2024-06-21 12:32:05 -04:00

436 lines
14 KiB
Rust

use std::ops::Deref;
use rustc_data_structures::fx::FxHashSet;
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_infer::infer::canonical::query_response::make_query_region_constraints;
use rustc_infer::infer::canonical::{
Canonical, CanonicalExt as _, CanonicalVarInfo, CanonicalVarValues,
};
use rustc_infer::infer::{
BoundRegionConversionTime, InferCtxt, RegionVariableOrigin, SubregionOrigin, TyCtxtInferExt,
};
use rustc_infer::traits::solve::Goal;
use rustc_infer::traits::util::supertraits;
use rustc_infer::traits::{ObligationCause, Reveal};
use rustc_middle::ty::fold::TypeFoldable;
use rustc_middle::ty::{self, Ty, TyCtxt, TypeVisitableExt as _};
use rustc_span::{ErrorGuaranteed, Span, DUMMY_SP};
use rustc_type_ir::relate::Relate;
use rustc_type_ir::solve::{Certainty, NoSolution, SolverMode};
use crate::traits::coherence::trait_ref_is_knowable;
use crate::traits::specialization_graph;
#[repr(transparent)]
pub struct SolverDelegate<'tcx>(InferCtxt<'tcx>);
impl<'a, 'tcx> From<&'a InferCtxt<'tcx>> for &'a SolverDelegate<'tcx> {
fn from(infcx: &'a InferCtxt<'tcx>) -> Self {
// SAFETY: `repr(transparent)`
unsafe { std::mem::transmute(infcx) }
}
}
impl<'tcx> Deref for SolverDelegate<'tcx> {
type Target = InferCtxt<'tcx>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl<'tcx> rustc_next_trait_solver::delegate::SolverDelegate for SolverDelegate<'tcx> {
type Interner = TyCtxt<'tcx>;
fn cx(&self) -> TyCtxt<'tcx> {
self.0.tcx
}
type Span = Span;
fn solver_mode(&self) -> ty::solve::SolverMode {
match self.intercrate {
true => SolverMode::Coherence,
false => SolverMode::Normal,
}
}
fn build_with_canonical<V>(
interner: TyCtxt<'tcx>,
solver_mode: SolverMode,
canonical: &Canonical<'tcx, V>,
) -> (Self, V, CanonicalVarValues<'tcx>)
where
V: TypeFoldable<TyCtxt<'tcx>>,
{
let (infcx, value, vars) = interner
.infer_ctxt()
.with_next_trait_solver(true)
.intercrate(match solver_mode {
SolverMode::Normal => false,
SolverMode::Coherence => true,
})
.build_with_canonical(DUMMY_SP, canonical);
(SolverDelegate(infcx), value, vars)
}
fn universe(&self) -> ty::UniverseIndex {
self.0.universe()
}
fn create_next_universe(&self) -> ty::UniverseIndex {
self.0.create_next_universe()
}
fn universe_of_ty(&self, vid: ty::TyVid) -> Option<ty::UniverseIndex> {
// FIXME(BoxyUwU): this is kind of jank and means that printing unresolved
// ty infers will give you the universe of the var it resolved to not the universe
// it actually had. It also means that if you have a `?0.1` and infer it to `u8` then
// try to print out `?0.1` it will just print `?0`.
match self.0.probe_ty_var(vid) {
Err(universe) => Some(universe),
Ok(_) => None,
}
}
fn universe_of_lt(&self, lt: ty::RegionVid) -> Option<ty::UniverseIndex> {
match self.0.inner.borrow_mut().unwrap_region_constraints().probe_value(lt) {
Err(universe) => Some(universe),
Ok(_) => None,
}
}
fn universe_of_ct(&self, ct: ty::ConstVid) -> Option<ty::UniverseIndex> {
// Same issue as with `universe_of_ty`
match self.0.probe_const_var(ct) {
Err(universe) => Some(universe),
Ok(_) => None,
}
}
fn root_ty_var(&self, var: ty::TyVid) -> ty::TyVid {
self.0.root_var(var)
}
fn root_const_var(&self, var: ty::ConstVid) -> ty::ConstVid {
self.0.root_const_var(var)
}
fn opportunistic_resolve_ty_var(&self, vid: ty::TyVid) -> Ty<'tcx> {
match self.0.probe_ty_var(vid) {
Ok(ty) => ty,
Err(_) => Ty::new_var(self.0.tcx, self.0.root_var(vid)),
}
}
fn opportunistic_resolve_int_var(&self, vid: ty::IntVid) -> Ty<'tcx> {
self.0.opportunistic_resolve_int_var(vid)
}
fn opportunistic_resolve_float_var(&self, vid: ty::FloatVid) -> Ty<'tcx> {
self.0.opportunistic_resolve_float_var(vid)
}
fn opportunistic_resolve_ct_var(&self, vid: ty::ConstVid) -> ty::Const<'tcx> {
match self.0.probe_const_var(vid) {
Ok(ct) => ct,
Err(_) => ty::Const::new_var(self.0.tcx, self.0.root_const_var(vid)),
}
}
fn opportunistic_resolve_effect_var(&self, vid: ty::EffectVid) -> ty::Const<'tcx> {
match self.0.probe_effect_var(vid) {
Some(ct) => ct,
None => ty::Const::new_infer(
self.0.tcx,
ty::InferConst::EffectVar(self.0.root_effect_var(vid)),
),
}
}
fn opportunistic_resolve_lt_var(&self, vid: ty::RegionVid) -> ty::Region<'tcx> {
self.0
.inner
.borrow_mut()
.unwrap_region_constraints()
.opportunistic_resolve_var(self.0.tcx, vid)
}
fn defining_opaque_types(&self) -> &'tcx ty::List<LocalDefId> {
self.0.defining_opaque_types()
}
fn next_ty_infer(&self) -> Ty<'tcx> {
self.0.next_ty_var(DUMMY_SP)
}
fn next_const_infer(&self) -> ty::Const<'tcx> {
self.0.next_const_var(DUMMY_SP)
}
fn fresh_args_for_item(&self, def_id: DefId) -> ty::GenericArgsRef<'tcx> {
self.0.fresh_args_for_item(DUMMY_SP, def_id)
}
fn fresh_var_for_kind_with_span(
&self,
arg: ty::GenericArg<'tcx>,
span: Span,
) -> ty::GenericArg<'tcx> {
match arg.unpack() {
ty::GenericArgKind::Lifetime(_) => {
self.next_region_var(RegionVariableOrigin::MiscVariable(span)).into()
}
ty::GenericArgKind::Type(_) => self.next_ty_var(span).into(),
ty::GenericArgKind::Const(_) => self.next_const_var(span).into(),
}
}
fn instantiate_binder_with_infer<T: TypeFoldable<TyCtxt<'tcx>> + Copy>(
&self,
value: ty::Binder<'tcx, T>,
) -> T {
self.0.instantiate_binder_with_fresh_vars(
DUMMY_SP,
BoundRegionConversionTime::HigherRankedType,
value,
)
}
fn enter_forall<T: TypeFoldable<TyCtxt<'tcx>> + Copy, U>(
&self,
value: ty::Binder<'tcx, T>,
f: impl FnOnce(T) -> U,
) -> U {
self.0.enter_forall(value, f)
}
fn relate<T: Relate<TyCtxt<'tcx>>>(
&self,
param_env: ty::ParamEnv<'tcx>,
lhs: T,
variance: ty::Variance,
rhs: T,
) -> Result<Vec<Goal<'tcx, ty::Predicate<'tcx>>>, NoSolution> {
self.0.at(&ObligationCause::dummy(), param_env).relate_no_trace(lhs, variance, rhs)
}
fn eq_structurally_relating_aliases<T: Relate<TyCtxt<'tcx>>>(
&self,
param_env: ty::ParamEnv<'tcx>,
lhs: T,
rhs: T,
) -> Result<Vec<Goal<'tcx, ty::Predicate<'tcx>>>, NoSolution> {
self.0
.at(&ObligationCause::dummy(), param_env)
.eq_structurally_relating_aliases_no_trace(lhs, rhs)
}
fn resolve_vars_if_possible<T>(&self, value: T) -> T
where
T: TypeFoldable<TyCtxt<'tcx>>,
{
self.0.resolve_vars_if_possible(value)
}
fn probe<T>(&self, probe: impl FnOnce() -> T) -> T {
self.0.probe(|_| probe())
}
fn leak_check(&self, max_input_universe: ty::UniverseIndex) -> Result<(), NoSolution> {
self.0.leak_check(max_input_universe, None).map_err(|_| NoSolution)
}
fn elaborate_supertraits(
interner: TyCtxt<'tcx>,
trait_ref: ty::Binder<'tcx, ty::TraitRef<'tcx>>,
) -> impl Iterator<Item = ty::Binder<'tcx, ty::TraitRef<'tcx>>> {
supertraits(interner, trait_ref)
}
fn try_const_eval_resolve(
&self,
param_env: ty::ParamEnv<'tcx>,
unevaluated: ty::UnevaluatedConst<'tcx>,
) -> Option<ty::Const<'tcx>> {
use rustc_middle::mir::interpret::ErrorHandled;
match self.const_eval_resolve(param_env, unevaluated, DUMMY_SP) {
Ok(Some(val)) => Some(ty::Const::new_value(
self.tcx,
val,
self.tcx.type_of(unevaluated.def).instantiate(self.tcx, unevaluated.args),
)),
Ok(None) | Err(ErrorHandled::TooGeneric(_)) => None,
Err(ErrorHandled::Reported(e, _)) => Some(ty::Const::new_error(self.tcx, e.into())),
}
}
fn sub_regions(&self, sub: ty::Region<'tcx>, sup: ty::Region<'tcx>) {
self.0.sub_regions(SubregionOrigin::RelateRegionParamBound(DUMMY_SP), sub, sup)
}
fn register_ty_outlives(&self, ty: Ty<'tcx>, r: ty::Region<'tcx>) {
self.0.register_region_obligation_with_cause(ty, r, &ObligationCause::dummy());
}
fn well_formed_goals(
&self,
param_env: ty::ParamEnv<'tcx>,
arg: ty::GenericArg<'tcx>,
) -> Option<Vec<Goal<'tcx, ty::Predicate<'tcx>>>> {
crate::traits::wf::unnormalized_obligations(&self.0, param_env, arg).map(|obligations| {
obligations.into_iter().map(|obligation| obligation.into()).collect()
})
}
fn clone_opaque_types_for_query_response(&self) -> Vec<(ty::OpaqueTypeKey<'tcx>, Ty<'tcx>)> {
self.0.clone_opaque_types_for_query_response()
}
fn make_deduplicated_outlives_constraints(
&self,
) -> Vec<ty::OutlivesPredicate<'tcx, ty::GenericArg<'tcx>>> {
// Cannot use `take_registered_region_obligations` as we may compute the response
// inside of a `probe` whenever we have multiple choices inside of the solver.
let region_obligations = self.0.inner.borrow().region_obligations().to_owned();
let region_constraints = self.0.with_region_constraints(|region_constraints| {
make_query_region_constraints(
self.tcx,
region_obligations
.iter()
.map(|r_o| (r_o.sup_type, r_o.sub_region, r_o.origin.to_constraint_category())),
region_constraints,
)
});
assert_eq!(region_constraints.member_constraints, vec![]);
let mut seen = FxHashSet::default();
region_constraints
.outlives
.into_iter()
.filter(|&(outlives, _)| seen.insert(outlives))
.map(|(outlives, _)| outlives)
.collect()
}
fn instantiate_canonical<V>(
&self,
canonical: Canonical<'tcx, V>,
values: CanonicalVarValues<'tcx>,
) -> V
where
V: TypeFoldable<TyCtxt<'tcx>>,
{
canonical.instantiate(self.tcx, &values)
}
fn instantiate_canonical_var_with_infer(
&self,
cv_info: CanonicalVarInfo<'tcx>,
universe_map: impl Fn(ty::UniverseIndex) -> ty::UniverseIndex,
) -> ty::GenericArg<'tcx> {
self.0.instantiate_canonical_var(DUMMY_SP, cv_info, universe_map)
}
fn insert_hidden_type(
&self,
opaque_type_key: ty::OpaqueTypeKey<'tcx>,
param_env: ty::ParamEnv<'tcx>,
hidden_ty: Ty<'tcx>,
goals: &mut Vec<Goal<'tcx, ty::Predicate<'tcx>>>,
) -> Result<(), NoSolution> {
self.0
.insert_hidden_type(opaque_type_key, DUMMY_SP, param_env, hidden_ty, goals)
.map_err(|_| NoSolution)
}
fn add_item_bounds_for_hidden_type(
&self,
def_id: DefId,
args: ty::GenericArgsRef<'tcx>,
param_env: ty::ParamEnv<'tcx>,
hidden_ty: Ty<'tcx>,
goals: &mut Vec<Goal<'tcx, ty::Predicate<'tcx>>>,
) {
self.0.add_item_bounds_for_hidden_type(def_id, args, param_env, hidden_ty, goals);
}
fn inject_new_hidden_type_unchecked(&self, key: ty::OpaqueTypeKey<'tcx>, hidden_ty: Ty<'tcx>) {
self.0.inject_new_hidden_type_unchecked(
key,
ty::OpaqueHiddenType { ty: hidden_ty, span: DUMMY_SP },
)
}
fn reset_opaque_types(&self) {
let _ = self.take_opaque_types();
}
fn trait_ref_is_knowable<E: std::fmt::Debug>(
&self,
trait_ref: ty::TraitRef<'tcx>,
lazily_normalize_ty: impl FnMut(Ty<'tcx>) -> Result<Ty<'tcx>, E>,
) -> Result<bool, E> {
trait_ref_is_knowable(&self.0, trait_ref, lazily_normalize_ty)
.map(|is_knowable| is_knowable.is_ok())
}
fn fetch_eligible_assoc_item(
&self,
param_env: ty::ParamEnv<'tcx>,
goal_trait_ref: ty::TraitRef<'tcx>,
trait_assoc_def_id: DefId,
impl_def_id: DefId,
) -> Result<Option<DefId>, NoSolution> {
let node_item = specialization_graph::assoc_def(self.tcx, impl_def_id, trait_assoc_def_id)
.map_err(|ErrorGuaranteed { .. }| NoSolution)?;
let eligible = if node_item.is_final() {
// Non-specializable items are always projectable.
true
} else {
// Only reveal a specializable default if we're past type-checking
// and the obligation is monomorphic, otherwise passes such as
// transmute checking and polymorphic MIR optimizations could
// get a result which isn't correct for all monomorphizations.
if param_env.reveal() == Reveal::All {
let poly_trait_ref = self.resolve_vars_if_possible(goal_trait_ref);
!poly_trait_ref.still_further_specializable()
} else {
trace!(?node_item.item.def_id, "not eligible due to default");
false
}
};
// FIXME: Check for defaultness here may cause diagnostics problems.
if eligible { Ok(Some(node_item.item.def_id)) } else { Ok(None) }
}
fn is_transmutable(
&self,
param_env: ty::ParamEnv<'tcx>,
dst: Ty<'tcx>,
src: Ty<'tcx>,
assume: ty::Const<'tcx>,
) -> Result<Certainty, NoSolution> {
// Erase regions because we compute layouts in `rustc_transmute`,
// which will ICE for region vars.
let (dst, src) = self.tcx.erase_regions((dst, src));
let Some(assume) = rustc_transmute::Assume::from_const(self.tcx, param_env, assume) else {
return Err(NoSolution);
};
// FIXME(transmutability): This really should be returning nested goals for `Answer::If*`
match rustc_transmute::TransmuteTypeEnv::new(&self.0).is_transmutable(
ObligationCause::dummy(),
rustc_transmute::Types { src, dst },
assume,
) {
rustc_transmute::Answer::Yes => Ok(Certainty::Yes),
rustc_transmute::Answer::No(_) | rustc_transmute::Answer::If(_) => Err(NoSolution),
}
}
}