Niko Matsakis
2ee89144e2
introduce new fallback algorithm
...
We now fallback type variables using the following rules:
* Construct a coercion graph `A -> B` where `A` and `B` are unresolved
type variables or the `!` type.
* Let D be those variables that are reachable from `!`.
* Let N be those variables that are reachable from a variable not in
D.
* All variables in (D \ N) fallback to `!`.
* All variables in (D & N) fallback to `()`.
2021-09-17 12:47:48 -04:00
..
2021-09-15 14:56:58 -07:00
2021-09-15 14:56:58 -07:00
2021-09-15 14:56:58 -07:00
2021-09-09 09:14:17 -04:00
2021-09-16 22:17:33 +00:00
2021-09-17 01:00:11 +00:00
2021-09-12 23:49:24 +00:00
2021-09-15 12:34:31 +00:00
2021-09-17 14:09:47 +09:00
2021-09-17 03:47:23 +00:00
2021-09-12 03:44:57 -07:00
2021-09-17 14:09:47 +09:00
2021-09-17 13:13:28 +09:00
2021-09-15 09:13:18 -07:00
2021-09-15 14:56:58 -07:00
2021-09-15 03:51:03 +00:00
2021-09-11 10:32:38 +02:00
2021-09-17 12:47:48 -04:00
2021-09-15 14:56:56 -07:00
2021-09-17 14:09:44 +09:00
2021-09-14 15:45:13 -04:00
2021-09-16 15:04:18 -04:00
2021-09-13 14:42:06 +02:00
2021-09-12 20:48:09 +00:00
2021-09-17 12:47:48 -04:00
2021-09-14 15:45:13 -04:00
2021-09-15 11:41:37 -07:00
2021-09-16 19:33:39 +00:00
2021-09-16 10:57:18 -07:00
2021-09-11 10:32:38 +02:00
2021-09-12 03:44:56 -07:00
2021-09-11 20:39:47 +00:00
2021-09-13 16:31:12 +00:00
2021-09-10 23:41:48 +03:00
2021-09-17 14:09:47 +09:00
2021-09-17 01:00:11 +00:00
2021-09-13 22:14:57 +00:00
2021-09-17 09:44:28 +00:00
2021-09-17 12:47:48 -04:00