mirror of
https://github.com/rust-lang/rust.git
synced 2025-10-29 03:53:55 +00:00
436 lines
14 KiB
Rust
436 lines
14 KiB
Rust
use std::ops::Deref;
|
|
|
|
use rustc_data_structures::fx::FxHashSet;
|
|
use rustc_hir::def_id::{DefId, LocalDefId};
|
|
use rustc_infer::infer::canonical::query_response::make_query_region_constraints;
|
|
use rustc_infer::infer::canonical::{
|
|
Canonical, CanonicalExt as _, CanonicalVarInfo, CanonicalVarValues,
|
|
};
|
|
use rustc_infer::infer::{
|
|
BoundRegionConversionTime, InferCtxt, RegionVariableOrigin, SubregionOrigin, TyCtxtInferExt,
|
|
};
|
|
use rustc_infer::traits::solve::Goal;
|
|
use rustc_infer::traits::util::supertraits;
|
|
use rustc_infer::traits::{ObligationCause, Reveal};
|
|
use rustc_middle::ty::fold::TypeFoldable;
|
|
use rustc_middle::ty::{self, Ty, TyCtxt, TypeVisitableExt as _};
|
|
use rustc_span::{ErrorGuaranteed, Span, DUMMY_SP};
|
|
use rustc_type_ir::relate::Relate;
|
|
use rustc_type_ir::solve::{Certainty, NoSolution, SolverMode};
|
|
|
|
use crate::traits::coherence::trait_ref_is_knowable;
|
|
use crate::traits::specialization_graph;
|
|
|
|
#[repr(transparent)]
|
|
pub struct SolverDelegate<'tcx>(InferCtxt<'tcx>);
|
|
|
|
impl<'a, 'tcx> From<&'a InferCtxt<'tcx>> for &'a SolverDelegate<'tcx> {
|
|
fn from(infcx: &'a InferCtxt<'tcx>) -> Self {
|
|
// SAFETY: `repr(transparent)`
|
|
unsafe { std::mem::transmute(infcx) }
|
|
}
|
|
}
|
|
|
|
impl<'tcx> Deref for SolverDelegate<'tcx> {
|
|
type Target = InferCtxt<'tcx>;
|
|
|
|
fn deref(&self) -> &Self::Target {
|
|
&self.0
|
|
}
|
|
}
|
|
|
|
impl<'tcx> rustc_next_trait_solver::delegate::SolverDelegate for SolverDelegate<'tcx> {
|
|
type Interner = TyCtxt<'tcx>;
|
|
|
|
fn cx(&self) -> TyCtxt<'tcx> {
|
|
self.0.tcx
|
|
}
|
|
|
|
type Span = Span;
|
|
|
|
fn solver_mode(&self) -> ty::solve::SolverMode {
|
|
match self.intercrate {
|
|
true => SolverMode::Coherence,
|
|
false => SolverMode::Normal,
|
|
}
|
|
}
|
|
|
|
fn build_with_canonical<V>(
|
|
interner: TyCtxt<'tcx>,
|
|
solver_mode: SolverMode,
|
|
canonical: &Canonical<'tcx, V>,
|
|
) -> (Self, V, CanonicalVarValues<'tcx>)
|
|
where
|
|
V: TypeFoldable<TyCtxt<'tcx>>,
|
|
{
|
|
let (infcx, value, vars) = interner
|
|
.infer_ctxt()
|
|
.with_next_trait_solver(true)
|
|
.intercrate(match solver_mode {
|
|
SolverMode::Normal => false,
|
|
SolverMode::Coherence => true,
|
|
})
|
|
.build_with_canonical(DUMMY_SP, canonical);
|
|
(SolverDelegate(infcx), value, vars)
|
|
}
|
|
|
|
fn universe(&self) -> ty::UniverseIndex {
|
|
self.0.universe()
|
|
}
|
|
|
|
fn create_next_universe(&self) -> ty::UniverseIndex {
|
|
self.0.create_next_universe()
|
|
}
|
|
|
|
fn universe_of_ty(&self, vid: ty::TyVid) -> Option<ty::UniverseIndex> {
|
|
// FIXME(BoxyUwU): this is kind of jank and means that printing unresolved
|
|
// ty infers will give you the universe of the var it resolved to not the universe
|
|
// it actually had. It also means that if you have a `?0.1` and infer it to `u8` then
|
|
// try to print out `?0.1` it will just print `?0`.
|
|
match self.0.probe_ty_var(vid) {
|
|
Err(universe) => Some(universe),
|
|
Ok(_) => None,
|
|
}
|
|
}
|
|
|
|
fn universe_of_lt(&self, lt: ty::RegionVid) -> Option<ty::UniverseIndex> {
|
|
match self.0.inner.borrow_mut().unwrap_region_constraints().probe_value(lt) {
|
|
Err(universe) => Some(universe),
|
|
Ok(_) => None,
|
|
}
|
|
}
|
|
|
|
fn universe_of_ct(&self, ct: ty::ConstVid) -> Option<ty::UniverseIndex> {
|
|
// Same issue as with `universe_of_ty`
|
|
match self.0.probe_const_var(ct) {
|
|
Err(universe) => Some(universe),
|
|
Ok(_) => None,
|
|
}
|
|
}
|
|
|
|
fn root_ty_var(&self, var: ty::TyVid) -> ty::TyVid {
|
|
self.0.root_var(var)
|
|
}
|
|
|
|
fn root_const_var(&self, var: ty::ConstVid) -> ty::ConstVid {
|
|
self.0.root_const_var(var)
|
|
}
|
|
|
|
fn opportunistic_resolve_ty_var(&self, vid: ty::TyVid) -> Ty<'tcx> {
|
|
match self.0.probe_ty_var(vid) {
|
|
Ok(ty) => ty,
|
|
Err(_) => Ty::new_var(self.0.tcx, self.0.root_var(vid)),
|
|
}
|
|
}
|
|
|
|
fn opportunistic_resolve_int_var(&self, vid: ty::IntVid) -> Ty<'tcx> {
|
|
self.0.opportunistic_resolve_int_var(vid)
|
|
}
|
|
|
|
fn opportunistic_resolve_float_var(&self, vid: ty::FloatVid) -> Ty<'tcx> {
|
|
self.0.opportunistic_resolve_float_var(vid)
|
|
}
|
|
|
|
fn opportunistic_resolve_ct_var(&self, vid: ty::ConstVid) -> ty::Const<'tcx> {
|
|
match self.0.probe_const_var(vid) {
|
|
Ok(ct) => ct,
|
|
Err(_) => ty::Const::new_var(self.0.tcx, self.0.root_const_var(vid)),
|
|
}
|
|
}
|
|
|
|
fn opportunistic_resolve_effect_var(&self, vid: ty::EffectVid) -> ty::Const<'tcx> {
|
|
match self.0.probe_effect_var(vid) {
|
|
Some(ct) => ct,
|
|
None => ty::Const::new_infer(
|
|
self.0.tcx,
|
|
ty::InferConst::EffectVar(self.0.root_effect_var(vid)),
|
|
),
|
|
}
|
|
}
|
|
|
|
fn opportunistic_resolve_lt_var(&self, vid: ty::RegionVid) -> ty::Region<'tcx> {
|
|
self.0
|
|
.inner
|
|
.borrow_mut()
|
|
.unwrap_region_constraints()
|
|
.opportunistic_resolve_var(self.0.tcx, vid)
|
|
}
|
|
|
|
fn defining_opaque_types(&self) -> &'tcx ty::List<LocalDefId> {
|
|
self.0.defining_opaque_types()
|
|
}
|
|
|
|
fn next_ty_infer(&self) -> Ty<'tcx> {
|
|
self.0.next_ty_var(DUMMY_SP)
|
|
}
|
|
|
|
fn next_const_infer(&self) -> ty::Const<'tcx> {
|
|
self.0.next_const_var(DUMMY_SP)
|
|
}
|
|
|
|
fn fresh_args_for_item(&self, def_id: DefId) -> ty::GenericArgsRef<'tcx> {
|
|
self.0.fresh_args_for_item(DUMMY_SP, def_id)
|
|
}
|
|
|
|
fn fresh_var_for_kind_with_span(
|
|
&self,
|
|
arg: ty::GenericArg<'tcx>,
|
|
span: Span,
|
|
) -> ty::GenericArg<'tcx> {
|
|
match arg.unpack() {
|
|
ty::GenericArgKind::Lifetime(_) => {
|
|
self.next_region_var(RegionVariableOrigin::MiscVariable(span)).into()
|
|
}
|
|
ty::GenericArgKind::Type(_) => self.next_ty_var(span).into(),
|
|
ty::GenericArgKind::Const(_) => self.next_const_var(span).into(),
|
|
}
|
|
}
|
|
|
|
fn instantiate_binder_with_infer<T: TypeFoldable<TyCtxt<'tcx>> + Copy>(
|
|
&self,
|
|
value: ty::Binder<'tcx, T>,
|
|
) -> T {
|
|
self.0.instantiate_binder_with_fresh_vars(
|
|
DUMMY_SP,
|
|
BoundRegionConversionTime::HigherRankedType,
|
|
value,
|
|
)
|
|
}
|
|
|
|
fn enter_forall<T: TypeFoldable<TyCtxt<'tcx>> + Copy, U>(
|
|
&self,
|
|
value: ty::Binder<'tcx, T>,
|
|
f: impl FnOnce(T) -> U,
|
|
) -> U {
|
|
self.0.enter_forall(value, f)
|
|
}
|
|
|
|
fn relate<T: Relate<TyCtxt<'tcx>>>(
|
|
&self,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
lhs: T,
|
|
variance: ty::Variance,
|
|
rhs: T,
|
|
) -> Result<Vec<Goal<'tcx, ty::Predicate<'tcx>>>, NoSolution> {
|
|
self.0.at(&ObligationCause::dummy(), param_env).relate_no_trace(lhs, variance, rhs)
|
|
}
|
|
|
|
fn eq_structurally_relating_aliases<T: Relate<TyCtxt<'tcx>>>(
|
|
&self,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
lhs: T,
|
|
rhs: T,
|
|
) -> Result<Vec<Goal<'tcx, ty::Predicate<'tcx>>>, NoSolution> {
|
|
self.0
|
|
.at(&ObligationCause::dummy(), param_env)
|
|
.eq_structurally_relating_aliases_no_trace(lhs, rhs)
|
|
}
|
|
|
|
fn resolve_vars_if_possible<T>(&self, value: T) -> T
|
|
where
|
|
T: TypeFoldable<TyCtxt<'tcx>>,
|
|
{
|
|
self.0.resolve_vars_if_possible(value)
|
|
}
|
|
|
|
fn probe<T>(&self, probe: impl FnOnce() -> T) -> T {
|
|
self.0.probe(|_| probe())
|
|
}
|
|
|
|
fn leak_check(&self, max_input_universe: ty::UniverseIndex) -> Result<(), NoSolution> {
|
|
self.0.leak_check(max_input_universe, None).map_err(|_| NoSolution)
|
|
}
|
|
|
|
fn elaborate_supertraits(
|
|
interner: TyCtxt<'tcx>,
|
|
trait_ref: ty::Binder<'tcx, ty::TraitRef<'tcx>>,
|
|
) -> impl Iterator<Item = ty::Binder<'tcx, ty::TraitRef<'tcx>>> {
|
|
supertraits(interner, trait_ref)
|
|
}
|
|
|
|
fn try_const_eval_resolve(
|
|
&self,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
unevaluated: ty::UnevaluatedConst<'tcx>,
|
|
) -> Option<ty::Const<'tcx>> {
|
|
use rustc_middle::mir::interpret::ErrorHandled;
|
|
match self.const_eval_resolve(param_env, unevaluated, DUMMY_SP) {
|
|
Ok(Some(val)) => Some(ty::Const::new_value(
|
|
self.tcx,
|
|
val,
|
|
self.tcx.type_of(unevaluated.def).instantiate(self.tcx, unevaluated.args),
|
|
)),
|
|
Ok(None) | Err(ErrorHandled::TooGeneric(_)) => None,
|
|
Err(ErrorHandled::Reported(e, _)) => Some(ty::Const::new_error(self.tcx, e.into())),
|
|
}
|
|
}
|
|
|
|
fn sub_regions(&self, sub: ty::Region<'tcx>, sup: ty::Region<'tcx>) {
|
|
self.0.sub_regions(SubregionOrigin::RelateRegionParamBound(DUMMY_SP), sub, sup)
|
|
}
|
|
|
|
fn register_ty_outlives(&self, ty: Ty<'tcx>, r: ty::Region<'tcx>) {
|
|
self.0.register_region_obligation_with_cause(ty, r, &ObligationCause::dummy());
|
|
}
|
|
|
|
fn well_formed_goals(
|
|
&self,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
arg: ty::GenericArg<'tcx>,
|
|
) -> Option<Vec<Goal<'tcx, ty::Predicate<'tcx>>>> {
|
|
crate::traits::wf::unnormalized_obligations(&self.0, param_env, arg).map(|obligations| {
|
|
obligations.into_iter().map(|obligation| obligation.into()).collect()
|
|
})
|
|
}
|
|
|
|
fn clone_opaque_types_for_query_response(&self) -> Vec<(ty::OpaqueTypeKey<'tcx>, Ty<'tcx>)> {
|
|
self.0.clone_opaque_types_for_query_response()
|
|
}
|
|
|
|
fn make_deduplicated_outlives_constraints(
|
|
&self,
|
|
) -> Vec<ty::OutlivesPredicate<'tcx, ty::GenericArg<'tcx>>> {
|
|
// Cannot use `take_registered_region_obligations` as we may compute the response
|
|
// inside of a `probe` whenever we have multiple choices inside of the solver.
|
|
let region_obligations = self.0.inner.borrow().region_obligations().to_owned();
|
|
let region_constraints = self.0.with_region_constraints(|region_constraints| {
|
|
make_query_region_constraints(
|
|
self.tcx,
|
|
region_obligations
|
|
.iter()
|
|
.map(|r_o| (r_o.sup_type, r_o.sub_region, r_o.origin.to_constraint_category())),
|
|
region_constraints,
|
|
)
|
|
});
|
|
|
|
assert_eq!(region_constraints.member_constraints, vec![]);
|
|
|
|
let mut seen = FxHashSet::default();
|
|
region_constraints
|
|
.outlives
|
|
.into_iter()
|
|
.filter(|&(outlives, _)| seen.insert(outlives))
|
|
.map(|(outlives, _)| outlives)
|
|
.collect()
|
|
}
|
|
|
|
fn instantiate_canonical<V>(
|
|
&self,
|
|
canonical: Canonical<'tcx, V>,
|
|
values: CanonicalVarValues<'tcx>,
|
|
) -> V
|
|
where
|
|
V: TypeFoldable<TyCtxt<'tcx>>,
|
|
{
|
|
canonical.instantiate(self.tcx, &values)
|
|
}
|
|
|
|
fn instantiate_canonical_var_with_infer(
|
|
&self,
|
|
cv_info: CanonicalVarInfo<'tcx>,
|
|
universe_map: impl Fn(ty::UniverseIndex) -> ty::UniverseIndex,
|
|
) -> ty::GenericArg<'tcx> {
|
|
self.0.instantiate_canonical_var(DUMMY_SP, cv_info, universe_map)
|
|
}
|
|
|
|
fn insert_hidden_type(
|
|
&self,
|
|
opaque_type_key: ty::OpaqueTypeKey<'tcx>,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
hidden_ty: Ty<'tcx>,
|
|
goals: &mut Vec<Goal<'tcx, ty::Predicate<'tcx>>>,
|
|
) -> Result<(), NoSolution> {
|
|
self.0
|
|
.insert_hidden_type(opaque_type_key, DUMMY_SP, param_env, hidden_ty, goals)
|
|
.map_err(|_| NoSolution)
|
|
}
|
|
|
|
fn add_item_bounds_for_hidden_type(
|
|
&self,
|
|
def_id: DefId,
|
|
args: ty::GenericArgsRef<'tcx>,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
hidden_ty: Ty<'tcx>,
|
|
goals: &mut Vec<Goal<'tcx, ty::Predicate<'tcx>>>,
|
|
) {
|
|
self.0.add_item_bounds_for_hidden_type(def_id, args, param_env, hidden_ty, goals);
|
|
}
|
|
|
|
fn inject_new_hidden_type_unchecked(&self, key: ty::OpaqueTypeKey<'tcx>, hidden_ty: Ty<'tcx>) {
|
|
self.0.inject_new_hidden_type_unchecked(
|
|
key,
|
|
ty::OpaqueHiddenType { ty: hidden_ty, span: DUMMY_SP },
|
|
)
|
|
}
|
|
|
|
fn reset_opaque_types(&self) {
|
|
let _ = self.take_opaque_types();
|
|
}
|
|
|
|
fn trait_ref_is_knowable<E: std::fmt::Debug>(
|
|
&self,
|
|
trait_ref: ty::TraitRef<'tcx>,
|
|
lazily_normalize_ty: impl FnMut(Ty<'tcx>) -> Result<Ty<'tcx>, E>,
|
|
) -> Result<bool, E> {
|
|
trait_ref_is_knowable(&self.0, trait_ref, lazily_normalize_ty)
|
|
.map(|is_knowable| is_knowable.is_ok())
|
|
}
|
|
|
|
fn fetch_eligible_assoc_item(
|
|
&self,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
goal_trait_ref: ty::TraitRef<'tcx>,
|
|
trait_assoc_def_id: DefId,
|
|
impl_def_id: DefId,
|
|
) -> Result<Option<DefId>, NoSolution> {
|
|
let node_item = specialization_graph::assoc_def(self.tcx, impl_def_id, trait_assoc_def_id)
|
|
.map_err(|ErrorGuaranteed { .. }| NoSolution)?;
|
|
|
|
let eligible = if node_item.is_final() {
|
|
// Non-specializable items are always projectable.
|
|
true
|
|
} else {
|
|
// Only reveal a specializable default if we're past type-checking
|
|
// and the obligation is monomorphic, otherwise passes such as
|
|
// transmute checking and polymorphic MIR optimizations could
|
|
// get a result which isn't correct for all monomorphizations.
|
|
if param_env.reveal() == Reveal::All {
|
|
let poly_trait_ref = self.resolve_vars_if_possible(goal_trait_ref);
|
|
!poly_trait_ref.still_further_specializable()
|
|
} else {
|
|
trace!(?node_item.item.def_id, "not eligible due to default");
|
|
false
|
|
}
|
|
};
|
|
|
|
// FIXME: Check for defaultness here may cause diagnostics problems.
|
|
if eligible { Ok(Some(node_item.item.def_id)) } else { Ok(None) }
|
|
}
|
|
|
|
fn is_transmutable(
|
|
&self,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
dst: Ty<'tcx>,
|
|
src: Ty<'tcx>,
|
|
assume: ty::Const<'tcx>,
|
|
) -> Result<Certainty, NoSolution> {
|
|
// Erase regions because we compute layouts in `rustc_transmute`,
|
|
// which will ICE for region vars.
|
|
let (dst, src) = self.tcx.erase_regions((dst, src));
|
|
|
|
let Some(assume) = rustc_transmute::Assume::from_const(self.tcx, param_env, assume) else {
|
|
return Err(NoSolution);
|
|
};
|
|
|
|
// FIXME(transmutability): This really should be returning nested goals for `Answer::If*`
|
|
match rustc_transmute::TransmuteTypeEnv::new(&self.0).is_transmutable(
|
|
ObligationCause::dummy(),
|
|
rustc_transmute::Types { src, dst },
|
|
assume,
|
|
) {
|
|
rustc_transmute::Answer::Yes => Ok(Certainty::Yes),
|
|
rustc_transmute::Answer::No(_) | rustc_transmute::Answer::If(_) => Err(NoSolution),
|
|
}
|
|
}
|
|
}
|