Kajetan Puchalski 3a0fbb5d4e rustc_codegen_llvm: Filter out unavailable LLVM features
Convert to_llvm_features to return Option<LLVMFeature> so that it can
return None if the requested feature is not available for the current
LLVM version.

Add match rules to filter out aarch64 features not available in LLVM 17.
2024-08-27 11:13:01 +01:00

732 lines
29 KiB
Rust

use std::ffi::{c_char, c_void, CStr, CString};
use std::fmt::Write;
use std::path::Path;
use std::sync::Once;
use std::{ptr, slice, str};
use libc::c_int;
use rustc_codegen_ssa::base::wants_wasm_eh;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_data_structures::small_c_str::SmallCStr;
use rustc_data_structures::unord::UnordSet;
use rustc_fs_util::path_to_c_string;
use rustc_middle::bug;
use rustc_session::config::{PrintKind, PrintRequest};
use rustc_session::Session;
use rustc_span::symbol::Symbol;
use rustc_target::spec::{MergeFunctions, PanicStrategy};
use rustc_target::target_features::{RUSTC_SPECIAL_FEATURES, RUSTC_SPECIFIC_FEATURES};
use crate::back::write::create_informational_target_machine;
use crate::errors::{
FixedX18InvalidArch, InvalidTargetFeaturePrefix, PossibleFeature, TargetFeatureDisableOrEnable,
UnknownCTargetFeature, UnknownCTargetFeaturePrefix, UnstableCTargetFeature,
};
use crate::llvm;
static INIT: Once = Once::new();
pub(crate) fn init(sess: &Session) {
unsafe {
// Before we touch LLVM, make sure that multithreading is enabled.
if llvm::LLVMIsMultithreaded() != 1 {
bug!("LLVM compiled without support for threads");
}
INIT.call_once(|| {
configure_llvm(sess);
});
}
}
fn require_inited() {
if !INIT.is_completed() {
bug!("LLVM is not initialized");
}
}
unsafe fn configure_llvm(sess: &Session) {
let n_args = sess.opts.cg.llvm_args.len() + sess.target.llvm_args.len();
let mut llvm_c_strs = Vec::with_capacity(n_args + 1);
let mut llvm_args = Vec::with_capacity(n_args + 1);
unsafe {
llvm::LLVMRustInstallErrorHandlers();
}
// On Windows, an LLVM assertion will open an Abort/Retry/Ignore dialog
// box for the purpose of launching a debugger. However, on CI this will
// cause it to hang until it times out, which can take several hours.
if std::env::var_os("CI").is_some() {
unsafe {
llvm::LLVMRustDisableSystemDialogsOnCrash();
}
}
fn llvm_arg_to_arg_name(full_arg: &str) -> &str {
full_arg.trim().split(|c: char| c == '=' || c.is_whitespace()).next().unwrap_or("")
}
let cg_opts = sess.opts.cg.llvm_args.iter().map(AsRef::as_ref);
let tg_opts = sess.target.llvm_args.iter().map(AsRef::as_ref);
let sess_args = cg_opts.chain(tg_opts);
let user_specified_args: FxHashSet<_> =
sess_args.clone().map(|s| llvm_arg_to_arg_name(s)).filter(|s| !s.is_empty()).collect();
{
// This adds the given argument to LLVM. Unless `force` is true
// user specified arguments are *not* overridden.
let mut add = |arg: &str, force: bool| {
if force || !user_specified_args.contains(llvm_arg_to_arg_name(arg)) {
let s = CString::new(arg).unwrap();
llvm_args.push(s.as_ptr());
llvm_c_strs.push(s);
}
};
// Set the llvm "program name" to make usage and invalid argument messages more clear.
add("rustc -Cllvm-args=\"...\" with", true);
if sess.opts.unstable_opts.time_llvm_passes {
add("-time-passes", false);
}
if sess.opts.unstable_opts.print_llvm_passes {
add("-debug-pass=Structure", false);
}
if sess.target.generate_arange_section
&& !sess.opts.unstable_opts.no_generate_arange_section
{
add("-generate-arange-section", false);
}
match sess.opts.unstable_opts.merge_functions.unwrap_or(sess.target.merge_functions) {
MergeFunctions::Disabled | MergeFunctions::Trampolines => {}
MergeFunctions::Aliases => {
add("-mergefunc-use-aliases", false);
}
}
if wants_wasm_eh(sess) {
add("-wasm-enable-eh", false);
}
if sess.target.os == "emscripten" && sess.panic_strategy() == PanicStrategy::Unwind {
add("-enable-emscripten-cxx-exceptions", false);
}
// HACK(eddyb) LLVM inserts `llvm.assume` calls to preserve align attributes
// during inlining. Unfortunately these may block other optimizations.
add("-preserve-alignment-assumptions-during-inlining=false", false);
// Use non-zero `import-instr-limit` multiplier for cold callsites.
add("-import-cold-multiplier=0.1", false);
if sess.print_llvm_stats() {
add("-stats", false);
}
for arg in sess_args {
add(&(*arg), true);
}
}
if sess.opts.unstable_opts.llvm_time_trace {
unsafe { llvm::LLVMRustTimeTraceProfilerInitialize() };
}
rustc_llvm::initialize_available_targets();
unsafe { llvm::LLVMRustSetLLVMOptions(llvm_args.len() as c_int, llvm_args.as_ptr()) };
}
pub(crate) fn time_trace_profiler_finish(file_name: &Path) {
unsafe {
let file_name = path_to_c_string(file_name);
llvm::LLVMRustTimeTraceProfilerFinish(file_name.as_ptr());
}
}
enum TargetFeatureFoldStrength<'a> {
// The feature is only tied when enabling the feature, disabling
// this feature shouldn't disable the tied feature.
EnableOnly(&'a str),
// The feature is tied for both enabling and disabling this feature.
Both(&'a str),
}
impl<'a> TargetFeatureFoldStrength<'a> {
fn as_str(&self) -> &'a str {
match self {
TargetFeatureFoldStrength::EnableOnly(feat) => feat,
TargetFeatureFoldStrength::Both(feat) => feat,
}
}
}
pub(crate) struct LLVMFeature<'a> {
llvm_feature_name: &'a str,
dependency: Option<TargetFeatureFoldStrength<'a>>,
}
impl<'a> LLVMFeature<'a> {
fn new(llvm_feature_name: &'a str) -> Self {
Self { llvm_feature_name, dependency: None }
}
fn with_dependency(
llvm_feature_name: &'a str,
dependency: TargetFeatureFoldStrength<'a>,
) -> Self {
Self { llvm_feature_name, dependency: Some(dependency) }
}
fn contains(&self, feat: &str) -> bool {
self.iter().any(|dep| dep == feat)
}
fn iter(&'a self) -> impl Iterator<Item = &'a str> {
let dependencies = self.dependency.iter().map(|feat| feat.as_str());
std::iter::once(self.llvm_feature_name).chain(dependencies)
}
}
impl<'a> IntoIterator for LLVMFeature<'a> {
type Item = &'a str;
type IntoIter = impl Iterator<Item = &'a str>;
fn into_iter(self) -> Self::IntoIter {
let dependencies = self.dependency.into_iter().map(|feat| feat.as_str());
std::iter::once(self.llvm_feature_name).chain(dependencies)
}
}
// WARNING: the features after applying `to_llvm_features` must be known
// to LLVM or the feature detection code will walk past the end of the feature
// array, leading to crashes.
//
// To find a list of LLVM's names, see llvm-project/llvm/lib/Target/{ARCH}/*.td
// where `{ARCH}` is the architecture name. Look for instances of `SubtargetFeature`.
//
// Check the current rustc fork of LLVM in the repo at https://github.com/rust-lang/llvm-project/.
// The commit in use can be found via the `llvm-project` submodule in https://github.com/rust-lang/rust/tree/master/src
// Though note that Rust can also be build with an external precompiled version of LLVM
// which might lead to failures if the oldest tested / supported LLVM version
// doesn't yet support the relevant intrinsics
pub(crate) fn to_llvm_features<'a>(sess: &Session, s: &'a str) -> Option<LLVMFeature<'a>> {
let arch = if sess.target.arch == "x86_64" {
"x86"
} else if sess.target.arch == "arm64ec" {
"aarch64"
} else {
&*sess.target.arch
};
match (arch, s) {
("x86", "sse4.2") => Some(LLVMFeature::with_dependency(
"sse4.2",
TargetFeatureFoldStrength::EnableOnly("crc32"),
)),
("x86", "pclmulqdq") => Some(LLVMFeature::new("pclmul")),
("x86", "rdrand") => Some(LLVMFeature::new("rdrnd")),
("x86", "bmi1") => Some(LLVMFeature::new("bmi")),
("x86", "cmpxchg16b") => Some(LLVMFeature::new("cx16")),
("x86", "lahfsahf") => Some(LLVMFeature::new("sahf")),
("aarch64", "rcpc2") => Some(LLVMFeature::new("rcpc-immo")),
("aarch64", "dpb") => Some(LLVMFeature::new("ccpp")),
("aarch64", "dpb2") => Some(LLVMFeature::new("ccdp")),
("aarch64", "frintts") => Some(LLVMFeature::new("fptoint")),
("aarch64", "fcma") => Some(LLVMFeature::new("complxnum")),
("aarch64", "pmuv3") => Some(LLVMFeature::new("perfmon")),
("aarch64", "paca") => Some(LLVMFeature::new("pauth")),
("aarch64", "pacg") => Some(LLVMFeature::new("pauth")),
("aarch64", "sve-b16b16") => Some(LLVMFeature::new("b16b16")),
("aarch64", "flagm2") => Some(LLVMFeature::new("altnzcv")),
// Rust ties fp and neon together.
("aarch64", "neon") => {
Some(LLVMFeature::with_dependency("neon", TargetFeatureFoldStrength::Both("fp-armv8")))
}
// In LLVM neon implicitly enables fp, but we manually enable
// neon when a feature only implicitly enables fp
("aarch64", "fhm") => Some(LLVMFeature::new("fp16fml")),
("aarch64", "fp16") => Some(LLVMFeature::new("fullfp16")),
// Filter out features that are not supported by the current LLVM version
("aarch64", "faminmax") if get_version().0 < 18 => None,
("aarch64", "fp8") if get_version().0 < 18 => None,
("aarch64", "fp8dot2") if get_version().0 < 18 => None,
("aarch64", "fp8dot4") if get_version().0 < 18 => None,
("aarch64", "fp8fma") if get_version().0 < 18 => None,
("aarch64", "fpmr") if get_version().0 != 18 => None,
("aarch64", "lut") if get_version().0 < 18 => None,
("aarch64", "sme-f8f16") if get_version().0 < 18 => None,
("aarch64", "sme-f8f32") if get_version().0 < 18 => None,
("aarch64", "sme-fa64") if get_version().0 < 18 => None,
("aarch64", "sme-lutv2") if get_version().0 < 18 => None,
("aarch64", "ssve-fp8dot2") if get_version().0 < 18 => None,
("aarch64", "ssve-fp8dot4") if get_version().0 < 18 => None,
("aarch64", "ssve-fp8fma") if get_version().0 < 18 => None,
("aarch64", "v9.5a") if get_version().0 < 18 => None,
// In LLVM 18, `unaligned-scalar-mem` was merged with `unaligned-vector-mem` into a single feature called
// `fast-unaligned-access`. In LLVM 19, it was split back out.
("riscv32" | "riscv64", "unaligned-scalar-mem") if get_version().0 == 18 => {
Some(LLVMFeature::new("fast-unaligned-access"))
}
// For LLVM 18, enable the evex512 target feature if a avx512 target feature is enabled.
("x86", s) if get_version().0 >= 18 && s.starts_with("avx512") => {
Some(LLVMFeature::with_dependency(s, TargetFeatureFoldStrength::EnableOnly("evex512")))
}
(_, s) => Some(LLVMFeature::new(s)),
}
}
/// Given a map from target_features to whether they are enabled or disabled,
/// ensure only valid combinations are allowed.
pub(crate) fn check_tied_features(
sess: &Session,
features: &FxHashMap<&str, bool>,
) -> Option<&'static [&'static str]> {
if !features.is_empty() {
for tied in sess.target.tied_target_features() {
// Tied features must be set to the same value, or not set at all
let mut tied_iter = tied.iter();
let enabled = features.get(tied_iter.next().unwrap());
if tied_iter.any(|f| enabled != features.get(f)) {
return Some(tied);
}
}
}
return None;
}
/// Used to generate cfg variables and apply features
/// Must express features in the way Rust understands them
pub fn target_features(sess: &Session, allow_unstable: bool) -> Vec<Symbol> {
let mut features = vec![];
// Add base features for the target
let target_machine = create_informational_target_machine(sess, true);
features.extend(
sess.target
.supported_target_features()
.iter()
.filter(|(feature, _, _)| {
// skip checking special features, as LLVM may not understands them
if RUSTC_SPECIAL_FEATURES.contains(feature) {
return true;
}
// check that all features in a given smallvec are enabled
if let Some(feat) = to_llvm_features(sess, feature) {
for llvm_feature in feat {
let cstr = SmallCStr::new(llvm_feature);
if !unsafe { llvm::LLVMRustHasFeature(&target_machine, cstr.as_ptr()) } {
return false;
}
}
true
} else {
false
}
})
.map(|(feature, _, _)| Symbol::intern(feature)),
);
// Add enabled features
for (enabled, feature) in
sess.opts.cg.target_feature.split(',').filter_map(|s| match s.chars().next() {
Some('+') => Some((true, Symbol::intern(&s[1..]))),
Some('-') => Some((false, Symbol::intern(&s[1..]))),
_ => None,
})
{
if enabled {
features.extend(sess.target.implied_target_features(std::iter::once(feature)));
} else {
features.retain(|f| {
!sess.target.implied_target_features(std::iter::once(*f)).contains(&feature)
});
}
}
// Filter enabled features based on feature gates
sess.target
.supported_target_features()
.iter()
.filter_map(|&(feature, gate, _)| {
if sess.is_nightly_build() || allow_unstable || gate.is_stable() {
Some(feature)
} else {
None
}
})
.filter(|feature| {
RUSTC_SPECIAL_FEATURES.contains(feature) || features.contains(&Symbol::intern(feature))
})
.map(|feature| Symbol::intern(feature))
.collect()
}
pub(crate) fn print_version() {
let (major, minor, patch) = get_version();
println!("LLVM version: {major}.{minor}.{patch}");
}
pub(crate) fn get_version() -> (u32, u32, u32) {
// Can be called without initializing LLVM
unsafe {
(llvm::LLVMRustVersionMajor(), llvm::LLVMRustVersionMinor(), llvm::LLVMRustVersionPatch())
}
}
pub(crate) fn print_passes() {
// Can be called without initializing LLVM
unsafe {
llvm::LLVMRustPrintPasses();
}
}
fn llvm_target_features(tm: &llvm::TargetMachine) -> Vec<(&str, &str)> {
let len = unsafe { llvm::LLVMRustGetTargetFeaturesCount(tm) };
let mut ret = Vec::with_capacity(len);
for i in 0..len {
unsafe {
let mut feature = ptr::null();
let mut desc = ptr::null();
llvm::LLVMRustGetTargetFeature(tm, i, &mut feature, &mut desc);
if feature.is_null() || desc.is_null() {
bug!("LLVM returned a `null` target feature string");
}
let feature = CStr::from_ptr(feature).to_str().unwrap_or_else(|e| {
bug!("LLVM returned a non-utf8 feature string: {}", e);
});
let desc = CStr::from_ptr(desc).to_str().unwrap_or_else(|e| {
bug!("LLVM returned a non-utf8 feature string: {}", e);
});
ret.push((feature, desc));
}
}
ret
}
fn print_target_features(out: &mut String, sess: &Session, tm: &llvm::TargetMachine) {
let mut llvm_target_features = llvm_target_features(tm);
let mut known_llvm_target_features = FxHashSet::<&'static str>::default();
let mut rustc_target_features = sess
.target
.supported_target_features()
.iter()
.filter_map(|(feature, _gate, _implied)| {
// LLVM asserts that these are sorted. LLVM and Rust both use byte comparison for these strings.
let llvm_feature = to_llvm_features(sess, *feature)?.llvm_feature_name;
let desc =
match llvm_target_features.binary_search_by_key(&llvm_feature, |(f, _d)| f).ok() {
Some(index) => {
known_llvm_target_features.insert(llvm_feature);
llvm_target_features[index].1
}
None => "",
};
Some((*feature, desc))
})
.collect::<Vec<_>>();
// Since we add this at the end ...
rustc_target_features.extend_from_slice(&[(
"crt-static",
"Enables C Run-time Libraries to be statically linked",
)]);
// ... we need to sort the list again.
rustc_target_features.sort();
llvm_target_features.retain(|(f, _d)| !known_llvm_target_features.contains(f));
let max_feature_len = llvm_target_features
.iter()
.chain(rustc_target_features.iter())
.map(|(feature, _desc)| feature.len())
.max()
.unwrap_or(0);
writeln!(out, "Features supported by rustc for this target:").unwrap();
for (feature, desc) in &rustc_target_features {
writeln!(out, " {feature:max_feature_len$} - {desc}.").unwrap();
}
writeln!(out, "\nCode-generation features supported by LLVM for this target:").unwrap();
for (feature, desc) in &llvm_target_features {
writeln!(out, " {feature:max_feature_len$} - {desc}.").unwrap();
}
if llvm_target_features.is_empty() {
writeln!(out, " Target features listing is not supported by this LLVM version.")
.unwrap();
}
writeln!(out, "\nUse +feature to enable a feature, or -feature to disable it.").unwrap();
writeln!(out, "For example, rustc -C target-cpu=mycpu -C target-feature=+feature1,-feature2\n")
.unwrap();
writeln!(out, "Code-generation features cannot be used in cfg or #[target_feature],").unwrap();
writeln!(out, "and may be renamed or removed in a future version of LLVM or rustc.\n").unwrap();
}
pub(crate) fn print(req: &PrintRequest, mut out: &mut String, sess: &Session) {
require_inited();
let tm = create_informational_target_machine(sess, false);
match req.kind {
PrintKind::TargetCPUs => {
// SAFETY generate a C compatible string from a byte slice to pass
// the target CPU name into LLVM, the lifetime of the reference is
// at least as long as the C function
let cpu_cstring = CString::new(handle_native(sess.target.cpu.as_ref()))
.unwrap_or_else(|e| bug!("failed to convert to cstring: {}", e));
unsafe extern "C" fn callback(out: *mut c_void, string: *const c_char, len: usize) {
let out = unsafe { &mut *(out as *mut &mut String) };
let bytes = unsafe { slice::from_raw_parts(string as *const u8, len) };
write!(out, "{}", String::from_utf8_lossy(bytes)).unwrap();
}
unsafe {
llvm::LLVMRustPrintTargetCPUs(
&tm,
cpu_cstring.as_ptr(),
callback,
std::ptr::addr_of_mut!(out) as *mut c_void,
);
}
}
PrintKind::TargetFeatures => print_target_features(out, sess, &tm),
_ => bug!("rustc_codegen_llvm can't handle print request: {:?}", req),
}
}
fn handle_native(name: &str) -> &str {
if name != "native" {
return name;
}
unsafe {
let mut len = 0;
let ptr = llvm::LLVMRustGetHostCPUName(&mut len);
str::from_utf8(slice::from_raw_parts(ptr as *const u8, len)).unwrap()
}
}
pub(crate) fn target_cpu(sess: &Session) -> &str {
match sess.opts.cg.target_cpu {
Some(ref name) => handle_native(name),
None => handle_native(sess.target.cpu.as_ref()),
}
}
/// The list of LLVM features computed from CLI flags (`-Ctarget-cpu`, `-Ctarget-feature`,
/// `--target` and similar).
pub(crate) fn global_llvm_features(
sess: &Session,
diagnostics: bool,
only_base_features: bool,
) -> Vec<String> {
// Features that come earlier are overridden by conflicting features later in the string.
// Typically we'll want more explicit settings to override the implicit ones, so:
//
// * Features from -Ctarget-cpu=*; are overridden by [^1]
// * Features implied by --target; are overridden by
// * Features from -Ctarget-feature; are overridden by
// * function specific features.
//
// [^1]: target-cpu=native is handled here, other target-cpu values are handled implicitly
// through LLVM TargetMachine implementation.
//
// FIXME(nagisa): it isn't clear what's the best interaction between features implied by
// `-Ctarget-cpu` and `--target` are. On one hand, you'd expect CLI arguments to always
// override anything that's implicit, so e.g. when there's no `--target` flag, features implied
// the host target are overridden by `-Ctarget-cpu=*`. On the other hand, what about when both
// `--target` and `-Ctarget-cpu=*` are specified? Both then imply some target features and both
// flags are specified by the user on the CLI. It isn't as clear-cut which order of precedence
// should be taken in cases like these.
let mut features = vec![];
// -Ctarget-cpu=native
match sess.opts.cg.target_cpu {
Some(ref s) if s == "native" => {
let features_string = unsafe {
let ptr = llvm::LLVMGetHostCPUFeatures();
let features_string = if !ptr.is_null() {
CStr::from_ptr(ptr)
.to_str()
.unwrap_or_else(|e| {
bug!("LLVM returned a non-utf8 features string: {}", e);
})
.to_owned()
} else {
bug!("could not allocate host CPU features, LLVM returned a `null` string");
};
llvm::LLVMDisposeMessage(ptr);
features_string
};
features.extend(features_string.split(',').map(String::from));
}
Some(_) | None => {}
};
// Features implied by an implicit or explicit `--target`.
features.extend(
sess.target
.features
.split(',')
.filter(|v| !v.is_empty() && backend_feature_name(sess, v).is_some())
.map(String::from),
);
if wants_wasm_eh(sess) && sess.panic_strategy() == PanicStrategy::Unwind {
features.push("+exception-handling".into());
}
// -Ctarget-features
if !only_base_features {
let supported_features = sess.target.supported_target_features();
let (llvm_major, _, _) = get_version();
let mut featsmap = FxHashMap::default();
// insert implied features
let mut all_rust_features = vec![];
for feature in sess.opts.cg.target_feature.split(',') {
match feature.strip_prefix('+') {
Some(feature) => all_rust_features.extend(
UnordSet::from(
sess.target
.implied_target_features(std::iter::once(Symbol::intern(feature))),
)
.to_sorted_stable_ord()
.iter()
.map(|s| format!("+{}", s.as_str())),
),
_ => all_rust_features.push(feature.to_string()),
}
}
let feats = all_rust_features
.iter()
.filter_map(|s| {
let enable_disable = match s.chars().next() {
None => return None,
Some(c @ ('+' | '-')) => c,
Some(_) => {
if diagnostics {
sess.dcx().emit_warn(UnknownCTargetFeaturePrefix { feature: s });
}
return None;
}
};
let feature = backend_feature_name(sess, s)?;
// Warn against use of LLVM specific feature names and unstable features on the CLI.
if diagnostics {
let feature_state = supported_features.iter().find(|&&(v, _, _)| v == feature);
if feature_state.is_none() {
let rust_feature =
supported_features.iter().find_map(|&(rust_feature, _, _)| {
let llvm_features = to_llvm_features(sess, rust_feature)?;
if llvm_features.contains(feature)
&& !llvm_features.contains(rust_feature)
{
Some(rust_feature)
} else {
None
}
});
let unknown_feature = if let Some(rust_feature) = rust_feature {
UnknownCTargetFeature {
feature,
rust_feature: PossibleFeature::Some { rust_feature },
}
} else {
UnknownCTargetFeature { feature, rust_feature: PossibleFeature::None }
};
sess.dcx().emit_warn(unknown_feature);
} else if feature_state
.is_some_and(|(_name, feature_gate, _implied)| !feature_gate.is_stable())
{
// An unstable feature. Warn about using it.
sess.dcx().emit_warn(UnstableCTargetFeature { feature });
}
}
if diagnostics {
// FIXME(nagisa): figure out how to not allocate a full hashset here.
featsmap.insert(feature, enable_disable == '+');
}
// rustc-specific features do not get passed down to LLVM…
if RUSTC_SPECIFIC_FEATURES.contains(&feature) {
return None;
}
// if the target-feature is "backchain" and LLVM version is greater than 18
// then we also need to add "+backchain" to the target-features attribute.
// otherwise, we will only add the naked `backchain` attribute to the attribute-group.
if feature == "backchain" && llvm_major < 18 {
return None;
}
// ... otherwise though we run through `to_llvm_features` when
// passing requests down to LLVM. This means that all in-language
// features also work on the command line instead of having two
// different names when the LLVM name and the Rust name differ.
let llvm_feature = to_llvm_features(sess, feature)?;
Some(
std::iter::once(format!(
"{}{}",
enable_disable, llvm_feature.llvm_feature_name
))
.chain(llvm_feature.dependency.into_iter().filter_map(
move |feat| match (enable_disable, feat) {
('-' | '+', TargetFeatureFoldStrength::Both(f))
| ('+', TargetFeatureFoldStrength::EnableOnly(f)) => {
Some(format!("{enable_disable}{f}"))
}
_ => None,
},
)),
)
})
.flatten();
features.extend(feats);
if diagnostics && let Some(f) = check_tied_features(sess, &featsmap) {
sess.dcx().emit_err(TargetFeatureDisableOrEnable {
features: f,
span: None,
missing_features: None,
});
}
}
// -Zfixed-x18
if sess.opts.unstable_opts.fixed_x18 {
if sess.target.arch != "aarch64" {
sess.dcx().emit_fatal(FixedX18InvalidArch { arch: &sess.target.arch });
} else {
features.push("+reserve-x18".into());
}
}
features
}
/// Returns a feature name for the given `+feature` or `-feature` string.
///
/// Only allows features that are backend specific (i.e. not [`RUSTC_SPECIFIC_FEATURES`].)
fn backend_feature_name<'a>(sess: &Session, s: &'a str) -> Option<&'a str> {
// features must start with a `+` or `-`.
let feature = s
.strip_prefix(&['+', '-'][..])
.unwrap_or_else(|| sess.dcx().emit_fatal(InvalidTargetFeaturePrefix { feature: s }));
if s.is_empty() {
return None;
}
// Rustc-specific feature requests like `+crt-static` or `-crt-static`
// are not passed down to LLVM.
if RUSTC_SPECIFIC_FEATURES.contains(&feature) {
return None;
}
Some(feature)
}
pub(crate) fn tune_cpu(sess: &Session) -> Option<&str> {
let name = sess.opts.unstable_opts.tune_cpu.as_ref()?;
Some(handle_native(name))
}