Scott McMurray 4630d1b23b Ban ArrayToPointer and MutToConstPointer from runtime MIR
Apparently MIR borrowck cares about at least one of these for checking variance.

In runtime MIR, though, there's no need for them as `PtrToPtr` does the same thing.

(Banning them simplifies passes like GVN that no longer need to handle multiple cast possibilities.)
2024-06-19 10:44:01 -07:00

1533 lines
67 KiB
Rust

//! Validates the MIR to ensure that invariants are upheld.
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_hir::LangItem;
use rustc_index::bit_set::BitSet;
use rustc_index::IndexVec;
use rustc_infer::traits::Reveal;
use rustc_middle::mir::coverage::CoverageKind;
use rustc_middle::mir::visit::{NonUseContext, PlaceContext, Visitor};
use rustc_middle::mir::*;
use rustc_middle::ty::adjustment::PointerCoercion;
use rustc_middle::ty::{
self, CoroutineArgsExt, InstanceKind, ParamEnv, ScalarInt, Ty, TyCtxt, TypeVisitableExt,
Variance,
};
use rustc_middle::{bug, span_bug};
use rustc_target::abi::{Size, FIRST_VARIANT};
use rustc_target::spec::abi::Abi;
use crate::util::is_within_packed;
use crate::util::relate_types;
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum EdgeKind {
Unwind,
Normal,
}
pub struct Validator {
/// Describes at which point in the pipeline this validation is happening.
pub when: String,
/// The phase for which we are upholding the dialect. If the given phase forbids a specific
/// element, this validator will now emit errors if that specific element is encountered.
/// Note that phases that change the dialect cause all *following* phases to check the
/// invariants of the new dialect. A phase that changes dialects never checks the new invariants
/// itself.
pub mir_phase: MirPhase,
}
impl<'tcx> MirPass<'tcx> for Validator {
fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
// FIXME(JakobDegen): These bodies never instantiated in codegend anyway, so it's not
// terribly important that they pass the validator. However, I think other passes might
// still see them, in which case they might be surprised. It would probably be better if we
// didn't put this through the MIR pipeline at all.
if matches!(body.source.instance, InstanceKind::Intrinsic(..) | InstanceKind::Virtual(..)) {
return;
}
let def_id = body.source.def_id();
let mir_phase = self.mir_phase;
let param_env = match mir_phase.reveal() {
Reveal::UserFacing => tcx.param_env(def_id),
Reveal::All => tcx.param_env_reveal_all_normalized(def_id),
};
let can_unwind = if mir_phase <= MirPhase::Runtime(RuntimePhase::Initial) {
// In this case `AbortUnwindingCalls` haven't yet been executed.
true
} else if !tcx.def_kind(def_id).is_fn_like() {
true
} else {
let body_ty = tcx.type_of(def_id).skip_binder();
let body_abi = match body_ty.kind() {
ty::FnDef(..) => body_ty.fn_sig(tcx).abi(),
ty::Closure(..) => Abi::RustCall,
ty::CoroutineClosure(..) => Abi::RustCall,
ty::Coroutine(..) => Abi::Rust,
// No need to do MIR validation on error bodies
ty::Error(_) => return,
_ => {
span_bug!(body.span, "unexpected body ty: {:?} phase {:?}", body_ty, mir_phase)
}
};
ty::layout::fn_can_unwind(tcx, Some(def_id), body_abi)
};
let mut cfg_checker = CfgChecker {
when: &self.when,
body,
tcx,
mir_phase,
unwind_edge_count: 0,
reachable_blocks: traversal::reachable_as_bitset(body),
value_cache: FxHashSet::default(),
can_unwind,
};
cfg_checker.visit_body(body);
cfg_checker.check_cleanup_control_flow();
// Also run the TypeChecker.
for (location, msg) in validate_types(tcx, self.mir_phase, param_env, body, body) {
cfg_checker.fail(location, msg);
}
if let MirPhase::Runtime(_) = body.phase {
if let ty::InstanceKind::Item(_) = body.source.instance {
if body.has_free_regions() {
cfg_checker.fail(
Location::START,
format!("Free regions in optimized {} MIR", body.phase.name()),
);
}
}
}
// Enforce that coroutine-closure layouts are identical.
if let Some(layout) = body.coroutine_layout_raw()
&& let Some(by_move_body) = body.coroutine_by_move_body()
&& let Some(by_move_layout) = by_move_body.coroutine_layout_raw()
{
// FIXME(async_closures): We could do other validation here?
if layout.variant_fields.len() != by_move_layout.variant_fields.len() {
cfg_checker.fail(
Location::START,
format!(
"Coroutine layout has different number of variant fields from \
by-move coroutine layout:\n\
layout: {layout:#?}\n\
by_move_layout: {by_move_layout:#?}",
),
);
}
}
}
}
struct CfgChecker<'a, 'tcx> {
when: &'a str,
body: &'a Body<'tcx>,
tcx: TyCtxt<'tcx>,
mir_phase: MirPhase,
unwind_edge_count: usize,
reachable_blocks: BitSet<BasicBlock>,
value_cache: FxHashSet<u128>,
// If `false`, then the MIR must not contain `UnwindAction::Continue` or
// `TerminatorKind::Resume`.
can_unwind: bool,
}
impl<'a, 'tcx> CfgChecker<'a, 'tcx> {
#[track_caller]
fn fail(&self, location: Location, msg: impl AsRef<str>) {
// We might see broken MIR when other errors have already occurred.
assert!(
self.tcx.dcx().has_errors().is_some(),
"broken MIR in {:?} ({}) at {:?}:\n{}",
self.body.source.instance,
self.when,
location,
msg.as_ref(),
);
}
fn check_edge(&mut self, location: Location, bb: BasicBlock, edge_kind: EdgeKind) {
if bb == START_BLOCK {
self.fail(location, "start block must not have predecessors")
}
if let Some(bb) = self.body.basic_blocks.get(bb) {
let src = self.body.basic_blocks.get(location.block).unwrap();
match (src.is_cleanup, bb.is_cleanup, edge_kind) {
// Non-cleanup blocks can jump to non-cleanup blocks along non-unwind edges
(false, false, EdgeKind::Normal)
// Cleanup blocks can jump to cleanup blocks along non-unwind edges
| (true, true, EdgeKind::Normal) => {}
// Non-cleanup blocks can jump to cleanup blocks along unwind edges
(false, true, EdgeKind::Unwind) => {
self.unwind_edge_count += 1;
}
// All other jumps are invalid
_ => {
self.fail(
location,
format!(
"{:?} edge to {:?} violates unwind invariants (cleanup {:?} -> {:?})",
edge_kind,
bb,
src.is_cleanup,
bb.is_cleanup,
)
)
}
}
} else {
self.fail(location, format!("encountered jump to invalid basic block {bb:?}"))
}
}
fn check_cleanup_control_flow(&self) {
if self.unwind_edge_count <= 1 {
return;
}
let doms = self.body.basic_blocks.dominators();
let mut post_contract_node = FxHashMap::default();
// Reusing the allocation across invocations of the closure
let mut dom_path = vec![];
let mut get_post_contract_node = |mut bb| {
let root = loop {
if let Some(root) = post_contract_node.get(&bb) {
break *root;
}
let parent = doms.immediate_dominator(bb).unwrap();
dom_path.push(bb);
if !self.body.basic_blocks[parent].is_cleanup {
break bb;
}
bb = parent;
};
for bb in dom_path.drain(..) {
post_contract_node.insert(bb, root);
}
root
};
let mut parent = IndexVec::from_elem(None, &self.body.basic_blocks);
for (bb, bb_data) in self.body.basic_blocks.iter_enumerated() {
if !bb_data.is_cleanup || !self.reachable_blocks.contains(bb) {
continue;
}
let bb = get_post_contract_node(bb);
for s in bb_data.terminator().successors() {
let s = get_post_contract_node(s);
if s == bb {
continue;
}
let parent = &mut parent[bb];
match parent {
None => {
*parent = Some(s);
}
Some(e) if *e == s => (),
Some(e) => self.fail(
Location { block: bb, statement_index: 0 },
format!(
"Cleanup control flow violation: The blocks dominated by {:?} have edges to both {:?} and {:?}",
bb,
s,
*e
)
),
}
}
}
// Check for cycles
let mut stack = FxHashSet::default();
for i in 0..parent.len() {
let mut bb = BasicBlock::from_usize(i);
stack.clear();
stack.insert(bb);
loop {
let Some(parent) = parent[bb].take() else { break };
let no_cycle = stack.insert(parent);
if !no_cycle {
self.fail(
Location { block: bb, statement_index: 0 },
format!(
"Cleanup control flow violation: Cycle involving edge {bb:?} -> {parent:?}",
),
);
break;
}
bb = parent;
}
}
}
fn check_unwind_edge(&mut self, location: Location, unwind: UnwindAction) {
let is_cleanup = self.body.basic_blocks[location.block].is_cleanup;
match unwind {
UnwindAction::Cleanup(unwind) => {
if is_cleanup {
self.fail(location, "`UnwindAction::Cleanup` in cleanup block");
}
self.check_edge(location, unwind, EdgeKind::Unwind);
}
UnwindAction::Continue => {
if is_cleanup {
self.fail(location, "`UnwindAction::Continue` in cleanup block");
}
if !self.can_unwind {
self.fail(location, "`UnwindAction::Continue` in no-unwind function");
}
}
UnwindAction::Terminate(UnwindTerminateReason::InCleanup) => {
if !is_cleanup {
self.fail(
location,
"`UnwindAction::Terminate(InCleanup)` in a non-cleanup block",
);
}
}
// These are allowed everywhere.
UnwindAction::Unreachable | UnwindAction::Terminate(UnwindTerminateReason::Abi) => (),
}
}
fn is_critical_call_edge(&self, target: Option<BasicBlock>, unwind: UnwindAction) -> bool {
let Some(target) = target else { return false };
matches!(unwind, UnwindAction::Cleanup(_) | UnwindAction::Terminate(_))
&& self.body.basic_blocks.predecessors()[target].len() > 1
}
}
impl<'a, 'tcx> Visitor<'tcx> for CfgChecker<'a, 'tcx> {
fn visit_local(&mut self, local: Local, _context: PlaceContext, location: Location) {
if self.body.local_decls.get(local).is_none() {
self.fail(
location,
format!("local {local:?} has no corresponding declaration in `body.local_decls`"),
);
}
}
fn visit_statement(&mut self, statement: &Statement<'tcx>, location: Location) {
match &statement.kind {
StatementKind::AscribeUserType(..) => {
if self.mir_phase >= MirPhase::Runtime(RuntimePhase::Initial) {
self.fail(
location,
"`AscribeUserType` should have been removed after drop lowering phase",
);
}
}
StatementKind::FakeRead(..) => {
if self.mir_phase >= MirPhase::Runtime(RuntimePhase::Initial) {
self.fail(
location,
"`FakeRead` should have been removed after drop lowering phase",
);
}
}
StatementKind::SetDiscriminant { .. } => {
if self.mir_phase < MirPhase::Runtime(RuntimePhase::Initial) {
self.fail(location, "`SetDiscriminant`is not allowed until deaggregation");
}
}
StatementKind::Deinit(..) => {
if self.mir_phase < MirPhase::Runtime(RuntimePhase::Initial) {
self.fail(location, "`Deinit`is not allowed until deaggregation");
}
}
StatementKind::Retag(kind, _) => {
// FIXME(JakobDegen) The validator should check that `self.mir_phase <
// DropsLowered`. However, this causes ICEs with generation of drop shims, which
// seem to fail to set their `MirPhase` correctly.
if matches!(kind, RetagKind::TwoPhase) {
self.fail(location, format!("explicit `{kind:?}` is forbidden"));
}
}
StatementKind::Coverage(kind) => {
if self.mir_phase >= MirPhase::Analysis(AnalysisPhase::PostCleanup)
&& let CoverageKind::BlockMarker { .. } | CoverageKind::SpanMarker { .. } = kind
{
self.fail(
location,
format!("{kind:?} should have been removed after analysis"),
);
}
}
StatementKind::Assign(..)
| StatementKind::StorageLive(_)
| StatementKind::StorageDead(_)
| StatementKind::Intrinsic(_)
| StatementKind::ConstEvalCounter
| StatementKind::PlaceMention(..)
| StatementKind::Nop => {}
}
self.super_statement(statement, location);
}
fn visit_terminator(&mut self, terminator: &Terminator<'tcx>, location: Location) {
match &terminator.kind {
TerminatorKind::Goto { target } => {
self.check_edge(location, *target, EdgeKind::Normal);
}
TerminatorKind::SwitchInt { targets, discr: _ } => {
for (_, target) in targets.iter() {
self.check_edge(location, target, EdgeKind::Normal);
}
self.check_edge(location, targets.otherwise(), EdgeKind::Normal);
self.value_cache.clear();
self.value_cache.extend(targets.iter().map(|(value, _)| value));
let has_duplicates = targets.iter().len() != self.value_cache.len();
if has_duplicates {
self.fail(
location,
format!(
"duplicated values in `SwitchInt` terminator: {:?}",
terminator.kind,
),
);
}
}
TerminatorKind::Drop { target, unwind, .. } => {
self.check_edge(location, *target, EdgeKind::Normal);
self.check_unwind_edge(location, *unwind);
}
TerminatorKind::Call { args, destination, target, unwind, .. } => {
if let Some(target) = target {
self.check_edge(location, *target, EdgeKind::Normal);
}
self.check_unwind_edge(location, *unwind);
// The code generation assumes that there are no critical call edges. The assumption
// is used to simplify inserting code that should be executed along the return edge
// from the call. FIXME(tmiasko): Since this is a strictly code generation concern,
// the code generation should be responsible for handling it.
if self.mir_phase >= MirPhase::Runtime(RuntimePhase::Optimized)
&& self.is_critical_call_edge(*target, *unwind)
{
self.fail(
location,
format!(
"encountered critical edge in `Call` terminator {:?}",
terminator.kind,
),
);
}
// The call destination place and Operand::Move place used as an argument might be
// passed by a reference to the callee. Consequently they cannot be packed.
if is_within_packed(self.tcx, &self.body.local_decls, *destination).is_some() {
// This is bad! The callee will expect the memory to be aligned.
self.fail(
location,
format!(
"encountered packed place in `Call` terminator destination: {:?}",
terminator.kind,
),
);
}
for arg in args {
if let Operand::Move(place) = &arg.node {
if is_within_packed(self.tcx, &self.body.local_decls, *place).is_some() {
// This is bad! The callee will expect the memory to be aligned.
self.fail(
location,
format!(
"encountered `Move` of a packed place in `Call` terminator: {:?}",
terminator.kind,
),
);
}
}
}
}
TerminatorKind::Assert { target, unwind, .. } => {
self.check_edge(location, *target, EdgeKind::Normal);
self.check_unwind_edge(location, *unwind);
}
TerminatorKind::Yield { resume, drop, .. } => {
if self.body.coroutine.is_none() {
self.fail(location, "`Yield` cannot appear outside coroutine bodies");
}
if self.mir_phase >= MirPhase::Runtime(RuntimePhase::Initial) {
self.fail(location, "`Yield` should have been replaced by coroutine lowering");
}
self.check_edge(location, *resume, EdgeKind::Normal);
if let Some(drop) = drop {
self.check_edge(location, *drop, EdgeKind::Normal);
}
}
TerminatorKind::FalseEdge { real_target, imaginary_target } => {
if self.mir_phase >= MirPhase::Runtime(RuntimePhase::Initial) {
self.fail(
location,
"`FalseEdge` should have been removed after drop elaboration",
);
}
self.check_edge(location, *real_target, EdgeKind::Normal);
self.check_edge(location, *imaginary_target, EdgeKind::Normal);
}
TerminatorKind::FalseUnwind { real_target, unwind } => {
if self.mir_phase >= MirPhase::Runtime(RuntimePhase::Initial) {
self.fail(
location,
"`FalseUnwind` should have been removed after drop elaboration",
);
}
self.check_edge(location, *real_target, EdgeKind::Normal);
self.check_unwind_edge(location, *unwind);
}
TerminatorKind::InlineAsm { targets, unwind, .. } => {
for &target in targets {
self.check_edge(location, target, EdgeKind::Normal);
}
self.check_unwind_edge(location, *unwind);
}
TerminatorKind::CoroutineDrop => {
if self.body.coroutine.is_none() {
self.fail(location, "`CoroutineDrop` cannot appear outside coroutine bodies");
}
if self.mir_phase >= MirPhase::Runtime(RuntimePhase::Initial) {
self.fail(
location,
"`CoroutineDrop` should have been replaced by coroutine lowering",
);
}
}
TerminatorKind::UnwindResume => {
let bb = location.block;
if !self.body.basic_blocks[bb].is_cleanup {
self.fail(location, "Cannot `UnwindResume` from non-cleanup basic block")
}
if !self.can_unwind {
self.fail(location, "Cannot `UnwindResume` in a function that cannot unwind")
}
}
TerminatorKind::UnwindTerminate(_) => {
let bb = location.block;
if !self.body.basic_blocks[bb].is_cleanup {
self.fail(location, "Cannot `UnwindTerminate` from non-cleanup basic block")
}
}
TerminatorKind::Return => {
let bb = location.block;
if self.body.basic_blocks[bb].is_cleanup {
self.fail(location, "Cannot `Return` from cleanup basic block")
}
}
TerminatorKind::Unreachable => {}
}
self.super_terminator(terminator, location);
}
fn visit_source_scope(&mut self, scope: SourceScope) {
if self.body.source_scopes.get(scope).is_none() {
self.tcx.dcx().span_bug(
self.body.span,
format!(
"broken MIR in {:?} ({}):\ninvalid source scope {:?}",
self.body.source.instance, self.when, scope,
),
);
}
}
}
/// A faster version of the validation pass that only checks those things which may break when
/// instantiating any generic parameters.
///
/// `caller_body` is used to detect cycles in MIR inlining and MIR validation before
/// `optimized_mir` is available.
pub fn validate_types<'tcx>(
tcx: TyCtxt<'tcx>,
mir_phase: MirPhase,
param_env: ty::ParamEnv<'tcx>,
body: &Body<'tcx>,
caller_body: &Body<'tcx>,
) -> Vec<(Location, String)> {
let mut type_checker =
TypeChecker { body, caller_body, tcx, param_env, mir_phase, failures: Vec::new() };
type_checker.visit_body(body);
type_checker.failures
}
struct TypeChecker<'a, 'tcx> {
body: &'a Body<'tcx>,
caller_body: &'a Body<'tcx>,
tcx: TyCtxt<'tcx>,
param_env: ParamEnv<'tcx>,
mir_phase: MirPhase,
failures: Vec<(Location, String)>,
}
impl<'a, 'tcx> TypeChecker<'a, 'tcx> {
fn fail(&mut self, location: Location, msg: impl Into<String>) {
self.failures.push((location, msg.into()));
}
/// Check if src can be assigned into dest.
/// This is not precise, it will accept some incorrect assignments.
fn mir_assign_valid_types(&self, src: Ty<'tcx>, dest: Ty<'tcx>) -> bool {
// Fast path before we normalize.
if src == dest {
// Equal types, all is good.
return true;
}
// We sometimes have to use `defining_opaque_types` for subtyping
// to succeed here and figuring out how exactly that should work
// is annoying. It is harmless enough to just not validate anything
// in that case. We still check this after analysis as all opaque
// types have been revealed at this point.
if (src, dest).has_opaque_types() {
return true;
}
// After borrowck subtyping should be fully explicit via
// `Subtype` projections.
let variance = if self.mir_phase >= MirPhase::Runtime(RuntimePhase::Initial) {
Variance::Invariant
} else {
Variance::Covariant
};
crate::util::relate_types(self.tcx, self.param_env, variance, src, dest)
}
}
impl<'a, 'tcx> Visitor<'tcx> for TypeChecker<'a, 'tcx> {
fn visit_operand(&mut self, operand: &Operand<'tcx>, location: Location) {
// This check is somewhat expensive, so only run it when -Zvalidate-mir is passed.
if self.tcx.sess.opts.unstable_opts.validate_mir
&& self.mir_phase < MirPhase::Runtime(RuntimePhase::Initial)
{
// `Operand::Copy` is only supposed to be used with `Copy` types.
if let Operand::Copy(place) = operand {
let ty = place.ty(&self.body.local_decls, self.tcx).ty;
if !ty.is_copy_modulo_regions(self.tcx, self.param_env) {
self.fail(location, format!("`Operand::Copy` with non-`Copy` type {ty}"));
}
}
}
self.super_operand(operand, location);
}
fn visit_projection_elem(
&mut self,
place_ref: PlaceRef<'tcx>,
elem: PlaceElem<'tcx>,
context: PlaceContext,
location: Location,
) {
match elem {
ProjectionElem::OpaqueCast(ty)
if self.mir_phase >= MirPhase::Runtime(RuntimePhase::Initial) =>
{
self.fail(
location,
format!("explicit opaque type cast to `{ty}` after `RevealAll`"),
)
}
ProjectionElem::Index(index) => {
let index_ty = self.body.local_decls[index].ty;
if index_ty != self.tcx.types.usize {
self.fail(location, format!("bad index ({index_ty:?} != usize)"))
}
}
ProjectionElem::Deref
if self.mir_phase >= MirPhase::Runtime(RuntimePhase::PostCleanup) =>
{
let base_ty = place_ref.ty(&self.body.local_decls, self.tcx).ty;
if base_ty.is_box() {
self.fail(
location,
format!("{base_ty:?} dereferenced after ElaborateBoxDerefs"),
)
}
}
ProjectionElem::Field(f, ty) => {
let parent_ty = place_ref.ty(&self.body.local_decls, self.tcx);
let fail_out_of_bounds = |this: &mut Self, location| {
this.fail(location, format!("Out of bounds field {f:?} for {parent_ty:?}"));
};
let check_equal = |this: &mut Self, location, f_ty| {
if !this.mir_assign_valid_types(ty, f_ty) {
this.fail(
location,
format!(
"Field projection `{place_ref:?}.{f:?}` specified type `{ty:?}`, but actual type is `{f_ty:?}`"
)
)
}
};
let kind = match parent_ty.ty.kind() {
&ty::Alias(ty::Opaque, ty::AliasTy { def_id, args, .. }) => {
self.tcx.type_of(def_id).instantiate(self.tcx, args).kind()
}
kind => kind,
};
match kind {
ty::Tuple(fields) => {
let Some(f_ty) = fields.get(f.as_usize()) else {
fail_out_of_bounds(self, location);
return;
};
check_equal(self, location, *f_ty);
}
ty::Adt(adt_def, args) => {
// see <https://github.com/rust-lang/rust/blob/7601adcc764d42c9f2984082b49948af652df986/compiler/rustc_middle/src/ty/layout.rs#L861-L864>
if self.tcx.is_lang_item(adt_def.did(), LangItem::DynMetadata) {
self.fail(
location,
format!(
"You can't project to field {f:?} of `DynMetadata` because \
layout is weird and thinks it doesn't have fields."
),
);
}
let var = parent_ty.variant_index.unwrap_or(FIRST_VARIANT);
let Some(field) = adt_def.variant(var).fields.get(f) else {
fail_out_of_bounds(self, location);
return;
};
check_equal(self, location, field.ty(self.tcx, args));
}
ty::Closure(_, args) => {
let args = args.as_closure();
let Some(&f_ty) = args.upvar_tys().get(f.as_usize()) else {
fail_out_of_bounds(self, location);
return;
};
check_equal(self, location, f_ty);
}
ty::CoroutineClosure(_, args) => {
let args = args.as_coroutine_closure();
let Some(&f_ty) = args.upvar_tys().get(f.as_usize()) else {
fail_out_of_bounds(self, location);
return;
};
check_equal(self, location, f_ty);
}
&ty::Coroutine(def_id, args) => {
let f_ty = if let Some(var) = parent_ty.variant_index {
// If we're currently validating an inlined copy of this body,
// then it will no longer be parameterized over the original
// args of the coroutine. Otherwise, we prefer to use this body
// since we may be in the process of computing this MIR in the
// first place.
let layout = if def_id == self.caller_body.source.def_id() {
// FIXME: This is not right for async closures.
self.caller_body.coroutine_layout_raw()
} else {
self.tcx.coroutine_layout(def_id, args.as_coroutine().kind_ty())
};
let Some(layout) = layout else {
self.fail(
location,
format!("No coroutine layout for {parent_ty:?}"),
);
return;
};
let Some(&local) = layout.variant_fields[var].get(f) else {
fail_out_of_bounds(self, location);
return;
};
let Some(f_ty) = layout.field_tys.get(local) else {
self.fail(
location,
format!("Out of bounds local {local:?} for {parent_ty:?}"),
);
return;
};
ty::EarlyBinder::bind(f_ty.ty).instantiate(self.tcx, args)
} else {
let Some(&f_ty) = args.as_coroutine().prefix_tys().get(f.index())
else {
fail_out_of_bounds(self, location);
return;
};
f_ty
};
check_equal(self, location, f_ty);
}
_ => {
self.fail(location, format!("{:?} does not have fields", parent_ty.ty));
}
}
}
ProjectionElem::Subtype(ty) => {
if !relate_types(
self.tcx,
self.param_env,
Variance::Covariant,
ty,
place_ref.ty(&self.body.local_decls, self.tcx).ty,
) {
self.fail(
location,
format!(
"Failed subtyping {ty:#?} and {:#?}",
place_ref.ty(&self.body.local_decls, self.tcx).ty
),
)
}
}
_ => {}
}
self.super_projection_elem(place_ref, elem, context, location);
}
fn visit_var_debug_info(&mut self, debuginfo: &VarDebugInfo<'tcx>) {
if let Some(box VarDebugInfoFragment { ty, ref projection }) = debuginfo.composite {
if ty.is_union() || ty.is_enum() {
self.fail(
START_BLOCK.start_location(),
format!("invalid type {ty:?} in debuginfo for {:?}", debuginfo.name),
);
}
if projection.is_empty() {
self.fail(
START_BLOCK.start_location(),
format!("invalid empty projection in debuginfo for {:?}", debuginfo.name),
);
}
if projection.iter().any(|p| !matches!(p, PlaceElem::Field(..))) {
self.fail(
START_BLOCK.start_location(),
format!(
"illegal projection {:?} in debuginfo for {:?}",
projection, debuginfo.name
),
);
}
}
match debuginfo.value {
VarDebugInfoContents::Const(_) => {}
VarDebugInfoContents::Place(place) => {
if place.projection.iter().any(|p| !p.can_use_in_debuginfo()) {
self.fail(
START_BLOCK.start_location(),
format!("illegal place {:?} in debuginfo for {:?}", place, debuginfo.name),
);
}
}
}
self.super_var_debug_info(debuginfo);
}
fn visit_place(&mut self, place: &Place<'tcx>, cntxt: PlaceContext, location: Location) {
// Set off any `bug!`s in the type computation code
let _ = place.ty(&self.body.local_decls, self.tcx);
if self.mir_phase >= MirPhase::Runtime(RuntimePhase::Initial)
&& place.projection.len() > 1
&& cntxt != PlaceContext::NonUse(NonUseContext::VarDebugInfo)
&& place.projection[1..].contains(&ProjectionElem::Deref)
{
self.fail(
location,
format!("place {place:?} has deref as a later projection (it is only permitted as the first projection)"),
);
}
// Ensure all downcast projections are followed by field projections.
let mut projections_iter = place.projection.iter();
while let Some(proj) = projections_iter.next() {
if matches!(proj, ProjectionElem::Downcast(..)) {
if !matches!(projections_iter.next(), Some(ProjectionElem::Field(..))) {
self.fail(
location,
format!(
"place {place:?} has `Downcast` projection not followed by `Field`"
),
);
}
}
}
self.super_place(place, cntxt, location);
}
fn visit_rvalue(&mut self, rvalue: &Rvalue<'tcx>, location: Location) {
macro_rules! check_kinds {
($t:expr, $text:literal, $typat:pat) => {
if !matches!(($t).kind(), $typat) {
self.fail(location, format!($text, $t));
}
};
}
match rvalue {
Rvalue::Use(_) | Rvalue::CopyForDeref(_) => {}
Rvalue::Aggregate(kind, fields) => match **kind {
AggregateKind::Tuple => {}
AggregateKind::Array(dest) => {
for src in fields {
if !self.mir_assign_valid_types(src.ty(self.body, self.tcx), dest) {
self.fail(location, "array field has the wrong type");
}
}
}
AggregateKind::Adt(def_id, idx, args, _, Some(field)) => {
let adt_def = self.tcx.adt_def(def_id);
assert!(adt_def.is_union());
assert_eq!(idx, FIRST_VARIANT);
let dest_ty = self.tcx.normalize_erasing_regions(
self.param_env,
adt_def.non_enum_variant().fields[field].ty(self.tcx, args),
);
if fields.len() == 1 {
let src_ty = fields.raw[0].ty(self.body, self.tcx);
if !self.mir_assign_valid_types(src_ty, dest_ty) {
self.fail(location, "union field has the wrong type");
}
} else {
self.fail(location, "unions should have one initialized field");
}
}
AggregateKind::Adt(def_id, idx, args, _, None) => {
let adt_def = self.tcx.adt_def(def_id);
assert!(!adt_def.is_union());
let variant = &adt_def.variants()[idx];
if variant.fields.len() != fields.len() {
self.fail(location, "adt has the wrong number of initialized fields");
}
for (src, dest) in std::iter::zip(fields, &variant.fields) {
let dest_ty = self
.tcx
.normalize_erasing_regions(self.param_env, dest.ty(self.tcx, args));
if !self.mir_assign_valid_types(src.ty(self.body, self.tcx), dest_ty) {
self.fail(location, "adt field has the wrong type");
}
}
}
AggregateKind::Closure(_, args) => {
let upvars = args.as_closure().upvar_tys();
if upvars.len() != fields.len() {
self.fail(location, "closure has the wrong number of initialized fields");
}
for (src, dest) in std::iter::zip(fields, upvars) {
if !self.mir_assign_valid_types(src.ty(self.body, self.tcx), dest) {
self.fail(location, "closure field has the wrong type");
}
}
}
AggregateKind::Coroutine(_, args) => {
let upvars = args.as_coroutine().upvar_tys();
if upvars.len() != fields.len() {
self.fail(location, "coroutine has the wrong number of initialized fields");
}
for (src, dest) in std::iter::zip(fields, upvars) {
if !self.mir_assign_valid_types(src.ty(self.body, self.tcx), dest) {
self.fail(location, "coroutine field has the wrong type");
}
}
}
AggregateKind::CoroutineClosure(_, args) => {
let upvars = args.as_coroutine_closure().upvar_tys();
if upvars.len() != fields.len() {
self.fail(
location,
"coroutine-closure has the wrong number of initialized fields",
);
}
for (src, dest) in std::iter::zip(fields, upvars) {
if !self.mir_assign_valid_types(src.ty(self.body, self.tcx), dest) {
self.fail(location, "coroutine-closure field has the wrong type");
}
}
}
AggregateKind::RawPtr(pointee_ty, mutability) => {
if !matches!(self.mir_phase, MirPhase::Runtime(_)) {
// It would probably be fine to support this in earlier phases,
// but at the time of writing it's only ever introduced from intrinsic lowering,
// so earlier things just `bug!` on it.
self.fail(location, "RawPtr should be in runtime MIR only");
}
if fields.len() != 2 {
self.fail(location, "raw pointer aggregate must have 2 fields");
} else {
let data_ptr_ty = fields.raw[0].ty(self.body, self.tcx);
let metadata_ty = fields.raw[1].ty(self.body, self.tcx);
if let ty::RawPtr(in_pointee, in_mut) = data_ptr_ty.kind() {
if *in_mut != mutability {
self.fail(location, "input and output mutability must match");
}
// FIXME: check `Thin` instead of `Sized`
if !in_pointee.is_sized(self.tcx, self.param_env) {
self.fail(location, "input pointer must be thin");
}
} else {
self.fail(
location,
"first operand to raw pointer aggregate must be a raw pointer",
);
}
// FIXME: Check metadata more generally
if pointee_ty.is_slice() {
if !self.mir_assign_valid_types(metadata_ty, self.tcx.types.usize) {
self.fail(location, "slice metadata must be usize");
}
} else if pointee_ty.is_sized(self.tcx, self.param_env) {
if metadata_ty != self.tcx.types.unit {
self.fail(location, "metadata for pointer-to-thin must be unit");
}
}
}
}
},
Rvalue::Ref(_, BorrowKind::Fake(_), _) => {
if self.mir_phase >= MirPhase::Runtime(RuntimePhase::Initial) {
self.fail(
location,
"`Assign` statement with a `Fake` borrow should have been removed in runtime MIR",
);
}
}
Rvalue::Ref(..) => {}
Rvalue::Len(p) => {
let pty = p.ty(&self.body.local_decls, self.tcx).ty;
check_kinds!(
pty,
"Cannot compute length of non-array type {:?}",
ty::Array(..) | ty::Slice(..)
);
}
Rvalue::BinaryOp(op, vals) => {
use BinOp::*;
let a = vals.0.ty(&self.body.local_decls, self.tcx);
let b = vals.1.ty(&self.body.local_decls, self.tcx);
if crate::util::binop_right_homogeneous(*op) {
if let Eq | Lt | Le | Ne | Ge | Gt = op {
// The function pointer types can have lifetimes
if !self.mir_assign_valid_types(a, b) {
self.fail(
location,
format!("Cannot {op:?} compare incompatible types {a:?} and {b:?}"),
);
}
} else if a != b {
self.fail(
location,
format!(
"Cannot perform binary op {op:?} on unequal types {a:?} and {b:?}"
),
);
}
}
match op {
Offset => {
check_kinds!(a, "Cannot offset non-pointer type {:?}", ty::RawPtr(..));
if b != self.tcx.types.isize && b != self.tcx.types.usize {
self.fail(location, format!("Cannot offset by non-isize type {b:?}"));
}
}
Eq | Lt | Le | Ne | Ge | Gt => {
for x in [a, b] {
check_kinds!(
x,
"Cannot {op:?} compare type {:?}",
ty::Bool
| ty::Char
| ty::Int(..)
| ty::Uint(..)
| ty::Float(..)
| ty::RawPtr(..)
| ty::FnPtr(..)
)
}
}
Cmp => {
for x in [a, b] {
check_kinds!(
x,
"Cannot three-way compare non-integer type {:?}",
ty::Char | ty::Uint(..) | ty::Int(..)
)
}
}
AddUnchecked | AddWithOverflow | SubUnchecked | SubWithOverflow
| MulUnchecked | MulWithOverflow | Shl | ShlUnchecked | Shr | ShrUnchecked => {
for x in [a, b] {
check_kinds!(
x,
"Cannot {op:?} non-integer type {:?}",
ty::Uint(..) | ty::Int(..)
)
}
}
BitAnd | BitOr | BitXor => {
for x in [a, b] {
check_kinds!(
x,
"Cannot perform bitwise op {op:?} on type {:?}",
ty::Uint(..) | ty::Int(..) | ty::Bool
)
}
}
Add | Sub | Mul | Div | Rem => {
for x in [a, b] {
check_kinds!(
x,
"Cannot perform arithmetic {op:?} on type {:?}",
ty::Uint(..) | ty::Int(..) | ty::Float(..)
)
}
}
}
}
Rvalue::UnaryOp(op, operand) => {
let a = operand.ty(&self.body.local_decls, self.tcx);
match op {
UnOp::Neg => {
check_kinds!(a, "Cannot negate type {:?}", ty::Int(..) | ty::Float(..))
}
UnOp::Not => {
check_kinds!(
a,
"Cannot binary not type {:?}",
ty::Int(..) | ty::Uint(..) | ty::Bool
);
}
UnOp::PtrMetadata => {
if !matches!(self.mir_phase, MirPhase::Runtime(_)) {
// It would probably be fine to support this in earlier phases,
// but at the time of writing it's only ever introduced from intrinsic lowering,
// so earlier things can just `bug!` on it.
self.fail(location, "PtrMetadata should be in runtime MIR only");
}
check_kinds!(a, "Cannot PtrMetadata non-pointer type {:?}", ty::RawPtr(..));
}
}
}
Rvalue::ShallowInitBox(operand, _) => {
let a = operand.ty(&self.body.local_decls, self.tcx);
check_kinds!(a, "Cannot shallow init type {:?}", ty::RawPtr(..));
}
Rvalue::Cast(kind, operand, target_type) => {
let op_ty = operand.ty(self.body, self.tcx);
match kind {
CastKind::DynStar => {
// FIXME(dyn-star): make sure nothing needs to be done here.
}
// FIXME: Add Checks for these
CastKind::PointerWithExposedProvenance | CastKind::PointerExposeProvenance => {}
CastKind::PointerCoercion(PointerCoercion::ReifyFnPointer) => {
// FIXME: check signature compatibility.
check_kinds!(
op_ty,
"CastKind::{kind:?} input must be a fn item, not {:?}",
ty::FnDef(..)
);
check_kinds!(
target_type,
"CastKind::{kind:?} output must be a fn pointer, not {:?}",
ty::FnPtr(..)
);
}
CastKind::PointerCoercion(PointerCoercion::UnsafeFnPointer) => {
// FIXME: check safety and signature compatibility.
check_kinds!(
op_ty,
"CastKind::{kind:?} input must be a fn pointer, not {:?}",
ty::FnPtr(..)
);
check_kinds!(
target_type,
"CastKind::{kind:?} output must be a fn pointer, not {:?}",
ty::FnPtr(..)
);
}
CastKind::PointerCoercion(PointerCoercion::ClosureFnPointer(..)) => {
// FIXME: check safety, captures, and signature compatibility.
check_kinds!(
op_ty,
"CastKind::{kind:?} input must be a closure, not {:?}",
ty::Closure(..)
);
check_kinds!(
target_type,
"CastKind::{kind:?} output must be a fn pointer, not {:?}",
ty::FnPtr(..)
);
}
CastKind::PointerCoercion(PointerCoercion::MutToConstPointer) => {
// FIXME: check same pointee?
check_kinds!(
op_ty,
"CastKind::{kind:?} input must be a raw mut pointer, not {:?}",
ty::RawPtr(_, Mutability::Mut)
);
check_kinds!(
target_type,
"CastKind::{kind:?} output must be a raw const pointer, not {:?}",
ty::RawPtr(_, Mutability::Not)
);
if self.mir_phase >= MirPhase::Analysis(AnalysisPhase::PostCleanup) {
self.fail(location, format!("After borrowck, MIR disallows {kind:?}"));
}
}
CastKind::PointerCoercion(PointerCoercion::ArrayToPointer) => {
// FIXME: Check pointee types
check_kinds!(
op_ty,
"CastKind::{kind:?} input must be a raw pointer, not {:?}",
ty::RawPtr(..)
);
check_kinds!(
target_type,
"CastKind::{kind:?} output must be a raw pointer, not {:?}",
ty::RawPtr(..)
);
if self.mir_phase >= MirPhase::Analysis(AnalysisPhase::PostCleanup) {
self.fail(location, format!("After borrowck, MIR disallows {kind:?}"));
}
}
CastKind::PointerCoercion(PointerCoercion::Unsize) => {
// This is used for all `CoerceUnsized` types,
// not just pointers/references, so is hard to check.
}
CastKind::IntToInt | CastKind::IntToFloat => {
let input_valid = op_ty.is_integral() || op_ty.is_char() || op_ty.is_bool();
let target_valid = target_type.is_numeric() || target_type.is_char();
if !input_valid || !target_valid {
self.fail(
location,
format!("Wrong cast kind {kind:?} for the type {op_ty}"),
);
}
}
CastKind::FnPtrToPtr => {
check_kinds!(
op_ty,
"CastKind::{kind:?} input must be a fn pointer, not {:?}",
ty::FnPtr(..)
);
check_kinds!(
target_type,
"CastKind::{kind:?} output must be a raw pointer, not {:?}",
ty::RawPtr(..)
);
}
CastKind::PtrToPtr => {
check_kinds!(
op_ty,
"CastKind::{kind:?} input must be a raw pointer, not {:?}",
ty::RawPtr(..)
);
check_kinds!(
target_type,
"CastKind::{kind:?} output must be a raw pointer, not {:?}",
ty::RawPtr(..)
);
}
CastKind::FloatToFloat | CastKind::FloatToInt => {
if !op_ty.is_floating_point() || !target_type.is_numeric() {
self.fail(
location,
format!(
"Trying to cast non 'Float' as {kind:?} into {target_type:?}"
),
);
}
}
CastKind::Transmute => {
if let MirPhase::Runtime(..) = self.mir_phase {
// Unlike `mem::transmute`, a MIR `Transmute` is well-formed
// for any two `Sized` types, just potentially UB to run.
if !self
.tcx
.normalize_erasing_regions(self.param_env, op_ty)
.is_sized(self.tcx, self.param_env)
{
self.fail(
location,
format!("Cannot transmute from non-`Sized` type {op_ty:?}"),
);
}
if !self
.tcx
.normalize_erasing_regions(self.param_env, *target_type)
.is_sized(self.tcx, self.param_env)
{
self.fail(
location,
format!("Cannot transmute to non-`Sized` type {target_type:?}"),
);
}
} else {
self.fail(
location,
format!(
"Transmute is not supported in non-runtime phase {:?}.",
self.mir_phase
),
);
}
}
}
}
Rvalue::NullaryOp(NullOp::OffsetOf(indices), container) => {
let fail_out_of_bounds = |this: &mut Self, location, field, ty| {
this.fail(location, format!("Out of bounds field {field:?} for {ty:?}"));
};
let mut current_ty = *container;
for (variant, field) in indices.iter() {
match current_ty.kind() {
ty::Tuple(fields) => {
if variant != FIRST_VARIANT {
self.fail(
location,
format!("tried to get variant {variant:?} of tuple"),
);
return;
}
let Some(&f_ty) = fields.get(field.as_usize()) else {
fail_out_of_bounds(self, location, field, current_ty);
return;
};
current_ty = self.tcx.normalize_erasing_regions(self.param_env, f_ty);
}
ty::Adt(adt_def, args) => {
let Some(field) = adt_def.variant(variant).fields.get(field) else {
fail_out_of_bounds(self, location, field, current_ty);
return;
};
let f_ty = field.ty(self.tcx, args);
current_ty = self.tcx.normalize_erasing_regions(self.param_env, f_ty);
}
_ => {
self.fail(
location,
format!("Cannot get offset ({variant:?}, {field:?}) from type {current_ty:?}"),
);
return;
}
}
}
}
Rvalue::Repeat(_, _)
| Rvalue::ThreadLocalRef(_)
| Rvalue::AddressOf(_, _)
| Rvalue::NullaryOp(NullOp::SizeOf | NullOp::AlignOf | NullOp::UbChecks, _)
| Rvalue::Discriminant(_) => {}
}
self.super_rvalue(rvalue, location);
}
fn visit_statement(&mut self, statement: &Statement<'tcx>, location: Location) {
match &statement.kind {
StatementKind::Assign(box (dest, rvalue)) => {
// LHS and RHS of the assignment must have the same type.
let left_ty = dest.ty(&self.body.local_decls, self.tcx).ty;
let right_ty = rvalue.ty(&self.body.local_decls, self.tcx);
if !self.mir_assign_valid_types(right_ty, left_ty) {
self.fail(
location,
format!(
"encountered `{:?}` with incompatible types:\n\
left-hand side has type: {}\n\
right-hand side has type: {}",
statement.kind, left_ty, right_ty,
),
);
}
if let Rvalue::CopyForDeref(place) = rvalue {
if place.ty(&self.body.local_decls, self.tcx).ty.builtin_deref(true).is_none() {
self.fail(
location,
"`CopyForDeref` should only be used for dereferenceable types",
)
}
}
}
StatementKind::AscribeUserType(..) => {
if self.mir_phase >= MirPhase::Runtime(RuntimePhase::Initial) {
self.fail(
location,
"`AscribeUserType` should have been removed after drop lowering phase",
);
}
}
StatementKind::FakeRead(..) => {
if self.mir_phase >= MirPhase::Runtime(RuntimePhase::Initial) {
self.fail(
location,
"`FakeRead` should have been removed after drop lowering phase",
);
}
}
StatementKind::Intrinsic(box NonDivergingIntrinsic::Assume(op)) => {
let ty = op.ty(&self.body.local_decls, self.tcx);
if !ty.is_bool() {
self.fail(
location,
format!("`assume` argument must be `bool`, but got: `{ty}`"),
);
}
}
StatementKind::Intrinsic(box NonDivergingIntrinsic::CopyNonOverlapping(
CopyNonOverlapping { src, dst, count },
)) => {
let src_ty = src.ty(&self.body.local_decls, self.tcx);
let op_src_ty = if let Some(src_deref) = src_ty.builtin_deref(true) {
src_deref
} else {
self.fail(
location,
format!("Expected src to be ptr in copy_nonoverlapping, got: {src_ty}"),
);
return;
};
let dst_ty = dst.ty(&self.body.local_decls, self.tcx);
let op_dst_ty = if let Some(dst_deref) = dst_ty.builtin_deref(true) {
dst_deref
} else {
self.fail(
location,
format!("Expected dst to be ptr in copy_nonoverlapping, got: {dst_ty}"),
);
return;
};
// since CopyNonOverlapping is parametrized by 1 type,
// we only need to check that they are equal and not keep an extra parameter.
if !self.mir_assign_valid_types(op_src_ty, op_dst_ty) {
self.fail(location, format!("bad arg ({op_src_ty:?} != {op_dst_ty:?})"));
}
let op_cnt_ty = count.ty(&self.body.local_decls, self.tcx);
if op_cnt_ty != self.tcx.types.usize {
self.fail(location, format!("bad arg ({op_cnt_ty:?} != usize)"))
}
}
StatementKind::SetDiscriminant { place, .. } => {
if self.mir_phase < MirPhase::Runtime(RuntimePhase::Initial) {
self.fail(location, "`SetDiscriminant`is not allowed until deaggregation");
}
let pty = place.ty(&self.body.local_decls, self.tcx).ty.kind();
if !matches!(pty, ty::Adt(..) | ty::Coroutine(..) | ty::Alias(ty::Opaque, ..)) {
self.fail(
location,
format!(
"`SetDiscriminant` is only allowed on ADTs and coroutines, not {pty:?}"
),
);
}
}
StatementKind::Deinit(..) => {
if self.mir_phase < MirPhase::Runtime(RuntimePhase::Initial) {
self.fail(location, "`Deinit`is not allowed until deaggregation");
}
}
StatementKind::Retag(kind, _) => {
// FIXME(JakobDegen) The validator should check that `self.mir_phase <
// DropsLowered`. However, this causes ICEs with generation of drop shims, which
// seem to fail to set their `MirPhase` correctly.
if matches!(kind, RetagKind::TwoPhase) {
self.fail(location, format!("explicit `{kind:?}` is forbidden"));
}
}
StatementKind::StorageLive(_)
| StatementKind::StorageDead(_)
| StatementKind::Coverage(_)
| StatementKind::ConstEvalCounter
| StatementKind::PlaceMention(..)
| StatementKind::Nop => {}
}
self.super_statement(statement, location);
}
fn visit_terminator(&mut self, terminator: &Terminator<'tcx>, location: Location) {
match &terminator.kind {
TerminatorKind::SwitchInt { targets, discr } => {
let switch_ty = discr.ty(&self.body.local_decls, self.tcx);
let target_width = self.tcx.sess.target.pointer_width;
let size = Size::from_bits(match switch_ty.kind() {
ty::Uint(uint) => uint.normalize(target_width).bit_width().unwrap(),
ty::Int(int) => int.normalize(target_width).bit_width().unwrap(),
ty::Char => 32,
ty::Bool => 1,
other => bug!("unhandled type: {:?}", other),
});
for (value, _) in targets.iter() {
if ScalarInt::try_from_uint(value, size).is_none() {
self.fail(
location,
format!("the value {value:#x} is not a proper {switch_ty:?}"),
)
}
}
}
TerminatorKind::Call { func, .. } => {
let func_ty = func.ty(&self.body.local_decls, self.tcx);
match func_ty.kind() {
ty::FnPtr(..) | ty::FnDef(..) => {}
_ => self.fail(
location,
format!("encountered non-callable type {func_ty} in `Call` terminator"),
),
}
}
TerminatorKind::Assert { cond, .. } => {
let cond_ty = cond.ty(&self.body.local_decls, self.tcx);
if cond_ty != self.tcx.types.bool {
self.fail(
location,
format!(
"encountered non-boolean condition of type {cond_ty} in `Assert` terminator"
),
);
}
}
TerminatorKind::Goto { .. }
| TerminatorKind::Drop { .. }
| TerminatorKind::Yield { .. }
| TerminatorKind::FalseEdge { .. }
| TerminatorKind::FalseUnwind { .. }
| TerminatorKind::InlineAsm { .. }
| TerminatorKind::CoroutineDrop
| TerminatorKind::UnwindResume
| TerminatorKind::UnwindTerminate(_)
| TerminatorKind::Return
| TerminatorKind::Unreachable => {}
}
self.super_terminator(terminator, location);
}
}