mirror of
				https://github.com/rust-lang/rust.git
				synced 2025-10-31 04:57:19 +00:00 
			
		
		
		
	 38fad984c6
			
		
	
	
		38fad984c6
		
	
	
	
	
		
			
			Use `std::mem::{size_of, size_of_val, align_of, align_of_val}` from the
prelude instead of importing or qualifying them.
These functions were added to all preludes in Rust 1.80.
		
	
			
		
			
				
	
	
		
			1872 lines
		
	
	
		
			65 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			1872 lines
		
	
	
		
			65 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
| use std::marker::PhantomData;
 | |
| #[cfg(not(feature = "nightly"))]
 | |
| use std::mem;
 | |
| use std::ops::{BitAnd, BitAndAssign, BitOrAssign, Bound, Not, Range, RangeBounds, Shl};
 | |
| use std::rc::Rc;
 | |
| use std::{fmt, iter, slice};
 | |
| 
 | |
| use Chunk::*;
 | |
| #[cfg(feature = "nightly")]
 | |
| use rustc_macros::{Decodable_Generic, Encodable_Generic};
 | |
| use smallvec::{SmallVec, smallvec};
 | |
| 
 | |
| use crate::{Idx, IndexVec};
 | |
| 
 | |
| #[cfg(test)]
 | |
| mod tests;
 | |
| 
 | |
| type Word = u64;
 | |
| const WORD_BYTES: usize = size_of::<Word>();
 | |
| const WORD_BITS: usize = WORD_BYTES * 8;
 | |
| 
 | |
| // The choice of chunk size has some trade-offs.
 | |
| //
 | |
| // A big chunk size tends to favour cases where many large `ChunkedBitSet`s are
 | |
| // present, because they require fewer `Chunk`s, reducing the number of
 | |
| // allocations and reducing peak memory usage. Also, fewer chunk operations are
 | |
| // required, though more of them might be `Mixed`.
 | |
| //
 | |
| // A small chunk size tends to favour cases where many small `ChunkedBitSet`s
 | |
| // are present, because less space is wasted at the end of the final chunk (if
 | |
| // it's not full).
 | |
| const CHUNK_WORDS: usize = 32;
 | |
| const CHUNK_BITS: usize = CHUNK_WORDS * WORD_BITS; // 2048 bits
 | |
| 
 | |
| /// ChunkSize is small to keep `Chunk` small. The static assertion ensures it's
 | |
| /// not too small.
 | |
| type ChunkSize = u16;
 | |
| const _: () = assert!(CHUNK_BITS <= ChunkSize::MAX as usize);
 | |
| 
 | |
| pub trait BitRelations<Rhs> {
 | |
|     fn union(&mut self, other: &Rhs) -> bool;
 | |
|     fn subtract(&mut self, other: &Rhs) -> bool;
 | |
|     fn intersect(&mut self, other: &Rhs) -> bool;
 | |
| }
 | |
| 
 | |
| #[inline]
 | |
| fn inclusive_start_end<T: Idx>(
 | |
|     range: impl RangeBounds<T>,
 | |
|     domain: usize,
 | |
| ) -> Option<(usize, usize)> {
 | |
|     // Both start and end are inclusive.
 | |
|     let start = match range.start_bound().cloned() {
 | |
|         Bound::Included(start) => start.index(),
 | |
|         Bound::Excluded(start) => start.index() + 1,
 | |
|         Bound::Unbounded => 0,
 | |
|     };
 | |
|     let end = match range.end_bound().cloned() {
 | |
|         Bound::Included(end) => end.index(),
 | |
|         Bound::Excluded(end) => end.index().checked_sub(1)?,
 | |
|         Bound::Unbounded => domain - 1,
 | |
|     };
 | |
|     assert!(end < domain);
 | |
|     if start > end {
 | |
|         return None;
 | |
|     }
 | |
|     Some((start, end))
 | |
| }
 | |
| 
 | |
| macro_rules! bit_relations_inherent_impls {
 | |
|     () => {
 | |
|         /// Sets `self = self | other` and returns `true` if `self` changed
 | |
|         /// (i.e., if new bits were added).
 | |
|         pub fn union<Rhs>(&mut self, other: &Rhs) -> bool
 | |
|         where
 | |
|             Self: BitRelations<Rhs>,
 | |
|         {
 | |
|             <Self as BitRelations<Rhs>>::union(self, other)
 | |
|         }
 | |
| 
 | |
|         /// Sets `self = self - other` and returns `true` if `self` changed.
 | |
|         /// (i.e., if any bits were removed).
 | |
|         pub fn subtract<Rhs>(&mut self, other: &Rhs) -> bool
 | |
|         where
 | |
|             Self: BitRelations<Rhs>,
 | |
|         {
 | |
|             <Self as BitRelations<Rhs>>::subtract(self, other)
 | |
|         }
 | |
| 
 | |
|         /// Sets `self = self & other` and return `true` if `self` changed.
 | |
|         /// (i.e., if any bits were removed).
 | |
|         pub fn intersect<Rhs>(&mut self, other: &Rhs) -> bool
 | |
|         where
 | |
|             Self: BitRelations<Rhs>,
 | |
|         {
 | |
|             <Self as BitRelations<Rhs>>::intersect(self, other)
 | |
|         }
 | |
|     };
 | |
| }
 | |
| 
 | |
| /// A fixed-size bitset type with a dense representation.
 | |
| ///
 | |
| /// Note 1: Since this bitset is dense, if your domain is big, and/or relatively
 | |
| /// homogeneous (for example, with long runs of bits set or unset), then it may
 | |
| /// be preferable to instead use a [MixedBitSet], or an
 | |
| /// [IntervalSet](crate::interval::IntervalSet). They should be more suited to
 | |
| /// sparse, or highly-compressible, domains.
 | |
| ///
 | |
| /// Note 2: Use [`GrowableBitSet`] if you need support for resizing after creation.
 | |
| ///
 | |
| /// `T` is an index type, typically a newtyped `usize` wrapper, but it can also
 | |
| /// just be `usize`.
 | |
| ///
 | |
| /// All operations that involve an element will panic if the element is equal
 | |
| /// to or greater than the domain size. All operations that involve two bitsets
 | |
| /// will panic if the bitsets have differing domain sizes.
 | |
| ///
 | |
| #[cfg_attr(feature = "nightly", derive(Decodable_Generic, Encodable_Generic))]
 | |
| #[derive(Eq, PartialEq, Hash)]
 | |
| pub struct DenseBitSet<T> {
 | |
|     domain_size: usize,
 | |
|     words: SmallVec<[Word; 2]>,
 | |
|     marker: PhantomData<T>,
 | |
| }
 | |
| 
 | |
| impl<T> DenseBitSet<T> {
 | |
|     /// Gets the domain size.
 | |
|     pub fn domain_size(&self) -> usize {
 | |
|         self.domain_size
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<T: Idx> DenseBitSet<T> {
 | |
|     /// Creates a new, empty bitset with a given `domain_size`.
 | |
|     #[inline]
 | |
|     pub fn new_empty(domain_size: usize) -> DenseBitSet<T> {
 | |
|         let num_words = num_words(domain_size);
 | |
|         DenseBitSet { domain_size, words: smallvec![0; num_words], marker: PhantomData }
 | |
|     }
 | |
| 
 | |
|     /// Creates a new, filled bitset with a given `domain_size`.
 | |
|     #[inline]
 | |
|     pub fn new_filled(domain_size: usize) -> DenseBitSet<T> {
 | |
|         let num_words = num_words(domain_size);
 | |
|         let mut result =
 | |
|             DenseBitSet { domain_size, words: smallvec![!0; num_words], marker: PhantomData };
 | |
|         result.clear_excess_bits();
 | |
|         result
 | |
|     }
 | |
| 
 | |
|     /// Clear all elements.
 | |
|     #[inline]
 | |
|     pub fn clear(&mut self) {
 | |
|         self.words.fill(0);
 | |
|     }
 | |
| 
 | |
|     /// Clear excess bits in the final word.
 | |
|     fn clear_excess_bits(&mut self) {
 | |
|         clear_excess_bits_in_final_word(self.domain_size, &mut self.words);
 | |
|     }
 | |
| 
 | |
|     /// Count the number of set bits in the set.
 | |
|     pub fn count(&self) -> usize {
 | |
|         self.words.iter().map(|e| e.count_ones() as usize).sum()
 | |
|     }
 | |
| 
 | |
|     /// Returns `true` if `self` contains `elem`.
 | |
|     #[inline]
 | |
|     pub fn contains(&self, elem: T) -> bool {
 | |
|         assert!(elem.index() < self.domain_size);
 | |
|         let (word_index, mask) = word_index_and_mask(elem);
 | |
|         (self.words[word_index] & mask) != 0
 | |
|     }
 | |
| 
 | |
|     /// Is `self` is a (non-strict) superset of `other`?
 | |
|     #[inline]
 | |
|     pub fn superset(&self, other: &DenseBitSet<T>) -> bool {
 | |
|         assert_eq!(self.domain_size, other.domain_size);
 | |
|         self.words.iter().zip(&other.words).all(|(a, b)| (a & b) == *b)
 | |
|     }
 | |
| 
 | |
|     /// Is the set empty?
 | |
|     #[inline]
 | |
|     pub fn is_empty(&self) -> bool {
 | |
|         self.words.iter().all(|a| *a == 0)
 | |
|     }
 | |
| 
 | |
|     /// Insert `elem`. Returns whether the set has changed.
 | |
|     #[inline]
 | |
|     pub fn insert(&mut self, elem: T) -> bool {
 | |
|         assert!(
 | |
|             elem.index() < self.domain_size,
 | |
|             "inserting element at index {} but domain size is {}",
 | |
|             elem.index(),
 | |
|             self.domain_size,
 | |
|         );
 | |
|         let (word_index, mask) = word_index_and_mask(elem);
 | |
|         let word_ref = &mut self.words[word_index];
 | |
|         let word = *word_ref;
 | |
|         let new_word = word | mask;
 | |
|         *word_ref = new_word;
 | |
|         new_word != word
 | |
|     }
 | |
| 
 | |
|     #[inline]
 | |
|     pub fn insert_range(&mut self, elems: impl RangeBounds<T>) {
 | |
|         let Some((start, end)) = inclusive_start_end(elems, self.domain_size) else {
 | |
|             return;
 | |
|         };
 | |
| 
 | |
|         let (start_word_index, start_mask) = word_index_and_mask(start);
 | |
|         let (end_word_index, end_mask) = word_index_and_mask(end);
 | |
| 
 | |
|         // Set all words in between start and end (exclusively of both).
 | |
|         for word_index in (start_word_index + 1)..end_word_index {
 | |
|             self.words[word_index] = !0;
 | |
|         }
 | |
| 
 | |
|         if start_word_index != end_word_index {
 | |
|             // Start and end are in different words, so we handle each in turn.
 | |
|             //
 | |
|             // We set all leading bits. This includes the start_mask bit.
 | |
|             self.words[start_word_index] |= !(start_mask - 1);
 | |
|             // And all trailing bits (i.e. from 0..=end) in the end word,
 | |
|             // including the end.
 | |
|             self.words[end_word_index] |= end_mask | (end_mask - 1);
 | |
|         } else {
 | |
|             self.words[start_word_index] |= end_mask | (end_mask - start_mask);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Sets all bits to true.
 | |
|     pub fn insert_all(&mut self) {
 | |
|         self.words.fill(!0);
 | |
|         self.clear_excess_bits();
 | |
|     }
 | |
| 
 | |
|     /// Returns `true` if the set has changed.
 | |
|     #[inline]
 | |
|     pub fn remove(&mut self, elem: T) -> bool {
 | |
|         assert!(elem.index() < self.domain_size);
 | |
|         let (word_index, mask) = word_index_and_mask(elem);
 | |
|         let word_ref = &mut self.words[word_index];
 | |
|         let word = *word_ref;
 | |
|         let new_word = word & !mask;
 | |
|         *word_ref = new_word;
 | |
|         new_word != word
 | |
|     }
 | |
| 
 | |
|     /// Iterates over the indices of set bits in a sorted order.
 | |
|     #[inline]
 | |
|     pub fn iter(&self) -> BitIter<'_, T> {
 | |
|         BitIter::new(&self.words)
 | |
|     }
 | |
| 
 | |
|     pub fn last_set_in(&self, range: impl RangeBounds<T>) -> Option<T> {
 | |
|         let (start, end) = inclusive_start_end(range, self.domain_size)?;
 | |
|         let (start_word_index, _) = word_index_and_mask(start);
 | |
|         let (end_word_index, end_mask) = word_index_and_mask(end);
 | |
| 
 | |
|         let end_word = self.words[end_word_index] & (end_mask | (end_mask - 1));
 | |
|         if end_word != 0 {
 | |
|             let pos = max_bit(end_word) + WORD_BITS * end_word_index;
 | |
|             if start <= pos {
 | |
|                 return Some(T::new(pos));
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // We exclude end_word_index from the range here, because we don't want
 | |
|         // to limit ourselves to *just* the last word: the bits set it in may be
 | |
|         // after `end`, so it may not work out.
 | |
|         if let Some(offset) =
 | |
|             self.words[start_word_index..end_word_index].iter().rposition(|&w| w != 0)
 | |
|         {
 | |
|             let word_idx = start_word_index + offset;
 | |
|             let start_word = self.words[word_idx];
 | |
|             let pos = max_bit(start_word) + WORD_BITS * word_idx;
 | |
|             if start <= pos {
 | |
|                 return Some(T::new(pos));
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         None
 | |
|     }
 | |
| 
 | |
|     bit_relations_inherent_impls! {}
 | |
| 
 | |
|     /// Sets `self = self | !other`.
 | |
|     ///
 | |
|     /// FIXME: Incorporate this into [`BitRelations`] and fill out
 | |
|     /// implementations for other bitset types, if needed.
 | |
|     pub fn union_not(&mut self, other: &DenseBitSet<T>) {
 | |
|         assert_eq!(self.domain_size, other.domain_size);
 | |
| 
 | |
|         // FIXME(Zalathar): If we were to forcibly _set_ all excess bits before
 | |
|         // the bitwise update, and then clear them again afterwards, we could
 | |
|         // quickly and accurately detect whether the update changed anything.
 | |
|         // But that's only worth doing if there's an actual use-case.
 | |
| 
 | |
|         bitwise(&mut self.words, &other.words, |a, b| a | !b);
 | |
|         // The bitwise update `a | !b` can result in the last word containing
 | |
|         // out-of-domain bits, so we need to clear them.
 | |
|         self.clear_excess_bits();
 | |
|     }
 | |
| }
 | |
| 
 | |
| // dense REL dense
 | |
| impl<T: Idx> BitRelations<DenseBitSet<T>> for DenseBitSet<T> {
 | |
|     fn union(&mut self, other: &DenseBitSet<T>) -> bool {
 | |
|         assert_eq!(self.domain_size, other.domain_size);
 | |
|         bitwise(&mut self.words, &other.words, |a, b| a | b)
 | |
|     }
 | |
| 
 | |
|     fn subtract(&mut self, other: &DenseBitSet<T>) -> bool {
 | |
|         assert_eq!(self.domain_size, other.domain_size);
 | |
|         bitwise(&mut self.words, &other.words, |a, b| a & !b)
 | |
|     }
 | |
| 
 | |
|     fn intersect(&mut self, other: &DenseBitSet<T>) -> bool {
 | |
|         assert_eq!(self.domain_size, other.domain_size);
 | |
|         bitwise(&mut self.words, &other.words, |a, b| a & b)
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<T: Idx> From<GrowableBitSet<T>> for DenseBitSet<T> {
 | |
|     fn from(bit_set: GrowableBitSet<T>) -> Self {
 | |
|         bit_set.bit_set
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<T> Clone for DenseBitSet<T> {
 | |
|     fn clone(&self) -> Self {
 | |
|         DenseBitSet {
 | |
|             domain_size: self.domain_size,
 | |
|             words: self.words.clone(),
 | |
|             marker: PhantomData,
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fn clone_from(&mut self, from: &Self) {
 | |
|         self.domain_size = from.domain_size;
 | |
|         self.words.clone_from(&from.words);
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<T: Idx> fmt::Debug for DenseBitSet<T> {
 | |
|     fn fmt(&self, w: &mut fmt::Formatter<'_>) -> fmt::Result {
 | |
|         w.debug_list().entries(self.iter()).finish()
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<T: Idx> ToString for DenseBitSet<T> {
 | |
|     fn to_string(&self) -> String {
 | |
|         let mut result = String::new();
 | |
|         let mut sep = '[';
 | |
| 
 | |
|         // Note: this is a little endian printout of bytes.
 | |
| 
 | |
|         // i tracks how many bits we have printed so far.
 | |
|         let mut i = 0;
 | |
|         for word in &self.words {
 | |
|             let mut word = *word;
 | |
|             for _ in 0..WORD_BYTES {
 | |
|                 // for each byte in `word`:
 | |
|                 let remain = self.domain_size - i;
 | |
|                 // If less than a byte remains, then mask just that many bits.
 | |
|                 let mask = if remain <= 8 { (1 << remain) - 1 } else { 0xFF };
 | |
|                 assert!(mask <= 0xFF);
 | |
|                 let byte = word & mask;
 | |
| 
 | |
|                 result.push_str(&format!("{sep}{byte:02x}"));
 | |
| 
 | |
|                 if remain <= 8 {
 | |
|                     break;
 | |
|                 }
 | |
|                 word >>= 8;
 | |
|                 i += 8;
 | |
|                 sep = '-';
 | |
|             }
 | |
|             sep = '|';
 | |
|         }
 | |
|         result.push(']');
 | |
| 
 | |
|         result
 | |
|     }
 | |
| }
 | |
| 
 | |
| pub struct BitIter<'a, T: Idx> {
 | |
|     /// A copy of the current word, but with any already-visited bits cleared.
 | |
|     /// (This lets us use `trailing_zeros()` to find the next set bit.) When it
 | |
|     /// is reduced to 0, we move onto the next word.
 | |
|     word: Word,
 | |
| 
 | |
|     /// The offset (measured in bits) of the current word.
 | |
|     offset: usize,
 | |
| 
 | |
|     /// Underlying iterator over the words.
 | |
|     iter: slice::Iter<'a, Word>,
 | |
| 
 | |
|     marker: PhantomData<T>,
 | |
| }
 | |
| 
 | |
| impl<'a, T: Idx> BitIter<'a, T> {
 | |
|     #[inline]
 | |
|     fn new(words: &'a [Word]) -> BitIter<'a, T> {
 | |
|         // We initialize `word` and `offset` to degenerate values. On the first
 | |
|         // call to `next()` we will fall through to getting the first word from
 | |
|         // `iter`, which sets `word` to the first word (if there is one) and
 | |
|         // `offset` to 0. Doing it this way saves us from having to maintain
 | |
|         // additional state about whether we have started.
 | |
|         BitIter {
 | |
|             word: 0,
 | |
|             offset: usize::MAX - (WORD_BITS - 1),
 | |
|             iter: words.iter(),
 | |
|             marker: PhantomData,
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<'a, T: Idx> Iterator for BitIter<'a, T> {
 | |
|     type Item = T;
 | |
|     fn next(&mut self) -> Option<T> {
 | |
|         loop {
 | |
|             if self.word != 0 {
 | |
|                 // Get the position of the next set bit in the current word,
 | |
|                 // then clear the bit.
 | |
|                 let bit_pos = self.word.trailing_zeros() as usize;
 | |
|                 self.word ^= 1 << bit_pos;
 | |
|                 return Some(T::new(bit_pos + self.offset));
 | |
|             }
 | |
| 
 | |
|             // Move onto the next word. `wrapping_add()` is needed to handle
 | |
|             // the degenerate initial value given to `offset` in `new()`.
 | |
|             self.word = *self.iter.next()?;
 | |
|             self.offset = self.offset.wrapping_add(WORD_BITS);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// A fixed-size bitset type with a partially dense, partially sparse
 | |
| /// representation. The bitset is broken into chunks, and chunks that are all
 | |
| /// zeros or all ones are represented and handled very efficiently.
 | |
| ///
 | |
| /// This type is especially efficient for sets that typically have a large
 | |
| /// `domain_size` with significant stretches of all zeros or all ones, and also
 | |
| /// some stretches with lots of 0s and 1s mixed in a way that causes trouble
 | |
| /// for `IntervalSet`.
 | |
| ///
 | |
| /// Best used via `MixedBitSet`, rather than directly, because `MixedBitSet`
 | |
| /// has better performance for small bitsets.
 | |
| ///
 | |
| /// `T` is an index type, typically a newtyped `usize` wrapper, but it can also
 | |
| /// just be `usize`.
 | |
| ///
 | |
| /// All operations that involve an element will panic if the element is equal
 | |
| /// to or greater than the domain size. All operations that involve two bitsets
 | |
| /// will panic if the bitsets have differing domain sizes.
 | |
| #[derive(PartialEq, Eq)]
 | |
| pub struct ChunkedBitSet<T> {
 | |
|     domain_size: usize,
 | |
| 
 | |
|     /// The chunks. Each one contains exactly CHUNK_BITS values, except the
 | |
|     /// last one which contains 1..=CHUNK_BITS values.
 | |
|     chunks: Box<[Chunk]>,
 | |
| 
 | |
|     marker: PhantomData<T>,
 | |
| }
 | |
| 
 | |
| // Note: the chunk domain size is duplicated in each variant. This is a bit
 | |
| // inconvenient, but it allows the type size to be smaller than if we had an
 | |
| // outer struct containing a chunk domain size plus the `Chunk`, because the
 | |
| // compiler can place the chunk domain size after the tag.
 | |
| #[derive(Clone, Debug, PartialEq, Eq)]
 | |
| enum Chunk {
 | |
|     /// A chunk that is all zeros; we don't represent the zeros explicitly.
 | |
|     /// The `ChunkSize` is always non-zero.
 | |
|     Zeros(ChunkSize),
 | |
| 
 | |
|     /// A chunk that is all ones; we don't represent the ones explicitly.
 | |
|     /// `ChunkSize` is always non-zero.
 | |
|     Ones(ChunkSize),
 | |
| 
 | |
|     /// A chunk that has a mix of zeros and ones, which are represented
 | |
|     /// explicitly and densely. It never has all zeros or all ones.
 | |
|     ///
 | |
|     /// If this is the final chunk there may be excess, unused words. This
 | |
|     /// turns out to be both simpler and have better performance than
 | |
|     /// allocating the minimum number of words, largely because we avoid having
 | |
|     /// to store the length, which would make this type larger. These excess
 | |
|     /// words are always zero, as are any excess bits in the final in-use word.
 | |
|     ///
 | |
|     /// The first `ChunkSize` field is always non-zero.
 | |
|     ///
 | |
|     /// The second `ChunkSize` field is the count of 1s set in the chunk, and
 | |
|     /// must satisfy `0 < count < chunk_domain_size`.
 | |
|     ///
 | |
|     /// The words are within an `Rc` because it's surprisingly common to
 | |
|     /// duplicate an entire chunk, e.g. in `ChunkedBitSet::clone_from()`, or
 | |
|     /// when a `Mixed` chunk is union'd into a `Zeros` chunk. When we do need
 | |
|     /// to modify a chunk we use `Rc::make_mut`.
 | |
|     Mixed(ChunkSize, ChunkSize, Rc<[Word; CHUNK_WORDS]>),
 | |
| }
 | |
| 
 | |
| // This type is used a lot. Make sure it doesn't unintentionally get bigger.
 | |
| #[cfg(target_pointer_width = "64")]
 | |
| crate::static_assert_size!(Chunk, 16);
 | |
| 
 | |
| impl<T> ChunkedBitSet<T> {
 | |
|     pub fn domain_size(&self) -> usize {
 | |
|         self.domain_size
 | |
|     }
 | |
| 
 | |
|     #[cfg(test)]
 | |
|     fn assert_valid(&self) {
 | |
|         if self.domain_size == 0 {
 | |
|             assert!(self.chunks.is_empty());
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         assert!((self.chunks.len() - 1) * CHUNK_BITS <= self.domain_size);
 | |
|         assert!(self.chunks.len() * CHUNK_BITS >= self.domain_size);
 | |
|         for chunk in self.chunks.iter() {
 | |
|             chunk.assert_valid();
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<T: Idx> ChunkedBitSet<T> {
 | |
|     /// Creates a new bitset with a given `domain_size` and chunk kind.
 | |
|     fn new(domain_size: usize, is_empty: bool) -> Self {
 | |
|         let chunks = if domain_size == 0 {
 | |
|             Box::new([])
 | |
|         } else {
 | |
|             // All the chunks have a chunk_domain_size of `CHUNK_BITS` except
 | |
|             // the final one.
 | |
|             let final_chunk_domain_size = {
 | |
|                 let n = domain_size % CHUNK_BITS;
 | |
|                 if n == 0 { CHUNK_BITS } else { n }
 | |
|             };
 | |
|             let mut chunks =
 | |
|                 vec![Chunk::new(CHUNK_BITS, is_empty); num_chunks(domain_size)].into_boxed_slice();
 | |
|             *chunks.last_mut().unwrap() = Chunk::new(final_chunk_domain_size, is_empty);
 | |
|             chunks
 | |
|         };
 | |
|         ChunkedBitSet { domain_size, chunks, marker: PhantomData }
 | |
|     }
 | |
| 
 | |
|     /// Creates a new, empty bitset with a given `domain_size`.
 | |
|     #[inline]
 | |
|     pub fn new_empty(domain_size: usize) -> Self {
 | |
|         ChunkedBitSet::new(domain_size, /* is_empty */ true)
 | |
|     }
 | |
| 
 | |
|     /// Creates a new, filled bitset with a given `domain_size`.
 | |
|     #[inline]
 | |
|     pub fn new_filled(domain_size: usize) -> Self {
 | |
|         ChunkedBitSet::new(domain_size, /* is_empty */ false)
 | |
|     }
 | |
| 
 | |
|     pub fn clear(&mut self) {
 | |
|         let domain_size = self.domain_size();
 | |
|         *self = ChunkedBitSet::new_empty(domain_size);
 | |
|     }
 | |
| 
 | |
|     #[cfg(test)]
 | |
|     fn chunks(&self) -> &[Chunk] {
 | |
|         &self.chunks
 | |
|     }
 | |
| 
 | |
|     /// Count the number of bits in the set.
 | |
|     pub fn count(&self) -> usize {
 | |
|         self.chunks.iter().map(|chunk| chunk.count()).sum()
 | |
|     }
 | |
| 
 | |
|     pub fn is_empty(&self) -> bool {
 | |
|         self.chunks.iter().all(|chunk| matches!(chunk, Zeros(..)))
 | |
|     }
 | |
| 
 | |
|     /// Returns `true` if `self` contains `elem`.
 | |
|     #[inline]
 | |
|     pub fn contains(&self, elem: T) -> bool {
 | |
|         assert!(elem.index() < self.domain_size);
 | |
|         let chunk = &self.chunks[chunk_index(elem)];
 | |
|         match &chunk {
 | |
|             Zeros(_) => false,
 | |
|             Ones(_) => true,
 | |
|             Mixed(_, _, words) => {
 | |
|                 let (word_index, mask) = chunk_word_index_and_mask(elem);
 | |
|                 (words[word_index] & mask) != 0
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     #[inline]
 | |
|     pub fn iter(&self) -> ChunkedBitIter<'_, T> {
 | |
|         ChunkedBitIter::new(self)
 | |
|     }
 | |
| 
 | |
|     /// Insert `elem`. Returns whether the set has changed.
 | |
|     pub fn insert(&mut self, elem: T) -> bool {
 | |
|         assert!(elem.index() < self.domain_size);
 | |
|         let chunk_index = chunk_index(elem);
 | |
|         let chunk = &mut self.chunks[chunk_index];
 | |
|         match *chunk {
 | |
|             Zeros(chunk_domain_size) => {
 | |
|                 if chunk_domain_size > 1 {
 | |
|                     #[cfg(feature = "nightly")]
 | |
|                     let mut words = {
 | |
|                         // We take some effort to avoid copying the words.
 | |
|                         let words = Rc::<[Word; CHUNK_WORDS]>::new_zeroed();
 | |
|                         // SAFETY: `words` can safely be all zeroes.
 | |
|                         unsafe { words.assume_init() }
 | |
|                     };
 | |
|                     #[cfg(not(feature = "nightly"))]
 | |
|                     let mut words = {
 | |
|                         // FIXME: unconditionally use `Rc::new_zeroed` once it is stable (#63291).
 | |
|                         let words = mem::MaybeUninit::<[Word; CHUNK_WORDS]>::zeroed();
 | |
|                         // SAFETY: `words` can safely be all zeroes.
 | |
|                         let words = unsafe { words.assume_init() };
 | |
|                         // Unfortunate possibly-large copy
 | |
|                         Rc::new(words)
 | |
|                     };
 | |
|                     let words_ref = Rc::get_mut(&mut words).unwrap();
 | |
| 
 | |
|                     let (word_index, mask) = chunk_word_index_and_mask(elem);
 | |
|                     words_ref[word_index] |= mask;
 | |
|                     *chunk = Mixed(chunk_domain_size, 1, words);
 | |
|                 } else {
 | |
|                     *chunk = Ones(chunk_domain_size);
 | |
|                 }
 | |
|                 true
 | |
|             }
 | |
|             Ones(_) => false,
 | |
|             Mixed(chunk_domain_size, ref mut count, ref mut words) => {
 | |
|                 // We skip all the work if the bit is already set.
 | |
|                 let (word_index, mask) = chunk_word_index_and_mask(elem);
 | |
|                 if (words[word_index] & mask) == 0 {
 | |
|                     *count += 1;
 | |
|                     if *count < chunk_domain_size {
 | |
|                         let words = Rc::make_mut(words);
 | |
|                         words[word_index] |= mask;
 | |
|                     } else {
 | |
|                         *chunk = Ones(chunk_domain_size);
 | |
|                     }
 | |
|                     true
 | |
|                 } else {
 | |
|                     false
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Sets all bits to true.
 | |
|     pub fn insert_all(&mut self) {
 | |
|         for chunk in self.chunks.iter_mut() {
 | |
|             *chunk = match *chunk {
 | |
|                 Zeros(chunk_domain_size)
 | |
|                 | Ones(chunk_domain_size)
 | |
|                 | Mixed(chunk_domain_size, ..) => Ones(chunk_domain_size),
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Returns `true` if the set has changed.
 | |
|     pub fn remove(&mut self, elem: T) -> bool {
 | |
|         assert!(elem.index() < self.domain_size);
 | |
|         let chunk_index = chunk_index(elem);
 | |
|         let chunk = &mut self.chunks[chunk_index];
 | |
|         match *chunk {
 | |
|             Zeros(_) => false,
 | |
|             Ones(chunk_domain_size) => {
 | |
|                 if chunk_domain_size > 1 {
 | |
|                     #[cfg(feature = "nightly")]
 | |
|                     let mut words = {
 | |
|                         // We take some effort to avoid copying the words.
 | |
|                         let words = Rc::<[Word; CHUNK_WORDS]>::new_zeroed();
 | |
|                         // SAFETY: `words` can safely be all zeroes.
 | |
|                         unsafe { words.assume_init() }
 | |
|                     };
 | |
|                     #[cfg(not(feature = "nightly"))]
 | |
|                     let mut words = {
 | |
|                         // FIXME: unconditionally use `Rc::new_zeroed` once it is stable (#63291).
 | |
|                         let words = mem::MaybeUninit::<[Word; CHUNK_WORDS]>::zeroed();
 | |
|                         // SAFETY: `words` can safely be all zeroes.
 | |
|                         let words = unsafe { words.assume_init() };
 | |
|                         // Unfortunate possibly-large copy
 | |
|                         Rc::new(words)
 | |
|                     };
 | |
|                     let words_ref = Rc::get_mut(&mut words).unwrap();
 | |
| 
 | |
|                     // Set only the bits in use.
 | |
|                     let num_words = num_words(chunk_domain_size as usize);
 | |
|                     words_ref[..num_words].fill(!0);
 | |
|                     clear_excess_bits_in_final_word(
 | |
|                         chunk_domain_size as usize,
 | |
|                         &mut words_ref[..num_words],
 | |
|                     );
 | |
|                     let (word_index, mask) = chunk_word_index_and_mask(elem);
 | |
|                     words_ref[word_index] &= !mask;
 | |
|                     *chunk = Mixed(chunk_domain_size, chunk_domain_size - 1, words);
 | |
|                 } else {
 | |
|                     *chunk = Zeros(chunk_domain_size);
 | |
|                 }
 | |
|                 true
 | |
|             }
 | |
|             Mixed(chunk_domain_size, ref mut count, ref mut words) => {
 | |
|                 // We skip all the work if the bit is already clear.
 | |
|                 let (word_index, mask) = chunk_word_index_and_mask(elem);
 | |
|                 if (words[word_index] & mask) != 0 {
 | |
|                     *count -= 1;
 | |
|                     if *count > 0 {
 | |
|                         let words = Rc::make_mut(words);
 | |
|                         words[word_index] &= !mask;
 | |
|                     } else {
 | |
|                         *chunk = Zeros(chunk_domain_size);
 | |
|                     }
 | |
|                     true
 | |
|                 } else {
 | |
|                     false
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fn chunk_iter(&self, chunk_index: usize) -> ChunkIter<'_> {
 | |
|         match self.chunks.get(chunk_index) {
 | |
|             Some(Zeros(_chunk_domain_size)) => ChunkIter::Zeros,
 | |
|             Some(Ones(chunk_domain_size)) => ChunkIter::Ones(0..*chunk_domain_size as usize),
 | |
|             Some(Mixed(chunk_domain_size, _, words)) => {
 | |
|                 let num_words = num_words(*chunk_domain_size as usize);
 | |
|                 ChunkIter::Mixed(BitIter::new(&words[0..num_words]))
 | |
|             }
 | |
|             None => ChunkIter::Finished,
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     bit_relations_inherent_impls! {}
 | |
| }
 | |
| 
 | |
| impl<T: Idx> BitRelations<ChunkedBitSet<T>> for ChunkedBitSet<T> {
 | |
|     fn union(&mut self, other: &ChunkedBitSet<T>) -> bool {
 | |
|         assert_eq!(self.domain_size, other.domain_size);
 | |
|         debug_assert_eq!(self.chunks.len(), other.chunks.len());
 | |
| 
 | |
|         let mut changed = false;
 | |
|         for (mut self_chunk, other_chunk) in self.chunks.iter_mut().zip(other.chunks.iter()) {
 | |
|             match (&mut self_chunk, &other_chunk) {
 | |
|                 (_, Zeros(_)) | (Ones(_), _) => {}
 | |
|                 (Zeros(self_chunk_domain_size), Ones(other_chunk_domain_size))
 | |
|                 | (Mixed(self_chunk_domain_size, ..), Ones(other_chunk_domain_size))
 | |
|                 | (Zeros(self_chunk_domain_size), Mixed(other_chunk_domain_size, ..)) => {
 | |
|                     // `other_chunk` fully overwrites `self_chunk`
 | |
|                     debug_assert_eq!(self_chunk_domain_size, other_chunk_domain_size);
 | |
|                     *self_chunk = other_chunk.clone();
 | |
|                     changed = true;
 | |
|                 }
 | |
|                 (
 | |
|                     Mixed(self_chunk_domain_size, self_chunk_count, self_chunk_words),
 | |
|                     Mixed(_other_chunk_domain_size, _other_chunk_count, other_chunk_words),
 | |
|                 ) => {
 | |
|                     // First check if the operation would change
 | |
|                     // `self_chunk.words`. If not, we can avoid allocating some
 | |
|                     // words, and this happens often enough that it's a
 | |
|                     // performance win. Also, we only need to operate on the
 | |
|                     // in-use words, hence the slicing.
 | |
|                     let op = |a, b| a | b;
 | |
|                     let num_words = num_words(*self_chunk_domain_size as usize);
 | |
|                     if bitwise_changes(
 | |
|                         &self_chunk_words[0..num_words],
 | |
|                         &other_chunk_words[0..num_words],
 | |
|                         op,
 | |
|                     ) {
 | |
|                         let self_chunk_words = Rc::make_mut(self_chunk_words);
 | |
|                         let has_changed = bitwise(
 | |
|                             &mut self_chunk_words[0..num_words],
 | |
|                             &other_chunk_words[0..num_words],
 | |
|                             op,
 | |
|                         );
 | |
|                         debug_assert!(has_changed);
 | |
|                         *self_chunk_count = self_chunk_words[0..num_words]
 | |
|                             .iter()
 | |
|                             .map(|w| w.count_ones() as ChunkSize)
 | |
|                             .sum();
 | |
|                         if *self_chunk_count == *self_chunk_domain_size {
 | |
|                             *self_chunk = Ones(*self_chunk_domain_size);
 | |
|                         }
 | |
|                         changed = true;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         changed
 | |
|     }
 | |
| 
 | |
|     fn subtract(&mut self, other: &ChunkedBitSet<T>) -> bool {
 | |
|         assert_eq!(self.domain_size, other.domain_size);
 | |
|         debug_assert_eq!(self.chunks.len(), other.chunks.len());
 | |
| 
 | |
|         let mut changed = false;
 | |
|         for (mut self_chunk, other_chunk) in self.chunks.iter_mut().zip(other.chunks.iter()) {
 | |
|             match (&mut self_chunk, &other_chunk) {
 | |
|                 (Zeros(..), _) | (_, Zeros(..)) => {}
 | |
|                 (
 | |
|                     Ones(self_chunk_domain_size) | Mixed(self_chunk_domain_size, _, _),
 | |
|                     Ones(other_chunk_domain_size),
 | |
|                 ) => {
 | |
|                     debug_assert_eq!(self_chunk_domain_size, other_chunk_domain_size);
 | |
|                     changed = true;
 | |
|                     *self_chunk = Zeros(*self_chunk_domain_size);
 | |
|                 }
 | |
|                 (
 | |
|                     Ones(self_chunk_domain_size),
 | |
|                     Mixed(other_chunk_domain_size, other_chunk_count, other_chunk_words),
 | |
|                 ) => {
 | |
|                     debug_assert_eq!(self_chunk_domain_size, other_chunk_domain_size);
 | |
|                     changed = true;
 | |
|                     let num_words = num_words(*self_chunk_domain_size as usize);
 | |
|                     debug_assert!(num_words > 0 && num_words <= CHUNK_WORDS);
 | |
|                     let mut tail_mask =
 | |
|                         1 << (*other_chunk_domain_size - ((num_words - 1) * WORD_BITS) as u16) - 1;
 | |
|                     let mut self_chunk_words = **other_chunk_words;
 | |
|                     for word in self_chunk_words[0..num_words].iter_mut().rev() {
 | |
|                         *word = !*word & tail_mask;
 | |
|                         tail_mask = u64::MAX;
 | |
|                     }
 | |
|                     let self_chunk_count = *self_chunk_domain_size - *other_chunk_count;
 | |
|                     debug_assert_eq!(
 | |
|                         self_chunk_count,
 | |
|                         self_chunk_words[0..num_words]
 | |
|                             .iter()
 | |
|                             .map(|w| w.count_ones() as ChunkSize)
 | |
|                             .sum()
 | |
|                     );
 | |
|                     *self_chunk =
 | |
|                         Mixed(*self_chunk_domain_size, self_chunk_count, Rc::new(self_chunk_words));
 | |
|                 }
 | |
|                 (
 | |
|                     Mixed(self_chunk_domain_size, self_chunk_count, self_chunk_words),
 | |
|                     Mixed(_other_chunk_domain_size, _other_chunk_count, other_chunk_words),
 | |
|                 ) => {
 | |
|                     // See [`<Self as BitRelations<ChunkedBitSet<T>>>::union`] for the explanation
 | |
|                     let op = |a: u64, b: u64| a & !b;
 | |
|                     let num_words = num_words(*self_chunk_domain_size as usize);
 | |
|                     if bitwise_changes(
 | |
|                         &self_chunk_words[0..num_words],
 | |
|                         &other_chunk_words[0..num_words],
 | |
|                         op,
 | |
|                     ) {
 | |
|                         let self_chunk_words = Rc::make_mut(self_chunk_words);
 | |
|                         let has_changed = bitwise(
 | |
|                             &mut self_chunk_words[0..num_words],
 | |
|                             &other_chunk_words[0..num_words],
 | |
|                             op,
 | |
|                         );
 | |
|                         debug_assert!(has_changed);
 | |
|                         *self_chunk_count = self_chunk_words[0..num_words]
 | |
|                             .iter()
 | |
|                             .map(|w| w.count_ones() as ChunkSize)
 | |
|                             .sum();
 | |
|                         if *self_chunk_count == 0 {
 | |
|                             *self_chunk = Zeros(*self_chunk_domain_size);
 | |
|                         }
 | |
|                         changed = true;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         changed
 | |
|     }
 | |
| 
 | |
|     fn intersect(&mut self, other: &ChunkedBitSet<T>) -> bool {
 | |
|         assert_eq!(self.domain_size, other.domain_size);
 | |
|         debug_assert_eq!(self.chunks.len(), other.chunks.len());
 | |
| 
 | |
|         let mut changed = false;
 | |
|         for (mut self_chunk, other_chunk) in self.chunks.iter_mut().zip(other.chunks.iter()) {
 | |
|             match (&mut self_chunk, &other_chunk) {
 | |
|                 (Zeros(..), _) | (_, Ones(..)) => {}
 | |
|                 (
 | |
|                     Ones(self_chunk_domain_size),
 | |
|                     Zeros(other_chunk_domain_size) | Mixed(other_chunk_domain_size, ..),
 | |
|                 )
 | |
|                 | (Mixed(self_chunk_domain_size, ..), Zeros(other_chunk_domain_size)) => {
 | |
|                     debug_assert_eq!(self_chunk_domain_size, other_chunk_domain_size);
 | |
|                     changed = true;
 | |
|                     *self_chunk = other_chunk.clone();
 | |
|                 }
 | |
|                 (
 | |
|                     Mixed(self_chunk_domain_size, self_chunk_count, self_chunk_words),
 | |
|                     Mixed(_other_chunk_domain_size, _other_chunk_count, other_chunk_words),
 | |
|                 ) => {
 | |
|                     // See [`<Self as BitRelations<ChunkedBitSet<T>>>::union`] for the explanation
 | |
|                     let op = |a, b| a & b;
 | |
|                     let num_words = num_words(*self_chunk_domain_size as usize);
 | |
|                     if bitwise_changes(
 | |
|                         &self_chunk_words[0..num_words],
 | |
|                         &other_chunk_words[0..num_words],
 | |
|                         op,
 | |
|                     ) {
 | |
|                         let self_chunk_words = Rc::make_mut(self_chunk_words);
 | |
|                         let has_changed = bitwise(
 | |
|                             &mut self_chunk_words[0..num_words],
 | |
|                             &other_chunk_words[0..num_words],
 | |
|                             op,
 | |
|                         );
 | |
|                         debug_assert!(has_changed);
 | |
|                         *self_chunk_count = self_chunk_words[0..num_words]
 | |
|                             .iter()
 | |
|                             .map(|w| w.count_ones() as ChunkSize)
 | |
|                             .sum();
 | |
|                         if *self_chunk_count == 0 {
 | |
|                             *self_chunk = Zeros(*self_chunk_domain_size);
 | |
|                         }
 | |
|                         changed = true;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         changed
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<T: Idx> BitRelations<ChunkedBitSet<T>> for DenseBitSet<T> {
 | |
|     fn union(&mut self, other: &ChunkedBitSet<T>) -> bool {
 | |
|         sequential_update(|elem| self.insert(elem), other.iter())
 | |
|     }
 | |
| 
 | |
|     fn subtract(&mut self, _other: &ChunkedBitSet<T>) -> bool {
 | |
|         unimplemented!("implement if/when necessary");
 | |
|     }
 | |
| 
 | |
|     fn intersect(&mut self, other: &ChunkedBitSet<T>) -> bool {
 | |
|         assert_eq!(self.domain_size(), other.domain_size);
 | |
|         let mut changed = false;
 | |
|         for (i, chunk) in other.chunks.iter().enumerate() {
 | |
|             let mut words = &mut self.words[i * CHUNK_WORDS..];
 | |
|             if words.len() > CHUNK_WORDS {
 | |
|                 words = &mut words[..CHUNK_WORDS];
 | |
|             }
 | |
|             match chunk {
 | |
|                 Zeros(..) => {
 | |
|                     for word in words {
 | |
|                         if *word != 0 {
 | |
|                             changed = true;
 | |
|                             *word = 0;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|                 Ones(..) => (),
 | |
|                 Mixed(_, _, data) => {
 | |
|                     for (i, word) in words.iter_mut().enumerate() {
 | |
|                         let new_val = *word & data[i];
 | |
|                         if new_val != *word {
 | |
|                             changed = true;
 | |
|                             *word = new_val;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         changed
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<T> Clone for ChunkedBitSet<T> {
 | |
|     fn clone(&self) -> Self {
 | |
|         ChunkedBitSet {
 | |
|             domain_size: self.domain_size,
 | |
|             chunks: self.chunks.clone(),
 | |
|             marker: PhantomData,
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// WARNING: this implementation of clone_from will panic if the two
 | |
|     /// bitsets have different domain sizes. This constraint is not inherent to
 | |
|     /// `clone_from`, but it works with the existing call sites and allows a
 | |
|     /// faster implementation, which is important because this function is hot.
 | |
|     fn clone_from(&mut self, from: &Self) {
 | |
|         assert_eq!(self.domain_size, from.domain_size);
 | |
|         debug_assert_eq!(self.chunks.len(), from.chunks.len());
 | |
| 
 | |
|         self.chunks.clone_from(&from.chunks)
 | |
|     }
 | |
| }
 | |
| 
 | |
| pub struct ChunkedBitIter<'a, T: Idx> {
 | |
|     bit_set: &'a ChunkedBitSet<T>,
 | |
| 
 | |
|     // The index of the current chunk.
 | |
|     chunk_index: usize,
 | |
| 
 | |
|     // The sub-iterator for the current chunk.
 | |
|     chunk_iter: ChunkIter<'a>,
 | |
| }
 | |
| 
 | |
| impl<'a, T: Idx> ChunkedBitIter<'a, T> {
 | |
|     #[inline]
 | |
|     fn new(bit_set: &'a ChunkedBitSet<T>) -> ChunkedBitIter<'a, T> {
 | |
|         ChunkedBitIter { bit_set, chunk_index: 0, chunk_iter: bit_set.chunk_iter(0) }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<'a, T: Idx> Iterator for ChunkedBitIter<'a, T> {
 | |
|     type Item = T;
 | |
| 
 | |
|     fn next(&mut self) -> Option<T> {
 | |
|         loop {
 | |
|             match &mut self.chunk_iter {
 | |
|                 ChunkIter::Zeros => {}
 | |
|                 ChunkIter::Ones(iter) => {
 | |
|                     if let Some(next) = iter.next() {
 | |
|                         return Some(T::new(next + self.chunk_index * CHUNK_BITS));
 | |
|                     }
 | |
|                 }
 | |
|                 ChunkIter::Mixed(iter) => {
 | |
|                     if let Some(next) = iter.next() {
 | |
|                         return Some(T::new(next + self.chunk_index * CHUNK_BITS));
 | |
|                     }
 | |
|                 }
 | |
|                 ChunkIter::Finished => return None,
 | |
|             }
 | |
|             self.chunk_index += 1;
 | |
|             self.chunk_iter = self.bit_set.chunk_iter(self.chunk_index);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl Chunk {
 | |
|     #[cfg(test)]
 | |
|     fn assert_valid(&self) {
 | |
|         match *self {
 | |
|             Zeros(chunk_domain_size) | Ones(chunk_domain_size) => {
 | |
|                 assert!(chunk_domain_size as usize <= CHUNK_BITS);
 | |
|             }
 | |
|             Mixed(chunk_domain_size, count, ref words) => {
 | |
|                 assert!(chunk_domain_size as usize <= CHUNK_BITS);
 | |
|                 assert!(0 < count && count < chunk_domain_size);
 | |
| 
 | |
|                 // Check the number of set bits matches `count`.
 | |
|                 assert_eq!(
 | |
|                     words.iter().map(|w| w.count_ones() as ChunkSize).sum::<ChunkSize>(),
 | |
|                     count
 | |
|                 );
 | |
| 
 | |
|                 // Check the not-in-use words are all zeroed.
 | |
|                 let num_words = num_words(chunk_domain_size as usize);
 | |
|                 if num_words < CHUNK_WORDS {
 | |
|                     assert_eq!(
 | |
|                         words[num_words..]
 | |
|                             .iter()
 | |
|                             .map(|w| w.count_ones() as ChunkSize)
 | |
|                             .sum::<ChunkSize>(),
 | |
|                         0
 | |
|                     );
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fn new(chunk_domain_size: usize, is_empty: bool) -> Self {
 | |
|         debug_assert!(0 < chunk_domain_size && chunk_domain_size <= CHUNK_BITS);
 | |
|         let chunk_domain_size = chunk_domain_size as ChunkSize;
 | |
|         if is_empty { Zeros(chunk_domain_size) } else { Ones(chunk_domain_size) }
 | |
|     }
 | |
| 
 | |
|     /// Count the number of 1s in the chunk.
 | |
|     fn count(&self) -> usize {
 | |
|         match *self {
 | |
|             Zeros(_) => 0,
 | |
|             Ones(chunk_domain_size) => chunk_domain_size as usize,
 | |
|             Mixed(_, count, _) => count as usize,
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| enum ChunkIter<'a> {
 | |
|     Zeros,
 | |
|     Ones(Range<usize>),
 | |
|     Mixed(BitIter<'a, usize>),
 | |
|     Finished,
 | |
| }
 | |
| 
 | |
| // Applies a function to mutate a bitset, and returns true if any
 | |
| // of the applications return true
 | |
| fn sequential_update<T: Idx>(
 | |
|     mut self_update: impl FnMut(T) -> bool,
 | |
|     it: impl Iterator<Item = T>,
 | |
| ) -> bool {
 | |
|     it.fold(false, |changed, elem| self_update(elem) | changed)
 | |
| }
 | |
| 
 | |
| impl<T: Idx> fmt::Debug for ChunkedBitSet<T> {
 | |
|     fn fmt(&self, w: &mut fmt::Formatter<'_>) -> fmt::Result {
 | |
|         w.debug_list().entries(self.iter()).finish()
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// Sets `out_vec[i] = op(out_vec[i], in_vec[i])` for each index `i` in both
 | |
| /// slices. The slices must have the same length.
 | |
| ///
 | |
| /// Returns true if at least one bit in `out_vec` was changed.
 | |
| ///
 | |
| /// ## Warning
 | |
| /// Some bitwise operations (e.g. union-not, xor) can set output bits that were
 | |
| /// unset in in both inputs. If this happens in the last word/chunk of a bitset,
 | |
| /// it can cause the bitset to contain out-of-domain values, which need to
 | |
| /// be cleared with `clear_excess_bits_in_final_word`. This also makes the
 | |
| /// "changed" return value unreliable, because the change might have only
 | |
| /// affected excess bits.
 | |
| #[inline]
 | |
| fn bitwise<Op>(out_vec: &mut [Word], in_vec: &[Word], op: Op) -> bool
 | |
| where
 | |
|     Op: Fn(Word, Word) -> Word,
 | |
| {
 | |
|     assert_eq!(out_vec.len(), in_vec.len());
 | |
|     let mut changed = 0;
 | |
|     for (out_elem, in_elem) in iter::zip(out_vec, in_vec) {
 | |
|         let old_val = *out_elem;
 | |
|         let new_val = op(old_val, *in_elem);
 | |
|         *out_elem = new_val;
 | |
|         // This is essentially equivalent to a != with changed being a bool, but
 | |
|         // in practice this code gets auto-vectorized by the compiler for most
 | |
|         // operators. Using != here causes us to generate quite poor code as the
 | |
|         // compiler tries to go back to a boolean on each loop iteration.
 | |
|         changed |= old_val ^ new_val;
 | |
|     }
 | |
|     changed != 0
 | |
| }
 | |
| 
 | |
| /// Does this bitwise operation change `out_vec`?
 | |
| #[inline]
 | |
| fn bitwise_changes<Op>(out_vec: &[Word], in_vec: &[Word], op: Op) -> bool
 | |
| where
 | |
|     Op: Fn(Word, Word) -> Word,
 | |
| {
 | |
|     assert_eq!(out_vec.len(), in_vec.len());
 | |
|     for (out_elem, in_elem) in iter::zip(out_vec, in_vec) {
 | |
|         let old_val = *out_elem;
 | |
|         let new_val = op(old_val, *in_elem);
 | |
|         if old_val != new_val {
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
|     false
 | |
| }
 | |
| 
 | |
| /// A bitset with a mixed representation, using `DenseBitSet` for small and
 | |
| /// medium bitsets, and `ChunkedBitSet` for large bitsets, i.e. those with
 | |
| /// enough bits for at least two chunks. This is a good choice for many bitsets
 | |
| /// that can have large domain sizes (e.g. 5000+).
 | |
| ///
 | |
| /// `T` is an index type, typically a newtyped `usize` wrapper, but it can also
 | |
| /// just be `usize`.
 | |
| ///
 | |
| /// All operations that involve an element will panic if the element is equal
 | |
| /// to or greater than the domain size. All operations that involve two bitsets
 | |
| /// will panic if the bitsets have differing domain sizes.
 | |
| #[derive(PartialEq, Eq)]
 | |
| pub enum MixedBitSet<T> {
 | |
|     Small(DenseBitSet<T>),
 | |
|     Large(ChunkedBitSet<T>),
 | |
| }
 | |
| 
 | |
| impl<T> MixedBitSet<T> {
 | |
|     pub fn domain_size(&self) -> usize {
 | |
|         match self {
 | |
|             MixedBitSet::Small(set) => set.domain_size(),
 | |
|             MixedBitSet::Large(set) => set.domain_size(),
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<T: Idx> MixedBitSet<T> {
 | |
|     #[inline]
 | |
|     pub fn new_empty(domain_size: usize) -> MixedBitSet<T> {
 | |
|         if domain_size <= CHUNK_BITS {
 | |
|             MixedBitSet::Small(DenseBitSet::new_empty(domain_size))
 | |
|         } else {
 | |
|             MixedBitSet::Large(ChunkedBitSet::new_empty(domain_size))
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     #[inline]
 | |
|     pub fn is_empty(&self) -> bool {
 | |
|         match self {
 | |
|             MixedBitSet::Small(set) => set.is_empty(),
 | |
|             MixedBitSet::Large(set) => set.is_empty(),
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     #[inline]
 | |
|     pub fn contains(&self, elem: T) -> bool {
 | |
|         match self {
 | |
|             MixedBitSet::Small(set) => set.contains(elem),
 | |
|             MixedBitSet::Large(set) => set.contains(elem),
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     #[inline]
 | |
|     pub fn insert(&mut self, elem: T) -> bool {
 | |
|         match self {
 | |
|             MixedBitSet::Small(set) => set.insert(elem),
 | |
|             MixedBitSet::Large(set) => set.insert(elem),
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     pub fn insert_all(&mut self) {
 | |
|         match self {
 | |
|             MixedBitSet::Small(set) => set.insert_all(),
 | |
|             MixedBitSet::Large(set) => set.insert_all(),
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     #[inline]
 | |
|     pub fn remove(&mut self, elem: T) -> bool {
 | |
|         match self {
 | |
|             MixedBitSet::Small(set) => set.remove(elem),
 | |
|             MixedBitSet::Large(set) => set.remove(elem),
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     pub fn iter(&self) -> MixedBitIter<'_, T> {
 | |
|         match self {
 | |
|             MixedBitSet::Small(set) => MixedBitIter::Small(set.iter()),
 | |
|             MixedBitSet::Large(set) => MixedBitIter::Large(set.iter()),
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     #[inline]
 | |
|     pub fn clear(&mut self) {
 | |
|         match self {
 | |
|             MixedBitSet::Small(set) => set.clear(),
 | |
|             MixedBitSet::Large(set) => set.clear(),
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     bit_relations_inherent_impls! {}
 | |
| }
 | |
| 
 | |
| impl<T> Clone for MixedBitSet<T> {
 | |
|     fn clone(&self) -> Self {
 | |
|         match self {
 | |
|             MixedBitSet::Small(set) => MixedBitSet::Small(set.clone()),
 | |
|             MixedBitSet::Large(set) => MixedBitSet::Large(set.clone()),
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// WARNING: this implementation of clone_from may panic if the two
 | |
|     /// bitsets have different domain sizes. This constraint is not inherent to
 | |
|     /// `clone_from`, but it works with the existing call sites and allows a
 | |
|     /// faster implementation, which is important because this function is hot.
 | |
|     fn clone_from(&mut self, from: &Self) {
 | |
|         match (self, from) {
 | |
|             (MixedBitSet::Small(set), MixedBitSet::Small(from)) => set.clone_from(from),
 | |
|             (MixedBitSet::Large(set), MixedBitSet::Large(from)) => set.clone_from(from),
 | |
|             _ => panic!("MixedBitSet size mismatch"),
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<T: Idx> BitRelations<MixedBitSet<T>> for MixedBitSet<T> {
 | |
|     fn union(&mut self, other: &MixedBitSet<T>) -> bool {
 | |
|         match (self, other) {
 | |
|             (MixedBitSet::Small(set), MixedBitSet::Small(other)) => set.union(other),
 | |
|             (MixedBitSet::Large(set), MixedBitSet::Large(other)) => set.union(other),
 | |
|             _ => panic!("MixedBitSet size mismatch"),
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fn subtract(&mut self, other: &MixedBitSet<T>) -> bool {
 | |
|         match (self, other) {
 | |
|             (MixedBitSet::Small(set), MixedBitSet::Small(other)) => set.subtract(other),
 | |
|             (MixedBitSet::Large(set), MixedBitSet::Large(other)) => set.subtract(other),
 | |
|             _ => panic!("MixedBitSet size mismatch"),
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fn intersect(&mut self, _other: &MixedBitSet<T>) -> bool {
 | |
|         unimplemented!("implement if/when necessary");
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<T: Idx> fmt::Debug for MixedBitSet<T> {
 | |
|     fn fmt(&self, w: &mut fmt::Formatter<'_>) -> fmt::Result {
 | |
|         match self {
 | |
|             MixedBitSet::Small(set) => set.fmt(w),
 | |
|             MixedBitSet::Large(set) => set.fmt(w),
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| pub enum MixedBitIter<'a, T: Idx> {
 | |
|     Small(BitIter<'a, T>),
 | |
|     Large(ChunkedBitIter<'a, T>),
 | |
| }
 | |
| 
 | |
| impl<'a, T: Idx> Iterator for MixedBitIter<'a, T> {
 | |
|     type Item = T;
 | |
|     fn next(&mut self) -> Option<T> {
 | |
|         match self {
 | |
|             MixedBitIter::Small(iter) => iter.next(),
 | |
|             MixedBitIter::Large(iter) => iter.next(),
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// A resizable bitset type with a dense representation.
 | |
| ///
 | |
| /// `T` is an index type, typically a newtyped `usize` wrapper, but it can also
 | |
| /// just be `usize`.
 | |
| ///
 | |
| /// All operations that involve an element will panic if the element is equal
 | |
| /// to or greater than the domain size.
 | |
| #[derive(Clone, Debug, PartialEq)]
 | |
| pub struct GrowableBitSet<T: Idx> {
 | |
|     bit_set: DenseBitSet<T>,
 | |
| }
 | |
| 
 | |
| impl<T: Idx> Default for GrowableBitSet<T> {
 | |
|     fn default() -> Self {
 | |
|         GrowableBitSet::new_empty()
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<T: Idx> GrowableBitSet<T> {
 | |
|     /// Ensure that the set can hold at least `min_domain_size` elements.
 | |
|     pub fn ensure(&mut self, min_domain_size: usize) {
 | |
|         if self.bit_set.domain_size < min_domain_size {
 | |
|             self.bit_set.domain_size = min_domain_size;
 | |
|         }
 | |
| 
 | |
|         let min_num_words = num_words(min_domain_size);
 | |
|         if self.bit_set.words.len() < min_num_words {
 | |
|             self.bit_set.words.resize(min_num_words, 0)
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     pub fn new_empty() -> GrowableBitSet<T> {
 | |
|         GrowableBitSet { bit_set: DenseBitSet::new_empty(0) }
 | |
|     }
 | |
| 
 | |
|     pub fn with_capacity(capacity: usize) -> GrowableBitSet<T> {
 | |
|         GrowableBitSet { bit_set: DenseBitSet::new_empty(capacity) }
 | |
|     }
 | |
| 
 | |
|     /// Returns `true` if the set has changed.
 | |
|     #[inline]
 | |
|     pub fn insert(&mut self, elem: T) -> bool {
 | |
|         self.ensure(elem.index() + 1);
 | |
|         self.bit_set.insert(elem)
 | |
|     }
 | |
| 
 | |
|     /// Returns `true` if the set has changed.
 | |
|     #[inline]
 | |
|     pub fn remove(&mut self, elem: T) -> bool {
 | |
|         self.ensure(elem.index() + 1);
 | |
|         self.bit_set.remove(elem)
 | |
|     }
 | |
| 
 | |
|     #[inline]
 | |
|     pub fn is_empty(&self) -> bool {
 | |
|         self.bit_set.is_empty()
 | |
|     }
 | |
| 
 | |
|     #[inline]
 | |
|     pub fn contains(&self, elem: T) -> bool {
 | |
|         let (word_index, mask) = word_index_and_mask(elem);
 | |
|         self.bit_set.words.get(word_index).is_some_and(|word| (word & mask) != 0)
 | |
|     }
 | |
| 
 | |
|     #[inline]
 | |
|     pub fn iter(&self) -> BitIter<'_, T> {
 | |
|         self.bit_set.iter()
 | |
|     }
 | |
| 
 | |
|     #[inline]
 | |
|     pub fn len(&self) -> usize {
 | |
|         self.bit_set.count()
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<T: Idx> From<DenseBitSet<T>> for GrowableBitSet<T> {
 | |
|     fn from(bit_set: DenseBitSet<T>) -> Self {
 | |
|         Self { bit_set }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// A fixed-size 2D bit matrix type with a dense representation.
 | |
| ///
 | |
| /// `R` and `C` are index types used to identify rows and columns respectively;
 | |
| /// typically newtyped `usize` wrappers, but they can also just be `usize`.
 | |
| ///
 | |
| /// All operations that involve a row and/or column index will panic if the
 | |
| /// index exceeds the relevant bound.
 | |
| #[cfg_attr(feature = "nightly", derive(Decodable_Generic, Encodable_Generic))]
 | |
| #[derive(Clone, Eq, PartialEq, Hash)]
 | |
| pub struct BitMatrix<R: Idx, C: Idx> {
 | |
|     num_rows: usize,
 | |
|     num_columns: usize,
 | |
|     words: SmallVec<[Word; 2]>,
 | |
|     marker: PhantomData<(R, C)>,
 | |
| }
 | |
| 
 | |
| impl<R: Idx, C: Idx> BitMatrix<R, C> {
 | |
|     /// Creates a new `rows x columns` matrix, initially empty.
 | |
|     pub fn new(num_rows: usize, num_columns: usize) -> BitMatrix<R, C> {
 | |
|         // For every element, we need one bit for every other
 | |
|         // element. Round up to an even number of words.
 | |
|         let words_per_row = num_words(num_columns);
 | |
|         BitMatrix {
 | |
|             num_rows,
 | |
|             num_columns,
 | |
|             words: smallvec![0; num_rows * words_per_row],
 | |
|             marker: PhantomData,
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Creates a new matrix, with `row` used as the value for every row.
 | |
|     pub fn from_row_n(row: &DenseBitSet<C>, num_rows: usize) -> BitMatrix<R, C> {
 | |
|         let num_columns = row.domain_size();
 | |
|         let words_per_row = num_words(num_columns);
 | |
|         assert_eq!(words_per_row, row.words.len());
 | |
|         BitMatrix {
 | |
|             num_rows,
 | |
|             num_columns,
 | |
|             words: iter::repeat(&row.words).take(num_rows).flatten().cloned().collect(),
 | |
|             marker: PhantomData,
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     pub fn rows(&self) -> impl Iterator<Item = R> {
 | |
|         (0..self.num_rows).map(R::new)
 | |
|     }
 | |
| 
 | |
|     /// The range of bits for a given row.
 | |
|     fn range(&self, row: R) -> (usize, usize) {
 | |
|         let words_per_row = num_words(self.num_columns);
 | |
|         let start = row.index() * words_per_row;
 | |
|         (start, start + words_per_row)
 | |
|     }
 | |
| 
 | |
|     /// Sets the cell at `(row, column)` to true. Put another way, insert
 | |
|     /// `column` to the bitset for `row`.
 | |
|     ///
 | |
|     /// Returns `true` if this changed the matrix.
 | |
|     pub fn insert(&mut self, row: R, column: C) -> bool {
 | |
|         assert!(row.index() < self.num_rows && column.index() < self.num_columns);
 | |
|         let (start, _) = self.range(row);
 | |
|         let (word_index, mask) = word_index_and_mask(column);
 | |
|         let words = &mut self.words[..];
 | |
|         let word = words[start + word_index];
 | |
|         let new_word = word | mask;
 | |
|         words[start + word_index] = new_word;
 | |
|         word != new_word
 | |
|     }
 | |
| 
 | |
|     /// Do the bits from `row` contain `column`? Put another way, is
 | |
|     /// the matrix cell at `(row, column)` true?  Put yet another way,
 | |
|     /// if the matrix represents (transitive) reachability, can
 | |
|     /// `row` reach `column`?
 | |
|     pub fn contains(&self, row: R, column: C) -> bool {
 | |
|         assert!(row.index() < self.num_rows && column.index() < self.num_columns);
 | |
|         let (start, _) = self.range(row);
 | |
|         let (word_index, mask) = word_index_and_mask(column);
 | |
|         (self.words[start + word_index] & mask) != 0
 | |
|     }
 | |
| 
 | |
|     /// Returns those indices that are true in rows `a` and `b`. This
 | |
|     /// is an *O*(*n*) operation where *n* is the number of elements
 | |
|     /// (somewhat independent from the actual size of the
 | |
|     /// intersection, in particular).
 | |
|     pub fn intersect_rows(&self, row1: R, row2: R) -> Vec<C> {
 | |
|         assert!(row1.index() < self.num_rows && row2.index() < self.num_rows);
 | |
|         let (row1_start, row1_end) = self.range(row1);
 | |
|         let (row2_start, row2_end) = self.range(row2);
 | |
|         let mut result = Vec::with_capacity(self.num_columns);
 | |
|         for (base, (i, j)) in (row1_start..row1_end).zip(row2_start..row2_end).enumerate() {
 | |
|             let mut v = self.words[i] & self.words[j];
 | |
|             for bit in 0..WORD_BITS {
 | |
|                 if v == 0 {
 | |
|                     break;
 | |
|                 }
 | |
|                 if v & 0x1 != 0 {
 | |
|                     result.push(C::new(base * WORD_BITS + bit));
 | |
|                 }
 | |
|                 v >>= 1;
 | |
|             }
 | |
|         }
 | |
|         result
 | |
|     }
 | |
| 
 | |
|     /// Adds the bits from row `read` to the bits from row `write`, and
 | |
|     /// returns `true` if anything changed.
 | |
|     ///
 | |
|     /// This is used when computing transitive reachability because if
 | |
|     /// you have an edge `write -> read`, because in that case
 | |
|     /// `write` can reach everything that `read` can (and
 | |
|     /// potentially more).
 | |
|     pub fn union_rows(&mut self, read: R, write: R) -> bool {
 | |
|         assert!(read.index() < self.num_rows && write.index() < self.num_rows);
 | |
|         let (read_start, read_end) = self.range(read);
 | |
|         let (write_start, write_end) = self.range(write);
 | |
|         let words = &mut self.words[..];
 | |
|         let mut changed = 0;
 | |
|         for (read_index, write_index) in iter::zip(read_start..read_end, write_start..write_end) {
 | |
|             let word = words[write_index];
 | |
|             let new_word = word | words[read_index];
 | |
|             words[write_index] = new_word;
 | |
|             // See `bitwise` for the rationale.
 | |
|             changed |= word ^ new_word;
 | |
|         }
 | |
|         changed != 0
 | |
|     }
 | |
| 
 | |
|     /// Adds the bits from `with` to the bits from row `write`, and
 | |
|     /// returns `true` if anything changed.
 | |
|     pub fn union_row_with(&mut self, with: &DenseBitSet<C>, write: R) -> bool {
 | |
|         assert!(write.index() < self.num_rows);
 | |
|         assert_eq!(with.domain_size(), self.num_columns);
 | |
|         let (write_start, write_end) = self.range(write);
 | |
|         bitwise(&mut self.words[write_start..write_end], &with.words, |a, b| a | b)
 | |
|     }
 | |
| 
 | |
|     /// Sets every cell in `row` to true.
 | |
|     pub fn insert_all_into_row(&mut self, row: R) {
 | |
|         assert!(row.index() < self.num_rows);
 | |
|         let (start, end) = self.range(row);
 | |
|         let words = &mut self.words[..];
 | |
|         for index in start..end {
 | |
|             words[index] = !0;
 | |
|         }
 | |
|         clear_excess_bits_in_final_word(self.num_columns, &mut self.words[..end]);
 | |
|     }
 | |
| 
 | |
|     /// Gets a slice of the underlying words.
 | |
|     pub fn words(&self) -> &[Word] {
 | |
|         &self.words
 | |
|     }
 | |
| 
 | |
|     /// Iterates through all the columns set to true in a given row of
 | |
|     /// the matrix.
 | |
|     pub fn iter(&self, row: R) -> BitIter<'_, C> {
 | |
|         assert!(row.index() < self.num_rows);
 | |
|         let (start, end) = self.range(row);
 | |
|         BitIter::new(&self.words[start..end])
 | |
|     }
 | |
| 
 | |
|     /// Returns the number of elements in `row`.
 | |
|     pub fn count(&self, row: R) -> usize {
 | |
|         let (start, end) = self.range(row);
 | |
|         self.words[start..end].iter().map(|e| e.count_ones() as usize).sum()
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<R: Idx, C: Idx> fmt::Debug for BitMatrix<R, C> {
 | |
|     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
 | |
|         /// Forces its contents to print in regular mode instead of alternate mode.
 | |
|         struct OneLinePrinter<T>(T);
 | |
|         impl<T: fmt::Debug> fmt::Debug for OneLinePrinter<T> {
 | |
|             fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
 | |
|                 write!(fmt, "{:?}", self.0)
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         write!(fmt, "BitMatrix({}x{}) ", self.num_rows, self.num_columns)?;
 | |
|         let items = self.rows().flat_map(|r| self.iter(r).map(move |c| (r, c)));
 | |
|         fmt.debug_set().entries(items.map(OneLinePrinter)).finish()
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// A fixed-column-size, variable-row-size 2D bit matrix with a moderately
 | |
| /// sparse representation.
 | |
| ///
 | |
| /// Initially, every row has no explicit representation. If any bit within a row
 | |
| /// is set, the entire row is instantiated as `Some(<DenseBitSet>)`.
 | |
| /// Furthermore, any previously uninstantiated rows prior to it will be
 | |
| /// instantiated as `None`. Those prior rows may themselves become fully
 | |
| /// instantiated later on if any of their bits are set.
 | |
| ///
 | |
| /// `R` and `C` are index types used to identify rows and columns respectively;
 | |
| /// typically newtyped `usize` wrappers, but they can also just be `usize`.
 | |
| #[derive(Clone, Debug)]
 | |
| pub struct SparseBitMatrix<R, C>
 | |
| where
 | |
|     R: Idx,
 | |
|     C: Idx,
 | |
| {
 | |
|     num_columns: usize,
 | |
|     rows: IndexVec<R, Option<DenseBitSet<C>>>,
 | |
| }
 | |
| 
 | |
| impl<R: Idx, C: Idx> SparseBitMatrix<R, C> {
 | |
|     /// Creates a new empty sparse bit matrix with no rows or columns.
 | |
|     pub fn new(num_columns: usize) -> Self {
 | |
|         Self { num_columns, rows: IndexVec::new() }
 | |
|     }
 | |
| 
 | |
|     fn ensure_row(&mut self, row: R) -> &mut DenseBitSet<C> {
 | |
|         // Instantiate any missing rows up to and including row `row` with an empty `DenseBitSet`.
 | |
|         // Then replace row `row` with a full `DenseBitSet` if necessary.
 | |
|         self.rows.get_or_insert_with(row, || DenseBitSet::new_empty(self.num_columns))
 | |
|     }
 | |
| 
 | |
|     /// Sets the cell at `(row, column)` to true. Put another way, insert
 | |
|     /// `column` to the bitset for `row`.
 | |
|     ///
 | |
|     /// Returns `true` if this changed the matrix.
 | |
|     pub fn insert(&mut self, row: R, column: C) -> bool {
 | |
|         self.ensure_row(row).insert(column)
 | |
|     }
 | |
| 
 | |
|     /// Sets the cell at `(row, column)` to false. Put another way, delete
 | |
|     /// `column` from the bitset for `row`. Has no effect if `row` does not
 | |
|     /// exist.
 | |
|     ///
 | |
|     /// Returns `true` if this changed the matrix.
 | |
|     pub fn remove(&mut self, row: R, column: C) -> bool {
 | |
|         match self.rows.get_mut(row) {
 | |
|             Some(Some(row)) => row.remove(column),
 | |
|             _ => false,
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Sets all columns at `row` to false. Has no effect if `row` does
 | |
|     /// not exist.
 | |
|     pub fn clear(&mut self, row: R) {
 | |
|         if let Some(Some(row)) = self.rows.get_mut(row) {
 | |
|             row.clear();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Do the bits from `row` contain `column`? Put another way, is
 | |
|     /// the matrix cell at `(row, column)` true?  Put yet another way,
 | |
|     /// if the matrix represents (transitive) reachability, can
 | |
|     /// `row` reach `column`?
 | |
|     pub fn contains(&self, row: R, column: C) -> bool {
 | |
|         self.row(row).is_some_and(|r| r.contains(column))
 | |
|     }
 | |
| 
 | |
|     /// Adds the bits from row `read` to the bits from row `write`, and
 | |
|     /// returns `true` if anything changed.
 | |
|     ///
 | |
|     /// This is used when computing transitive reachability because if
 | |
|     /// you have an edge `write -> read`, because in that case
 | |
|     /// `write` can reach everything that `read` can (and
 | |
|     /// potentially more).
 | |
|     pub fn union_rows(&mut self, read: R, write: R) -> bool {
 | |
|         if read == write || self.row(read).is_none() {
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         self.ensure_row(write);
 | |
|         if let (Some(read_row), Some(write_row)) = self.rows.pick2_mut(read, write) {
 | |
|             write_row.union(read_row)
 | |
|         } else {
 | |
|             unreachable!()
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Insert all bits in the given row.
 | |
|     pub fn insert_all_into_row(&mut self, row: R) {
 | |
|         self.ensure_row(row).insert_all();
 | |
|     }
 | |
| 
 | |
|     pub fn rows(&self) -> impl Iterator<Item = R> {
 | |
|         self.rows.indices()
 | |
|     }
 | |
| 
 | |
|     /// Iterates through all the columns set to true in a given row of
 | |
|     /// the matrix.
 | |
|     pub fn iter(&self, row: R) -> impl Iterator<Item = C> {
 | |
|         self.row(row).into_iter().flat_map(|r| r.iter())
 | |
|     }
 | |
| 
 | |
|     pub fn row(&self, row: R) -> Option<&DenseBitSet<C>> {
 | |
|         self.rows.get(row)?.as_ref()
 | |
|     }
 | |
| 
 | |
|     /// Intersects `row` with `set`. `set` can be either `DenseBitSet` or
 | |
|     /// `ChunkedBitSet`. Has no effect if `row` does not exist.
 | |
|     ///
 | |
|     /// Returns true if the row was changed.
 | |
|     pub fn intersect_row<Set>(&mut self, row: R, set: &Set) -> bool
 | |
|     where
 | |
|         DenseBitSet<C>: BitRelations<Set>,
 | |
|     {
 | |
|         match self.rows.get_mut(row) {
 | |
|             Some(Some(row)) => row.intersect(set),
 | |
|             _ => false,
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Subtracts `set` from `row`. `set` can be either `DenseBitSet` or
 | |
|     /// `ChunkedBitSet`. Has no effect if `row` does not exist.
 | |
|     ///
 | |
|     /// Returns true if the row was changed.
 | |
|     pub fn subtract_row<Set>(&mut self, row: R, set: &Set) -> bool
 | |
|     where
 | |
|         DenseBitSet<C>: BitRelations<Set>,
 | |
|     {
 | |
|         match self.rows.get_mut(row) {
 | |
|             Some(Some(row)) => row.subtract(set),
 | |
|             _ => false,
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Unions `row` with `set`. `set` can be either `DenseBitSet` or
 | |
|     /// `ChunkedBitSet`.
 | |
|     ///
 | |
|     /// Returns true if the row was changed.
 | |
|     pub fn union_row<Set>(&mut self, row: R, set: &Set) -> bool
 | |
|     where
 | |
|         DenseBitSet<C>: BitRelations<Set>,
 | |
|     {
 | |
|         self.ensure_row(row).union(set)
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[inline]
 | |
| fn num_words<T: Idx>(domain_size: T) -> usize {
 | |
|     (domain_size.index() + WORD_BITS - 1) / WORD_BITS
 | |
| }
 | |
| 
 | |
| #[inline]
 | |
| fn num_chunks<T: Idx>(domain_size: T) -> usize {
 | |
|     assert!(domain_size.index() > 0);
 | |
|     (domain_size.index() + CHUNK_BITS - 1) / CHUNK_BITS
 | |
| }
 | |
| 
 | |
| #[inline]
 | |
| fn word_index_and_mask<T: Idx>(elem: T) -> (usize, Word) {
 | |
|     let elem = elem.index();
 | |
|     let word_index = elem / WORD_BITS;
 | |
|     let mask = 1 << (elem % WORD_BITS);
 | |
|     (word_index, mask)
 | |
| }
 | |
| 
 | |
| #[inline]
 | |
| fn chunk_index<T: Idx>(elem: T) -> usize {
 | |
|     elem.index() / CHUNK_BITS
 | |
| }
 | |
| 
 | |
| #[inline]
 | |
| fn chunk_word_index_and_mask<T: Idx>(elem: T) -> (usize, Word) {
 | |
|     let chunk_elem = elem.index() % CHUNK_BITS;
 | |
|     word_index_and_mask(chunk_elem)
 | |
| }
 | |
| 
 | |
| fn clear_excess_bits_in_final_word(domain_size: usize, words: &mut [Word]) {
 | |
|     let num_bits_in_final_word = domain_size % WORD_BITS;
 | |
|     if num_bits_in_final_word > 0 {
 | |
|         let mask = (1 << num_bits_in_final_word) - 1;
 | |
|         words[words.len() - 1] &= mask;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[inline]
 | |
| fn max_bit(word: Word) -> usize {
 | |
|     WORD_BITS - 1 - word.leading_zeros() as usize
 | |
| }
 | |
| 
 | |
| /// Integral type used to represent the bit set.
 | |
| pub trait FiniteBitSetTy:
 | |
|     BitAnd<Output = Self>
 | |
|     + BitAndAssign
 | |
|     + BitOrAssign
 | |
|     + Clone
 | |
|     + Copy
 | |
|     + Shl
 | |
|     + Not<Output = Self>
 | |
|     + PartialEq
 | |
|     + Sized
 | |
| {
 | |
|     /// Size of the domain representable by this type, e.g. 64 for `u64`.
 | |
|     const DOMAIN_SIZE: u32;
 | |
| 
 | |
|     /// Value which represents the `FiniteBitSet` having every bit set.
 | |
|     const FILLED: Self;
 | |
|     /// Value which represents the `FiniteBitSet` having no bits set.
 | |
|     const EMPTY: Self;
 | |
| 
 | |
|     /// Value for one as the integral type.
 | |
|     const ONE: Self;
 | |
|     /// Value for zero as the integral type.
 | |
|     const ZERO: Self;
 | |
| 
 | |
|     /// Perform a checked left shift on the integral type.
 | |
|     fn checked_shl(self, rhs: u32) -> Option<Self>;
 | |
|     /// Perform a checked right shift on the integral type.
 | |
|     fn checked_shr(self, rhs: u32) -> Option<Self>;
 | |
| }
 | |
| 
 | |
| impl FiniteBitSetTy for u32 {
 | |
|     const DOMAIN_SIZE: u32 = 32;
 | |
| 
 | |
|     const FILLED: Self = Self::MAX;
 | |
|     const EMPTY: Self = Self::MIN;
 | |
| 
 | |
|     const ONE: Self = 1u32;
 | |
|     const ZERO: Self = 0u32;
 | |
| 
 | |
|     fn checked_shl(self, rhs: u32) -> Option<Self> {
 | |
|         self.checked_shl(rhs)
 | |
|     }
 | |
| 
 | |
|     fn checked_shr(self, rhs: u32) -> Option<Self> {
 | |
|         self.checked_shr(rhs)
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl std::fmt::Debug for FiniteBitSet<u32> {
 | |
|     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
 | |
|         write!(f, "{:032b}", self.0)
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// A fixed-sized bitset type represented by an integer type. Indices outwith than the range
 | |
| /// representable by `T` are considered set.
 | |
| #[cfg_attr(feature = "nightly", derive(Decodable_Generic, Encodable_Generic))]
 | |
| #[derive(Copy, Clone, Eq, PartialEq)]
 | |
| pub struct FiniteBitSet<T: FiniteBitSetTy>(pub T);
 | |
| 
 | |
| impl<T: FiniteBitSetTy> FiniteBitSet<T> {
 | |
|     /// Creates a new, empty bitset.
 | |
|     pub fn new_empty() -> Self {
 | |
|         Self(T::EMPTY)
 | |
|     }
 | |
| 
 | |
|     /// Sets the `index`th bit.
 | |
|     pub fn set(&mut self, index: u32) {
 | |
|         self.0 |= T::ONE.checked_shl(index).unwrap_or(T::ZERO);
 | |
|     }
 | |
| 
 | |
|     /// Unsets the `index`th bit.
 | |
|     pub fn clear(&mut self, index: u32) {
 | |
|         self.0 &= !T::ONE.checked_shl(index).unwrap_or(T::ZERO);
 | |
|     }
 | |
| 
 | |
|     /// Sets the `i`th to `j`th bits.
 | |
|     pub fn set_range(&mut self, range: Range<u32>) {
 | |
|         let bits = T::FILLED
 | |
|             .checked_shl(range.end - range.start)
 | |
|             .unwrap_or(T::ZERO)
 | |
|             .not()
 | |
|             .checked_shl(range.start)
 | |
|             .unwrap_or(T::ZERO);
 | |
|         self.0 |= bits;
 | |
|     }
 | |
| 
 | |
|     /// Is the set empty?
 | |
|     pub fn is_empty(&self) -> bool {
 | |
|         self.0 == T::EMPTY
 | |
|     }
 | |
| 
 | |
|     /// Returns the domain size of the bitset.
 | |
|     pub fn within_domain(&self, index: u32) -> bool {
 | |
|         index < T::DOMAIN_SIZE
 | |
|     }
 | |
| 
 | |
|     /// Returns if the `index`th bit is set.
 | |
|     pub fn contains(&self, index: u32) -> Option<bool> {
 | |
|         self.within_domain(index)
 | |
|             .then(|| ((self.0.checked_shr(index).unwrap_or(T::ONE)) & T::ONE) == T::ONE)
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<T: FiniteBitSetTy> Default for FiniteBitSet<T> {
 | |
|     fn default() -> Self {
 | |
|         Self::new_empty()
 | |
|     }
 | |
| }
 |