David Wood 7b7061dd89 macros: spanless subdiagnostics from () fields
Type attributes could previously be used to support spanless
subdiagnostics but these couldn't easily be made optional in the same
way that spanned subdiagnostics could by using a field attribute on a
field with an `Option<Span>` type. Spanless subdiagnostics can now be
specified on fields with `()` type or `Option<()>` type.

Signed-off-by: David Wood <david.wood@huawei.com>
2022-05-12 07:21:51 +01:00

329 lines
11 KiB
Rust

use crate::diagnostics::error::{span_err, throw_span_err, SessionDiagnosticDeriveError};
use proc_macro::Span;
use proc_macro2::TokenStream;
use quote::{format_ident, quote, ToTokens};
use std::collections::BTreeSet;
use std::str::FromStr;
use syn::{spanned::Spanned, Attribute, Meta, Type, TypeTuple, Visibility};
use synstructure::BindingInfo;
/// Checks whether the type name of `ty` matches `name`.
///
/// Given some struct at `a::b::c::Foo`, this will return true for `c::Foo`, `b::c::Foo`, or
/// `a::b::c::Foo`. This reasonably allows qualified names to be used in the macro.
pub(crate) fn type_matches_path(ty: &Type, name: &[&str]) -> bool {
if let Type::Path(ty) = ty {
ty.path
.segments
.iter()
.map(|s| s.ident.to_string())
.rev()
.zip(name.iter().rev())
.all(|(x, y)| &x.as_str() == y)
} else {
false
}
}
/// Checks whether the type `ty` is `()`.
pub(crate) fn type_is_unit(ty: &Type) -> bool {
if let Type::Tuple(TypeTuple { elems, .. }) = ty { elems.is_empty() } else { false }
}
/// Reports a type error for field with `attr`.
pub(crate) fn report_type_error(
attr: &Attribute,
ty_name: &str,
) -> Result<!, SessionDiagnosticDeriveError> {
let name = attr.path.segments.last().unwrap().ident.to_string();
let meta = attr.parse_meta()?;
throw_span_err!(
attr.span().unwrap(),
&format!(
"the `#[{}{}]` attribute can only be applied to fields of type {}",
name,
match meta {
Meta::Path(_) => "",
Meta::NameValue(_) => " = ...",
Meta::List(_) => "(...)",
},
ty_name
)
);
}
/// Reports an error if the field's type does not match `path`.
fn report_error_if_not_applied_to_ty(
attr: &Attribute,
info: &FieldInfo<'_>,
path: &[&str],
ty_name: &str,
) -> Result<(), SessionDiagnosticDeriveError> {
if !type_matches_path(&info.ty, path) {
report_type_error(attr, ty_name)?;
}
Ok(())
}
/// Reports an error if the field's type is not `Applicability`.
pub(crate) fn report_error_if_not_applied_to_applicability(
attr: &Attribute,
info: &FieldInfo<'_>,
) -> Result<(), SessionDiagnosticDeriveError> {
report_error_if_not_applied_to_ty(
attr,
info,
&["rustc_errors", "Applicability"],
"`Applicability`",
)
}
/// Reports an error if the field's type is not `Span`.
pub(crate) fn report_error_if_not_applied_to_span(
attr: &Attribute,
info: &FieldInfo<'_>,
) -> Result<(), SessionDiagnosticDeriveError> {
report_error_if_not_applied_to_ty(attr, info, &["rustc_span", "Span"], "`Span`")
}
/// Inner type of a field and type of wrapper.
pub(crate) enum FieldInnerTy<'ty> {
/// Field is wrapped in a `Option<$inner>`.
Option(&'ty Type),
/// Field is wrapped in a `Vec<$inner>`.
Vec(&'ty Type),
/// Field isn't wrapped in an outer type.
None,
}
impl<'ty> FieldInnerTy<'ty> {
/// Returns inner type for a field, if there is one.
///
/// - If `ty` is an `Option`, returns `FieldInnerTy::Option { inner: (inner type) }`.
/// - If `ty` is a `Vec`, returns `FieldInnerTy::Vec { inner: (inner type) }`.
/// - Otherwise returns `None`.
pub(crate) fn from_type(ty: &'ty Type) -> Self {
let variant: &dyn Fn(&'ty Type) -> FieldInnerTy<'ty> =
if type_matches_path(ty, &["std", "option", "Option"]) {
&FieldInnerTy::Option
} else if type_matches_path(ty, &["std", "vec", "Vec"]) {
&FieldInnerTy::Vec
} else {
return FieldInnerTy::None;
};
if let Type::Path(ty_path) = ty {
let path = &ty_path.path;
let ty = path.segments.iter().last().unwrap();
if let syn::PathArguments::AngleBracketed(bracketed) = &ty.arguments {
if bracketed.args.len() == 1 {
if let syn::GenericArgument::Type(ty) = &bracketed.args[0] {
return variant(ty);
}
}
}
}
unreachable!();
}
/// Returns `Option` containing inner type if there is one.
pub(crate) fn inner_type(&self) -> Option<&'ty Type> {
match self {
FieldInnerTy::Option(inner) | FieldInnerTy::Vec(inner) => Some(inner),
FieldInnerTy::None => None,
}
}
/// Surrounds `inner` with destructured wrapper type, exposing inner type as `binding`.
pub(crate) fn with(&self, binding: impl ToTokens, inner: impl ToTokens) -> TokenStream {
match self {
FieldInnerTy::Option(..) => quote! {
if let Some(#binding) = #binding {
#inner
}
},
FieldInnerTy::Vec(..) => quote! {
for #binding in #binding {
#inner
}
},
FieldInnerTy::None => quote! { #inner },
}
}
}
/// Field information passed to the builder. Deliberately omits attrs to discourage the
/// `generate_*` methods from walking the attributes themselves.
pub(crate) struct FieldInfo<'a> {
pub(crate) vis: &'a Visibility,
pub(crate) binding: &'a BindingInfo<'a>,
pub(crate) ty: &'a Type,
pub(crate) span: &'a proc_macro2::Span,
}
/// Small helper trait for abstracting over `Option` fields that contain a value and a `Span`
/// for error reporting if they are set more than once.
pub(crate) trait SetOnce<T> {
fn set_once(&mut self, value: T);
}
impl<T> SetOnce<(T, Span)> for Option<(T, Span)> {
fn set_once(&mut self, (value, span): (T, Span)) {
match self {
None => {
*self = Some((value, span));
}
Some((_, prev_span)) => {
span_err(span, "specified multiple times")
.span_note(*prev_span, "previously specified here")
.emit();
}
}
}
}
pub(crate) trait HasFieldMap {
/// Returns the binding for the field with the given name, if it exists on the type.
fn get_field_binding(&self, field: &String) -> Option<&TokenStream>;
/// In the strings in the attributes supplied to this macro, we want callers to be able to
/// reference fields in the format string. For example:
///
/// ```ignore (not-usage-example)
/// /// Suggest `==` when users wrote `===`.
/// #[suggestion(slug = "parser-not-javascript-eq", code = "{lhs} == {rhs}")]
/// struct NotJavaScriptEq {
/// #[primary_span]
/// span: Span,
/// lhs: Ident,
/// rhs: Ident,
/// }
/// ```
///
/// We want to automatically pick up that `{lhs}` refers `self.lhs` and `{rhs}` refers to
/// `self.rhs`, then generate this call to `format!`:
///
/// ```ignore (not-usage-example)
/// format!("{lhs} == {rhs}", lhs = self.lhs, rhs = self.rhs)
/// ```
///
/// This function builds the entire call to `format!`.
fn build_format(&self, input: &str, span: proc_macro2::Span) -> TokenStream {
// This set is used later to generate the final format string. To keep builds reproducible,
// the iteration order needs to be deterministic, hence why we use a `BTreeSet` here
// instead of a `HashSet`.
let mut referenced_fields: BTreeSet<String> = BTreeSet::new();
// At this point, we can start parsing the format string.
let mut it = input.chars().peekable();
// Once the start of a format string has been found, process the format string and spit out
// the referenced fields. Leaves `it` sitting on the closing brace of the format string, so
// the next call to `it.next()` retrieves the next character.
while let Some(c) = it.next() {
if c == '{' && *it.peek().unwrap_or(&'\0') != '{' {
let mut eat_argument = || -> Option<String> {
let mut result = String::new();
// Format specifiers look like:
//
// format := '{' [ argument ] [ ':' format_spec ] '}' .
//
// Therefore, we only need to eat until ':' or '}' to find the argument.
while let Some(c) = it.next() {
result.push(c);
let next = *it.peek().unwrap_or(&'\0');
if next == '}' {
break;
} else if next == ':' {
// Eat the ':' character.
assert_eq!(it.next().unwrap(), ':');
break;
}
}
// Eat until (and including) the matching '}'
while it.next()? != '}' {
continue;
}
Some(result)
};
if let Some(referenced_field) = eat_argument() {
referenced_fields.insert(referenced_field);
}
}
}
// At this point, `referenced_fields` contains a set of the unique fields that were
// referenced in the format string. Generate the corresponding "x = self.x" format
// string parameters:
let args = referenced_fields.into_iter().map(|field: String| {
let field_ident = format_ident!("{}", field);
let value = match self.get_field_binding(&field) {
Some(value) => value.clone(),
// This field doesn't exist. Emit a diagnostic.
None => {
span_err(
span.unwrap(),
&format!("`{}` doesn't refer to a field on this type", field),
)
.emit();
quote! {
"{#field}"
}
}
};
quote! {
#field_ident = #value
}
});
quote! {
format!(#input #(,#args)*)
}
}
}
/// `Applicability` of a suggestion - mirrors `rustc_errors::Applicability` - and used to represent
/// the user's selection of applicability if specified in an attribute.
pub(crate) enum Applicability {
MachineApplicable,
MaybeIncorrect,
HasPlaceholders,
Unspecified,
}
impl FromStr for Applicability {
type Err = ();
fn from_str(s: &str) -> Result<Self, Self::Err> {
match s {
"machine-applicable" => Ok(Applicability::MachineApplicable),
"maybe-incorrect" => Ok(Applicability::MaybeIncorrect),
"has-placeholders" => Ok(Applicability::HasPlaceholders),
"unspecified" => Ok(Applicability::Unspecified),
_ => Err(()),
}
}
}
impl quote::ToTokens for Applicability {
fn to_tokens(&self, tokens: &mut TokenStream) {
tokens.extend(match self {
Applicability::MachineApplicable => {
quote! { rustc_errors::Applicability::MachineApplicable }
}
Applicability::MaybeIncorrect => {
quote! { rustc_errors::Applicability::MaybeIncorrect }
}
Applicability::HasPlaceholders => {
quote! { rustc_errors::Applicability::HasPlaceholders }
}
Applicability::Unspecified => {
quote! { rustc_errors::Applicability::Unspecified }
}
});
}
}