mirror of
https://github.com/rust-lang/rust.git
synced 2025-10-11 14:48:41 +00:00
179 lines
6.0 KiB
Rust
179 lines
6.0 KiB
Rust
//! Runtime support needed for testing the stdarch crate.
|
|
//!
|
|
//! This basically just disassembles the current executable and then parses the
|
|
//! output once globally and then provides the `assert` function which makes
|
|
//! assertions about the disassembly of a function.
|
|
#![feature(const_transmute)]
|
|
#![feature(vec_leak)]
|
|
#![allow(clippy::missing_docs_in_private_items, clippy::print_stdout)]
|
|
|
|
extern crate assert_instr_macro;
|
|
extern crate cc;
|
|
#[macro_use]
|
|
extern crate lazy_static;
|
|
extern crate rustc_demangle;
|
|
extern crate simd_test_macro;
|
|
#[macro_use]
|
|
extern crate cfg_if;
|
|
|
|
pub use assert_instr_macro::*;
|
|
pub use simd_test_macro::*;
|
|
use std::{cmp, collections::HashSet, env, hash, str, sync::atomic::AtomicPtr};
|
|
|
|
// `println!` doesn't work on wasm32 right now, so shadow the compiler's `println!`
|
|
// macro with our own shim that redirects to `console.log`.
|
|
#[allow(unused)]
|
|
#[cfg(target_arch = "wasm32")]
|
|
#[macro_export]
|
|
macro_rules! println {
|
|
($($args:tt)*) => (crate::wasm::js_console_log(&format!($($args)*)))
|
|
}
|
|
|
|
cfg_if! {
|
|
if #[cfg(target_arch = "wasm32")] {
|
|
extern crate wasm_bindgen;
|
|
extern crate console_error_panic_hook;
|
|
pub mod wasm;
|
|
use wasm::disassemble_myself;
|
|
} else {
|
|
mod disassembly;
|
|
use disassembly::disassemble_myself;
|
|
}
|
|
}
|
|
|
|
lazy_static! {
|
|
static ref DISASSEMBLY: HashSet<Function> = disassemble_myself();
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct Function {
|
|
name: String,
|
|
instrs: Vec<String>,
|
|
}
|
|
impl Function {
|
|
fn new(n: &str) -> Self {
|
|
Self {
|
|
name: n.to_string(),
|
|
instrs: Vec::new(),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl cmp::PartialEq for Function {
|
|
fn eq(&self, other: &Self) -> bool {
|
|
self.name == other.name
|
|
}
|
|
}
|
|
impl cmp::Eq for Function {}
|
|
|
|
impl hash::Hash for Function {
|
|
fn hash<H: hash::Hasher>(&self, state: &mut H) {
|
|
self.name.hash(state)
|
|
}
|
|
}
|
|
|
|
/// Main entry point for this crate, called by the `#[assert_instr]` macro.
|
|
///
|
|
/// This asserts that the function at `fnptr` contains the instruction
|
|
/// `expected` provided.
|
|
pub fn assert(_fnptr: usize, fnname: &str, expected: &str) {
|
|
//eprintln!("shim name: {}", fnname);
|
|
let function = &DISASSEMBLY
|
|
.get(&Function::new(fnname))
|
|
.unwrap_or_else(|| panic!("function \"{}\" not found in the disassembly", fnname));
|
|
//eprintln!(" function: {:?}", function);
|
|
|
|
let mut instrs = &function.instrs[..];
|
|
while instrs.last().map_or(false, |s| s == "nop") {
|
|
instrs = &instrs[..instrs.len() - 1];
|
|
}
|
|
|
|
// Look for `expected` as the first part of any instruction in this
|
|
// function, e.g., tzcntl in tzcntl %rax,%rax.
|
|
let found = instrs.iter().any(|s| s.contains(expected));
|
|
|
|
// Look for `call` instructions in the disassembly to detect whether
|
|
// inlining failed: all intrinsics are `#[inline(always)]`, so
|
|
// calling one intrinsic from another should not generate `call`
|
|
// instructions.
|
|
let inlining_failed = instrs.windows(2).any(|s| {
|
|
// On 32-bit x86 position independent code will call itself and be
|
|
// immediately followed by a `pop` to learn about the current address.
|
|
// Let's not take that into account when considering whether a function
|
|
// failed inlining something.
|
|
s[0].contains("call") && (!cfg!(target_arch = "x86") || s[1].contains("pop"))
|
|
});
|
|
|
|
let instruction_limit = std::env::var("STDARCH_ASSERT_INSTR_LIMIT")
|
|
.ok()
|
|
.map_or_else(
|
|
|| match expected {
|
|
// `cpuid` returns a pretty big aggregate structure, so exempt
|
|
// it from the slightly more restrictive 22 instructions below.
|
|
"cpuid" => 30,
|
|
|
|
// Apparently, on Windows, LLVM generates a bunch of
|
|
// saves/restores of xmm registers around these intstructions,
|
|
// which exceeds the limit of 20 below. As it seems dictated by
|
|
// Windows's ABI (I believe?), we probably can't do much
|
|
// about it.
|
|
"vzeroall" | "vzeroupper" if cfg!(windows) => 30,
|
|
|
|
// Intrinsics using `cvtpi2ps` are typically "composites" and
|
|
// in some cases exceed the limit.
|
|
"cvtpi2ps" => 25,
|
|
|
|
// core_arch/src/acle/simd32
|
|
"usad8" => 27,
|
|
"qadd8" | "qsub8" | "sadd8" | "sel" | "shadd8" | "shsub8" | "usub8" | "ssub8" => 29,
|
|
|
|
// Original limit was 20 instructions, but ARM DSP Intrinsics
|
|
// are exactly 20 instructions long. So, bump the limit to 22
|
|
// instead of adding here a long list of exceptions.
|
|
_ => 22,
|
|
},
|
|
|v| v.parse().unwrap(),
|
|
);
|
|
let probably_only_one_instruction = instrs.len() < instruction_limit;
|
|
|
|
if found && probably_only_one_instruction && !inlining_failed {
|
|
return;
|
|
}
|
|
|
|
// Help debug by printing out the found disassembly, and then panic as we
|
|
// didn't find the instruction.
|
|
println!("disassembly for {}: ", fnname,);
|
|
for (i, instr) in instrs.iter().enumerate() {
|
|
println!("\t{:2}: {}", i, instr);
|
|
}
|
|
|
|
if !found {
|
|
panic!(
|
|
"failed to find instruction `{}` in the disassembly",
|
|
expected
|
|
);
|
|
} else if !probably_only_one_instruction {
|
|
panic!(
|
|
"instruction found, but the disassembly contains too many \
|
|
instructions: #instructions = {} >= {} (limit)",
|
|
instrs.len(),
|
|
instruction_limit
|
|
);
|
|
} else if inlining_failed {
|
|
panic!(
|
|
"instruction found, but the disassembly contains `call` \
|
|
instructions, which hint that inlining failed"
|
|
);
|
|
}
|
|
}
|
|
|
|
pub fn assert_skip_test_ok(name: &str) {
|
|
if env::var("STDARCH_TEST_EVERYTHING").is_err() {
|
|
return;
|
|
}
|
|
panic!("skipped test `{}` when it shouldn't be skipped", name);
|
|
}
|
|
|
|
// See comment in `assert-instr-macro` crate for why this exists
|
|
pub static _DONT_DEDUP: AtomicPtr<u8> = AtomicPtr::new(b"".as_ptr() as *mut _);
|