` or `/include` linker args.
 | |
|     let dead_code_cgu = codegen_units
 | |
|         .iter_mut()
 | |
|         .filter(|cgu| cgu.items().iter().any(|(_, data)| data.linkage == Linkage::External))
 | |
|         .min_by_key(|cgu| cgu.size_estimate());
 | |
| 
 | |
|     // If there are no CGUs that have externally linked items, then we just
 | |
|     // pick the first CGU as a fallback.
 | |
|     let dead_code_cgu = if let Some(cgu) = dead_code_cgu { cgu } else { &mut codegen_units[0] };
 | |
| 
 | |
|     dead_code_cgu.make_code_coverage_dead_code_cgu();
 | |
| }
 | |
| 
 | |
| fn characteristic_def_id_of_mono_item<'tcx>(
 | |
|     tcx: TyCtxt<'tcx>,
 | |
|     mono_item: MonoItem<'tcx>,
 | |
| ) -> Option<DefId> {
 | |
|     match mono_item {
 | |
|         MonoItem::Fn(instance) => {
 | |
|             let def_id = match instance.def {
 | |
|                 ty::InstanceDef::Item(def) => def,
 | |
|                 ty::InstanceDef::VTableShim(..)
 | |
|                 | ty::InstanceDef::ReifyShim(..)
 | |
|                 | ty::InstanceDef::FnPtrShim(..)
 | |
|                 | ty::InstanceDef::ClosureOnceShim { .. }
 | |
|                 | ty::InstanceDef::ConstructCoroutineInClosureShim { .. }
 | |
|                 | ty::InstanceDef::CoroutineKindShim { .. }
 | |
|                 | ty::InstanceDef::Intrinsic(..)
 | |
|                 | ty::InstanceDef::DropGlue(..)
 | |
|                 | ty::InstanceDef::Virtual(..)
 | |
|                 | ty::InstanceDef::CloneShim(..)
 | |
|                 | ty::InstanceDef::ThreadLocalShim(..)
 | |
|                 | ty::InstanceDef::FnPtrAddrShim(..) => return None,
 | |
|             };
 | |
| 
 | |
|             // If this is a method, we want to put it into the same module as
 | |
|             // its self-type. If the self-type does not provide a characteristic
 | |
|             // DefId, we use the location of the impl after all.
 | |
| 
 | |
|             if tcx.trait_of_item(def_id).is_some() {
 | |
|                 let self_ty = instance.args.type_at(0);
 | |
|                 // This is a default implementation of a trait method.
 | |
|                 return characteristic_def_id_of_type(self_ty).or(Some(def_id));
 | |
|             }
 | |
| 
 | |
|             if let Some(impl_def_id) = tcx.impl_of_method(def_id) {
 | |
|                 if tcx.sess.opts.incremental.is_some()
 | |
|                     && tcx.trait_id_of_impl(impl_def_id) == tcx.lang_items().drop_trait()
 | |
|                 {
 | |
|                     // Put `Drop::drop` into the same cgu as `drop_in_place`
 | |
|                     // since `drop_in_place` is the only thing that can
 | |
|                     // call it.
 | |
|                     return None;
 | |
|                 }
 | |
| 
 | |
|                 // When polymorphization is enabled, methods which do not depend on their generic
 | |
|                 // parameters, but the self-type of their impl block do will fail to normalize.
 | |
|                 if !tcx.sess.opts.unstable_opts.polymorphize || !instance.has_param() {
 | |
|                     // This is a method within an impl, find out what the self-type is:
 | |
|                     let impl_self_ty = tcx.instantiate_and_normalize_erasing_regions(
 | |
|                         instance.args,
 | |
|                         ty::ParamEnv::reveal_all(),
 | |
|                         tcx.type_of(impl_def_id),
 | |
|                     );
 | |
|                     if let Some(def_id) = characteristic_def_id_of_type(impl_self_ty) {
 | |
|                         return Some(def_id);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             Some(def_id)
 | |
|         }
 | |
|         MonoItem::Static(def_id) => Some(def_id),
 | |
|         MonoItem::GlobalAsm(item_id) => Some(item_id.owner_id.to_def_id()),
 | |
|     }
 | |
| }
 | |
| 
 | |
| fn compute_codegen_unit_name(
 | |
|     tcx: TyCtxt<'_>,
 | |
|     name_builder: &mut CodegenUnitNameBuilder<'_>,
 | |
|     def_id: DefId,
 | |
|     volatile: bool,
 | |
|     cache: &mut CguNameCache,
 | |
| ) -> Symbol {
 | |
|     // Find the innermost module that is not nested within a function.
 | |
|     let mut current_def_id = def_id;
 | |
|     let mut cgu_def_id = None;
 | |
|     // Walk backwards from the item we want to find the module for.
 | |
|     loop {
 | |
|         if current_def_id.is_crate_root() {
 | |
|             if cgu_def_id.is_none() {
 | |
|                 // If we have not found a module yet, take the crate root.
 | |
|                 cgu_def_id = Some(def_id.krate.as_def_id());
 | |
|             }
 | |
|             break;
 | |
|         } else if tcx.def_kind(current_def_id) == DefKind::Mod {
 | |
|             if cgu_def_id.is_none() {
 | |
|                 cgu_def_id = Some(current_def_id);
 | |
|             }
 | |
|         } else {
 | |
|             // If we encounter something that is not a module, throw away
 | |
|             // any module that we've found so far because we now know that
 | |
|             // it is nested within something else.
 | |
|             cgu_def_id = None;
 | |
|         }
 | |
| 
 | |
|         current_def_id = tcx.parent(current_def_id);
 | |
|     }
 | |
| 
 | |
|     let cgu_def_id = cgu_def_id.unwrap();
 | |
| 
 | |
|     *cache.entry((cgu_def_id, volatile)).or_insert_with(|| {
 | |
|         let def_path = tcx.def_path(cgu_def_id);
 | |
| 
 | |
|         let components = def_path.data.iter().map(|part| match part.data.name() {
 | |
|             DefPathDataName::Named(name) => name,
 | |
|             DefPathDataName::Anon { .. } => unreachable!(),
 | |
|         });
 | |
| 
 | |
|         let volatile_suffix = volatile.then_some("volatile");
 | |
| 
 | |
|         name_builder.build_cgu_name(def_path.krate, components, volatile_suffix)
 | |
|     })
 | |
| }
 | |
| 
 | |
| // Anything we can't find a proper codegen unit for goes into this.
 | |
| fn fallback_cgu_name(name_builder: &mut CodegenUnitNameBuilder<'_>) -> Symbol {
 | |
|     name_builder.build_cgu_name(LOCAL_CRATE, &["fallback"], Some("cgu"))
 | |
| }
 | |
| 
 | |
| fn mono_item_linkage_and_visibility<'tcx>(
 | |
|     tcx: TyCtxt<'tcx>,
 | |
|     mono_item: &MonoItem<'tcx>,
 | |
|     can_be_internalized: &mut bool,
 | |
|     export_generics: bool,
 | |
| ) -> (Linkage, Visibility) {
 | |
|     if let Some(explicit_linkage) = mono_item.explicit_linkage(tcx) {
 | |
|         return (explicit_linkage, Visibility::Default);
 | |
|     }
 | |
|     let vis = mono_item_visibility(tcx, mono_item, can_be_internalized, export_generics);
 | |
|     (Linkage::External, vis)
 | |
| }
 | |
| 
 | |
| type CguNameCache = FxHashMap<(DefId, bool), Symbol>;
 | |
| 
 | |
| fn static_visibility<'tcx>(
 | |
|     tcx: TyCtxt<'tcx>,
 | |
|     can_be_internalized: &mut bool,
 | |
|     def_id: DefId,
 | |
| ) -> Visibility {
 | |
|     if tcx.is_reachable_non_generic(def_id) {
 | |
|         *can_be_internalized = false;
 | |
|         default_visibility(tcx, def_id, false)
 | |
|     } else {
 | |
|         Visibility::Hidden
 | |
|     }
 | |
| }
 | |
| 
 | |
| fn mono_item_visibility<'tcx>(
 | |
|     tcx: TyCtxt<'tcx>,
 | |
|     mono_item: &MonoItem<'tcx>,
 | |
|     can_be_internalized: &mut bool,
 | |
|     export_generics: bool,
 | |
| ) -> Visibility {
 | |
|     let instance = match mono_item {
 | |
|         // This is pretty complicated; see below.
 | |
|         MonoItem::Fn(instance) => instance,
 | |
| 
 | |
|         // Misc handling for generics and such, but otherwise:
 | |
|         MonoItem::Static(def_id) => return static_visibility(tcx, can_be_internalized, *def_id),
 | |
|         MonoItem::GlobalAsm(item_id) => {
 | |
|             return static_visibility(tcx, can_be_internalized, item_id.owner_id.to_def_id());
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     let def_id = match instance.def {
 | |
|         InstanceDef::Item(def_id) | InstanceDef::DropGlue(def_id, Some(_)) => def_id,
 | |
| 
 | |
|         // We match the visibility of statics here
 | |
|         InstanceDef::ThreadLocalShim(def_id) => {
 | |
|             return static_visibility(tcx, can_be_internalized, def_id);
 | |
|         }
 | |
| 
 | |
|         // These are all compiler glue and such, never exported, always hidden.
 | |
|         InstanceDef::VTableShim(..)
 | |
|         | InstanceDef::ReifyShim(..)
 | |
|         | InstanceDef::FnPtrShim(..)
 | |
|         | InstanceDef::Virtual(..)
 | |
|         | InstanceDef::Intrinsic(..)
 | |
|         | InstanceDef::ClosureOnceShim { .. }
 | |
|         | InstanceDef::ConstructCoroutineInClosureShim { .. }
 | |
|         | InstanceDef::CoroutineKindShim { .. }
 | |
|         | InstanceDef::DropGlue(..)
 | |
|         | InstanceDef::CloneShim(..)
 | |
|         | InstanceDef::FnPtrAddrShim(..) => return Visibility::Hidden,
 | |
|     };
 | |
| 
 | |
|     // The `start_fn` lang item is actually a monomorphized instance of a
 | |
|     // function in the standard library, used for the `main` function. We don't
 | |
|     // want to export it so we tag it with `Hidden` visibility but this symbol
 | |
|     // is only referenced from the actual `main` symbol which we unfortunately
 | |
|     // don't know anything about during partitioning/collection. As a result we
 | |
|     // forcibly keep this symbol out of the `internalization_candidates` set.
 | |
|     //
 | |
|     // FIXME: eventually we don't want to always force this symbol to have
 | |
|     //        hidden visibility, it should indeed be a candidate for
 | |
|     //        internalization, but we have to understand that it's referenced
 | |
|     //        from the `main` symbol we'll generate later.
 | |
|     //
 | |
|     //        This may be fixable with a new `InstanceDef` perhaps? Unsure!
 | |
|     if tcx.lang_items().start_fn() == Some(def_id) {
 | |
|         *can_be_internalized = false;
 | |
|         return Visibility::Hidden;
 | |
|     }
 | |
| 
 | |
|     let is_generic = instance.args.non_erasable_generics(tcx, def_id).next().is_some();
 | |
| 
 | |
|     // Upstream `DefId` instances get different handling than local ones.
 | |
|     let Some(def_id) = def_id.as_local() else {
 | |
|         return if export_generics && is_generic {
 | |
|             // If it is an upstream monomorphization and we export generics, we must make
 | |
|             // it available to downstream crates.
 | |
|             *can_be_internalized = false;
 | |
|             default_visibility(tcx, def_id, true)
 | |
|         } else {
 | |
|             Visibility::Hidden
 | |
|         };
 | |
|     };
 | |
| 
 | |
|     if is_generic {
 | |
|         if export_generics {
 | |
|             if tcx.is_unreachable_local_definition(def_id) {
 | |
|                 // This instance cannot be used from another crate.
 | |
|                 Visibility::Hidden
 | |
|             } else {
 | |
|                 // This instance might be useful in a downstream crate.
 | |
|                 *can_be_internalized = false;
 | |
|                 default_visibility(tcx, def_id.to_def_id(), true)
 | |
|             }
 | |
|         } else {
 | |
|             // We are not exporting generics or the definition is not reachable
 | |
|             // for downstream crates, we can internalize its instantiations.
 | |
|             Visibility::Hidden
 | |
|         }
 | |
|     } else {
 | |
|         // If this isn't a generic function then we mark this a `Default` if
 | |
|         // this is a reachable item, meaning that it's a symbol other crates may
 | |
|         // use when they link to us.
 | |
|         if tcx.is_reachable_non_generic(def_id.to_def_id()) {
 | |
|             *can_be_internalized = false;
 | |
|             debug_assert!(!is_generic);
 | |
|             return default_visibility(tcx, def_id.to_def_id(), false);
 | |
|         }
 | |
| 
 | |
|         // If this isn't reachable then we're gonna tag this with `Hidden`
 | |
|         // visibility. In some situations though we'll want to prevent this
 | |
|         // symbol from being internalized.
 | |
|         //
 | |
|         // There's two categories of items here:
 | |
|         //
 | |
|         // * First is weak lang items. These are basically mechanisms for
 | |
|         //   libcore to forward-reference symbols defined later in crates like
 | |
|         //   the standard library or `#[panic_handler]` definitions. The
 | |
|         //   definition of these weak lang items needs to be referencable by
 | |
|         //   libcore, so we're no longer a candidate for internalization.
 | |
|         //   Removal of these functions can't be done by LLVM but rather must be
 | |
|         //   done by the linker as it's a non-local decision.
 | |
|         //
 | |
|         // * Second is "std internal symbols". Currently this is primarily used
 | |
|         //   for allocator symbols. Allocators are a little weird in their
 | |
|         //   implementation, but the idea is that the compiler, at the last
 | |
|         //   minute, defines an allocator with an injected object file. The
 | |
|         //   `alloc` crate references these symbols (`__rust_alloc`) and the
 | |
|         //   definition doesn't get hooked up until a linked crate artifact is
 | |
|         //   generated.
 | |
|         //
 | |
|         //   The symbols synthesized by the compiler (`__rust_alloc`) are thin
 | |
|         //   veneers around the actual implementation, some other symbol which
 | |
|         //   implements the same ABI. These symbols (things like `__rg_alloc`,
 | |
|         //   `__rdl_alloc`, `__rde_alloc`, etc), are all tagged with "std
 | |
|         //   internal symbols".
 | |
|         //
 | |
|         //   The std-internal symbols here **should not show up in a dll as an
 | |
|         //   exported interface**, so they return `false` from
 | |
|         //   `is_reachable_non_generic` above and we'll give them `Hidden`
 | |
|         //   visibility below. Like the weak lang items, though, we can't let
 | |
|         //   LLVM internalize them as this decision is left up to the linker to
 | |
|         //   omit them, so prevent them from being internalized.
 | |
|         let attrs = tcx.codegen_fn_attrs(def_id);
 | |
|         if attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) {
 | |
|             *can_be_internalized = false;
 | |
|         }
 | |
| 
 | |
|         Visibility::Hidden
 | |
|     }
 | |
| }
 | |
| 
 | |
| fn default_visibility(tcx: TyCtxt<'_>, id: DefId, is_generic: bool) -> Visibility {
 | |
|     if !tcx.sess.default_hidden_visibility() {
 | |
|         return Visibility::Default;
 | |
|     }
 | |
| 
 | |
|     // Generic functions never have export-level C.
 | |
|     if is_generic {
 | |
|         return Visibility::Hidden;
 | |
|     }
 | |
| 
 | |
|     // Things with export level C don't get instantiated in
 | |
|     // downstream crates.
 | |
|     if !id.is_local() {
 | |
|         return Visibility::Hidden;
 | |
|     }
 | |
| 
 | |
|     // C-export level items remain at `Default`, all other internal
 | |
|     // items become `Hidden`.
 | |
|     match tcx.reachable_non_generics(id.krate).get(&id) {
 | |
|         Some(SymbolExportInfo { level: SymbolExportLevel::C, .. }) => Visibility::Default,
 | |
|         _ => Visibility::Hidden,
 | |
|     }
 | |
| }
 | |
| 
 | |
| fn debug_dump<'a, 'tcx: 'a>(tcx: TyCtxt<'tcx>, label: &str, cgus: &[CodegenUnit<'tcx>]) {
 | |
|     let dump = move || {
 | |
|         use std::fmt::Write;
 | |
| 
 | |
|         let mut num_cgus = 0;
 | |
|         let mut all_cgu_sizes = Vec::new();
 | |
| 
 | |
|         // Note: every unique root item is placed exactly once, so the number
 | |
|         // of unique root items always equals the number of placed root items.
 | |
|         //
 | |
|         // Also, unreached inlined items won't be counted here. This is fine.
 | |
| 
 | |
|         let mut inlined_items = FxHashSet::default();
 | |
| 
 | |
|         let mut root_items = 0;
 | |
|         let mut unique_inlined_items = 0;
 | |
|         let mut placed_inlined_items = 0;
 | |
| 
 | |
|         let mut root_size = 0;
 | |
|         let mut unique_inlined_size = 0;
 | |
|         let mut placed_inlined_size = 0;
 | |
| 
 | |
|         for cgu in cgus.iter() {
 | |
|             num_cgus += 1;
 | |
|             all_cgu_sizes.push(cgu.size_estimate());
 | |
| 
 | |
|             for (item, data) in cgu.items() {
 | |
|                 if !data.inlined {
 | |
|                     root_items += 1;
 | |
|                     root_size += data.size_estimate;
 | |
|                 } else {
 | |
|                     if inlined_items.insert(item) {
 | |
|                         unique_inlined_items += 1;
 | |
|                         unique_inlined_size += data.size_estimate;
 | |
|                     }
 | |
|                     placed_inlined_items += 1;
 | |
|                     placed_inlined_size += data.size_estimate;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         all_cgu_sizes.sort_unstable_by_key(|&n| cmp::Reverse(n));
 | |
| 
 | |
|         let unique_items = root_items + unique_inlined_items;
 | |
|         let placed_items = root_items + placed_inlined_items;
 | |
|         let items_ratio = placed_items as f64 / unique_items as f64;
 | |
| 
 | |
|         let unique_size = root_size + unique_inlined_size;
 | |
|         let placed_size = root_size + placed_inlined_size;
 | |
|         let size_ratio = placed_size as f64 / unique_size as f64;
 | |
| 
 | |
|         let mean_cgu_size = placed_size as f64 / num_cgus as f64;
 | |
| 
 | |
|         assert_eq!(placed_size, all_cgu_sizes.iter().sum::<usize>());
 | |
| 
 | |
|         let s = &mut String::new();
 | |
|         let _ = writeln!(s, "{label}");
 | |
|         let _ = writeln!(
 | |
|             s,
 | |
|             "- unique items: {unique_items} ({root_items} root + {unique_inlined_items} inlined), \
 | |
|                unique size: {unique_size} ({root_size} root + {unique_inlined_size} inlined)\n\
 | |
|              - placed items: {placed_items} ({root_items} root + {placed_inlined_items} inlined), \
 | |
|                placed size: {placed_size} ({root_size} root + {placed_inlined_size} inlined)\n\
 | |
|              - placed/unique items ratio: {items_ratio:.2}, \
 | |
|                placed/unique size ratio: {size_ratio:.2}\n\
 | |
|              - CGUs: {num_cgus}, mean size: {mean_cgu_size:.1}, sizes: {}",
 | |
|             list(&all_cgu_sizes),
 | |
|         );
 | |
|         let _ = writeln!(s);
 | |
| 
 | |
|         for (i, cgu) in cgus.iter().enumerate() {
 | |
|             let name = cgu.name();
 | |
|             let size = cgu.size_estimate();
 | |
|             let num_items = cgu.items().len();
 | |
|             let mean_size = size as f64 / num_items as f64;
 | |
| 
 | |
|             let mut placed_item_sizes: Vec<_> =
 | |
|                 cgu.items().values().map(|data| data.size_estimate).collect();
 | |
|             placed_item_sizes.sort_unstable_by_key(|&n| cmp::Reverse(n));
 | |
|             let sizes = list(&placed_item_sizes);
 | |
| 
 | |
|             let _ = writeln!(s, "- CGU[{i}]");
 | |
|             let _ = writeln!(s, "  - {name}, size: {size}");
 | |
|             let _ =
 | |
|                 writeln!(s, "  - items: {num_items}, mean size: {mean_size:.1}, sizes: {sizes}",);
 | |
| 
 | |
|             for (item, data) in cgu.items_in_deterministic_order(tcx) {
 | |
|                 let linkage = data.linkage;
 | |
|                 let symbol_name = item.symbol_name(tcx).name;
 | |
|                 let symbol_hash_start = symbol_name.rfind('h');
 | |
|                 let symbol_hash = symbol_hash_start.map_or("<no hash>", |i| &symbol_name[i..]);
 | |
|                 let kind = if !data.inlined { "root" } else { "inlined" };
 | |
|                 let size = data.size_estimate;
 | |
|                 let _ = with_no_trimmed_paths!(writeln!(
 | |
|                     s,
 | |
|                     "  - {item} [{linkage:?}] [{symbol_hash}] ({kind}, size: {size})"
 | |
|                 ));
 | |
|             }
 | |
| 
 | |
|             let _ = writeln!(s);
 | |
|         }
 | |
| 
 | |
|         return std::mem::take(s);
 | |
| 
 | |
|         // Converts a slice to a string, capturing repetitions to save space.
 | |
|         // E.g. `[4, 4, 4, 3, 2, 1, 1, 1, 1, 1]` -> "[4 (x3), 3, 2, 1 (x5)]".
 | |
|         fn list(ns: &[usize]) -> String {
 | |
|             let mut v = Vec::new();
 | |
|             if ns.is_empty() {
 | |
|                 return "[]".to_string();
 | |
|             }
 | |
| 
 | |
|             let mut elem = |curr, curr_count| {
 | |
|                 if curr_count == 1 {
 | |
|                     v.push(format!("{curr}"));
 | |
|                 } else {
 | |
|                     v.push(format!("{curr} (x{curr_count})"));
 | |
|                 }
 | |
|             };
 | |
| 
 | |
|             let mut curr = ns[0];
 | |
|             let mut curr_count = 1;
 | |
| 
 | |
|             for &n in &ns[1..] {
 | |
|                 if n != curr {
 | |
|                     elem(curr, curr_count);
 | |
|                     curr = n;
 | |
|                     curr_count = 1;
 | |
|                 } else {
 | |
|                     curr_count += 1;
 | |
|                 }
 | |
|             }
 | |
|             elem(curr, curr_count);
 | |
| 
 | |
|             format!("[{}]", v.join(", "))
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     debug!("{}", dump());
 | |
| }
 | |
| 
 | |
| #[inline(never)] // give this a place in the profiler
 | |
| fn assert_symbols_are_distinct<'a, 'tcx, I>(tcx: TyCtxt<'tcx>, mono_items: I)
 | |
| where
 | |
|     I: Iterator<Item = &'a MonoItem<'tcx>>,
 | |
|     'tcx: 'a,
 | |
| {
 | |
|     let _prof_timer = tcx.prof.generic_activity("assert_symbols_are_distinct");
 | |
| 
 | |
|     let mut symbols: Vec<_> =
 | |
|         mono_items.map(|mono_item| (mono_item, mono_item.symbol_name(tcx))).collect();
 | |
| 
 | |
|     symbols.sort_by_key(|sym| sym.1);
 | |
| 
 | |
|     for &[(mono_item1, ref sym1), (mono_item2, ref sym2)] in symbols.array_windows() {
 | |
|         if sym1 == sym2 {
 | |
|             let span1 = mono_item1.local_span(tcx);
 | |
|             let span2 = mono_item2.local_span(tcx);
 | |
| 
 | |
|             // Deterministically select one of the spans for error reporting
 | |
|             let span = match (span1, span2) {
 | |
|                 (Some(span1), Some(span2)) => {
 | |
|                     Some(if span1.lo().0 > span2.lo().0 { span1 } else { span2 })
 | |
|                 }
 | |
|                 (span1, span2) => span1.or(span2),
 | |
|             };
 | |
| 
 | |
|             tcx.dcx().emit_fatal(SymbolAlreadyDefined { span, symbol: sym1.to_string() });
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| fn collect_and_partition_mono_items(tcx: TyCtxt<'_>, (): ()) -> (&DefIdSet, &[CodegenUnit<'_>]) {
 | |
|     let collection_mode = match tcx.sess.opts.unstable_opts.print_mono_items {
 | |
|         Some(ref s) => {
 | |
|             let mode = s.to_lowercase();
 | |
|             let mode = mode.trim();
 | |
|             if mode == "eager" {
 | |
|                 MonoItemCollectionMode::Eager
 | |
|             } else {
 | |
|                 if mode != "lazy" {
 | |
|                     tcx.dcx().emit_warn(UnknownCguCollectionMode { mode });
 | |
|                 }
 | |
| 
 | |
|                 MonoItemCollectionMode::Lazy
 | |
|             }
 | |
|         }
 | |
|         None => {
 | |
|             if tcx.sess.link_dead_code() {
 | |
|                 MonoItemCollectionMode::Eager
 | |
|             } else {
 | |
|                 MonoItemCollectionMode::Lazy
 | |
|             }
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     let (items, usage_map) = collector::collect_crate_mono_items(tcx, collection_mode);
 | |
| 
 | |
|     tcx.dcx().abort_if_errors();
 | |
| 
 | |
|     let (codegen_units, _) = tcx.sess.time("partition_and_assert_distinct_symbols", || {
 | |
|         sync::join(
 | |
|             || {
 | |
|                 let mut codegen_units = partition(tcx, items.iter().copied(), &usage_map);
 | |
|                 codegen_units[0].make_primary();
 | |
|                 &*tcx.arena.alloc_from_iter(codegen_units)
 | |
|             },
 | |
|             || assert_symbols_are_distinct(tcx, items.iter()),
 | |
|         )
 | |
|     });
 | |
| 
 | |
|     if tcx.prof.enabled() {
 | |
|         // Record CGU size estimates for self-profiling.
 | |
|         for cgu in codegen_units {
 | |
|             tcx.prof.artifact_size(
 | |
|                 "codegen_unit_size_estimate",
 | |
|                 cgu.name().as_str(),
 | |
|                 cgu.size_estimate() as u64,
 | |
|             );
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     let mono_items: DefIdSet = items
 | |
|         .iter()
 | |
|         .filter_map(|mono_item| match *mono_item {
 | |
|             MonoItem::Fn(ref instance) => Some(instance.def_id()),
 | |
|             MonoItem::Static(def_id) => Some(def_id),
 | |
|             _ => None,
 | |
|         })
 | |
|         .collect();
 | |
| 
 | |
|     // Output monomorphization stats per def_id
 | |
|     if let SwitchWithOptPath::Enabled(ref path) = tcx.sess.opts.unstable_opts.dump_mono_stats {
 | |
|         if let Err(err) =
 | |
|             dump_mono_items_stats(tcx, codegen_units, path, tcx.crate_name(LOCAL_CRATE))
 | |
|         {
 | |
|             tcx.dcx().emit_fatal(CouldntDumpMonoStats { error: err.to_string() });
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if tcx.sess.opts.unstable_opts.print_mono_items.is_some() {
 | |
|         let mut item_to_cgus: FxHashMap<_, Vec<_>> = Default::default();
 | |
| 
 | |
|         for cgu in codegen_units {
 | |
|             for (&mono_item, &data) in cgu.items() {
 | |
|                 item_to_cgus.entry(mono_item).or_default().push((cgu.name(), data.linkage));
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         let mut item_keys: Vec<_> = items
 | |
|             .iter()
 | |
|             .map(|i| {
 | |
|                 let mut output = with_no_trimmed_paths!(i.to_string());
 | |
|                 output.push_str(" @@");
 | |
|                 let mut empty = Vec::new();
 | |
|                 let cgus = item_to_cgus.get_mut(i).unwrap_or(&mut empty);
 | |
|                 cgus.sort_by_key(|(name, _)| *name);
 | |
|                 cgus.dedup();
 | |
|                 for &(ref cgu_name, linkage) in cgus.iter() {
 | |
|                     output.push(' ');
 | |
|                     output.push_str(cgu_name.as_str());
 | |
| 
 | |
|                     let linkage_abbrev = match linkage {
 | |
|                         Linkage::External => "External",
 | |
|                         Linkage::AvailableExternally => "Available",
 | |
|                         Linkage::LinkOnceAny => "OnceAny",
 | |
|                         Linkage::LinkOnceODR => "OnceODR",
 | |
|                         Linkage::WeakAny => "WeakAny",
 | |
|                         Linkage::WeakODR => "WeakODR",
 | |
|                         Linkage::Appending => "Appending",
 | |
|                         Linkage::Internal => "Internal",
 | |
|                         Linkage::Private => "Private",
 | |
|                         Linkage::ExternalWeak => "ExternalWeak",
 | |
|                         Linkage::Common => "Common",
 | |
|                     };
 | |
| 
 | |
|                     output.push('[');
 | |
|                     output.push_str(linkage_abbrev);
 | |
|                     output.push(']');
 | |
|                 }
 | |
|                 output
 | |
|             })
 | |
|             .collect();
 | |
| 
 | |
|         item_keys.sort();
 | |
| 
 | |
|         for item in item_keys {
 | |
|             println!("MONO_ITEM {item}");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     (tcx.arena.alloc(mono_items), codegen_units)
 | |
| }
 | |
| 
 | |
| /// Outputs stats about instantiation counts and estimated size, per `MonoItem`'s
 | |
| /// def, to a file in the given output directory.
 | |
| fn dump_mono_items_stats<'tcx>(
 | |
|     tcx: TyCtxt<'tcx>,
 | |
|     codegen_units: &[CodegenUnit<'tcx>],
 | |
|     output_directory: &Option<PathBuf>,
 | |
|     crate_name: Symbol,
 | |
| ) -> Result<(), Box<dyn std::error::Error>> {
 | |
|     let output_directory = if let Some(ref directory) = output_directory {
 | |
|         fs::create_dir_all(directory)?;
 | |
|         directory
 | |
|     } else {
 | |
|         Path::new(".")
 | |
|     };
 | |
| 
 | |
|     let format = tcx.sess.opts.unstable_opts.dump_mono_stats_format;
 | |
|     let ext = format.extension();
 | |
|     let filename = format!("{crate_name}.mono_items.{ext}");
 | |
|     let output_path = output_directory.join(&filename);
 | |
|     let file = File::create(&output_path)?;
 | |
|     let mut file = BufWriter::new(file);
 | |
| 
 | |
|     // Gather instantiated mono items grouped by def_id
 | |
|     let mut items_per_def_id: FxHashMap<_, Vec<_>> = Default::default();
 | |
|     for cgu in codegen_units {
 | |
|         cgu.items()
 | |
|             .keys()
 | |
|             // Avoid variable-sized compiler-generated shims
 | |
|             .filter(|mono_item| mono_item.is_user_defined())
 | |
|             .for_each(|mono_item| {
 | |
|                 items_per_def_id.entry(mono_item.def_id()).or_default().push(mono_item);
 | |
|             });
 | |
|     }
 | |
| 
 | |
|     #[derive(serde::Serialize)]
 | |
|     struct MonoItem {
 | |
|         name: String,
 | |
|         instantiation_count: usize,
 | |
|         size_estimate: usize,
 | |
|         total_estimate: usize,
 | |
|     }
 | |
| 
 | |
|     // Output stats sorted by total instantiated size, from heaviest to lightest
 | |
|     let mut stats: Vec<_> = items_per_def_id
 | |
|         .into_iter()
 | |
|         .map(|(def_id, items)| {
 | |
|             let name = with_no_trimmed_paths!(tcx.def_path_str(def_id));
 | |
|             let instantiation_count = items.len();
 | |
|             let size_estimate = items[0].size_estimate(tcx);
 | |
|             let total_estimate = instantiation_count * size_estimate;
 | |
|             MonoItem { name, instantiation_count, size_estimate, total_estimate }
 | |
|         })
 | |
|         .collect();
 | |
|     stats.sort_unstable_by_key(|item| cmp::Reverse(item.total_estimate));
 | |
| 
 | |
|     if !stats.is_empty() {
 | |
|         match format {
 | |
|             DumpMonoStatsFormat::Json => serde_json::to_writer(file, &stats)?,
 | |
|             DumpMonoStatsFormat::Markdown => {
 | |
|                 writeln!(
 | |
|                     file,
 | |
|                     "| Item | Instantiation count | Estimated Cost Per Instantiation | Total Estimated Cost |"
 | |
|                 )?;
 | |
|                 writeln!(file, "| --- | ---: | ---: | ---: |")?;
 | |
| 
 | |
|                 for MonoItem { name, instantiation_count, size_estimate, total_estimate } in stats {
 | |
|                     writeln!(
 | |
|                         file,
 | |
|                         "| `{name}` | {instantiation_count} | {size_estimate} | {total_estimate} |"
 | |
|                     )?;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     Ok(())
 | |
| }
 | |
| 
 | |
| pub fn provide(providers: &mut Providers) {
 | |
|     providers.collect_and_partition_mono_items = collect_and_partition_mono_items;
 | |
| 
 | |
|     providers.is_codegened_item = |tcx, def_id| {
 | |
|         let (all_mono_items, _) = tcx.collect_and_partition_mono_items(());
 | |
|         all_mono_items.contains(&def_id)
 | |
|     };
 | |
| 
 | |
|     providers.codegen_unit = |tcx, name| {
 | |
|         let (_, all) = tcx.collect_and_partition_mono_items(());
 | |
|         all.iter()
 | |
|             .find(|cgu| cgu.name() == name)
 | |
|             .unwrap_or_else(|| panic!("failed to find cgu with name {name:?}"))
 | |
|     };
 | |
| }
 | 
