mirror of
				https://github.com/rust-lang/rust.git
				synced 2025-10-31 04:57:19 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			745 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			745 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
| /// GCC requires to use the same toolchain for the whole compilation when doing LTO.
 | |
| /// So, we need the same version/commit of the linker (gcc) and lto front-end binaries (lto1,
 | |
| /// lto-wrapper, liblto_plugin.so).
 | |
| // FIXME(antoyo): the executables compiled with LTO are bigger than those compiled without LTO.
 | |
| // Since it is the opposite for cg_llvm, check if this is normal.
 | |
| //
 | |
| // Maybe we embed the bitcode in the final binary?
 | |
| // It doesn't look like we try to generate fat objects for the final binary.
 | |
| // Check if the way we combine the object files make it keep the LTO sections on the final link.
 | |
| // Maybe that's because the combined object files contain the IR (true) and the final link
 | |
| // does not remove it?
 | |
| //
 | |
| // TODO(antoyo): for performance, check which optimizations the C++ frontend enables.
 | |
| //
 | |
| // Fix these warnings:
 | |
| // /usr/bin/ld: warning: type of symbol `_RNvNvNvNtCs5JWOrf9uCus_5rayon11thread_pool19WORKER_THREAD_STATE7___getit5___KEY' changed from 1 to 6 in /tmp/ccKeUSiR.ltrans0.ltrans.o
 | |
| // /usr/bin/ld: warning: type of symbol `_RNvNvNvNvNtNtNtCsAj5i4SGTR7_3std4sync4mpmc5waker17current_thread_id5DUMMY7___getit5___KEY' changed from 1 to 6 in /tmp/ccKeUSiR.ltrans0.ltrans.o
 | |
| // /usr/bin/ld: warning: incremental linking of LTO and non-LTO objects; using -flinker-output=nolto-rel which will bypass whole program optimization
 | |
| use std::ffi::{CStr, CString};
 | |
| use std::fs::{self, File};
 | |
| use std::path::{Path, PathBuf};
 | |
| use std::sync::Arc;
 | |
| 
 | |
| use gccjit::{Context, OutputKind};
 | |
| use object::read::archive::ArchiveFile;
 | |
| use rustc_codegen_ssa::back::lto::{LtoModuleCodegen, SerializedModule, ThinModule, ThinShared};
 | |
| use rustc_codegen_ssa::back::symbol_export;
 | |
| use rustc_codegen_ssa::back::write::{CodegenContext, FatLtoInput};
 | |
| use rustc_codegen_ssa::traits::*;
 | |
| use rustc_codegen_ssa::{looks_like_rust_object_file, ModuleCodegen, ModuleKind};
 | |
| use rustc_data_structures::memmap::Mmap;
 | |
| use rustc_errors::{DiagCtxtHandle, FatalError};
 | |
| use rustc_hir::def_id::LOCAL_CRATE;
 | |
| use rustc_middle::bug;
 | |
| use rustc_middle::dep_graph::WorkProduct;
 | |
| use rustc_middle::middle::exported_symbols::{SymbolExportInfo, SymbolExportLevel};
 | |
| use rustc_session::config::{CrateType, Lto};
 | |
| use tempfile::{tempdir, TempDir};
 | |
| 
 | |
| use crate::back::write::save_temp_bitcode;
 | |
| use crate::errors::{DynamicLinkingWithLTO, LtoBitcodeFromRlib, LtoDisallowed, LtoDylib};
 | |
| use crate::{to_gcc_opt_level, GccCodegenBackend, GccContext, SyncContext};
 | |
| 
 | |
| /// We keep track of the computed LTO cache keys from the previous
 | |
| /// session to determine which CGUs we can reuse.
 | |
| //pub const THIN_LTO_KEYS_INCR_COMP_FILE_NAME: &str = "thin-lto-past-keys.bin";
 | |
| 
 | |
| pub fn crate_type_allows_lto(crate_type: CrateType) -> bool {
 | |
|     match crate_type {
 | |
|         CrateType::Executable | CrateType::Dylib | CrateType::Staticlib | CrateType::Cdylib => true,
 | |
|         CrateType::Rlib | CrateType::ProcMacro => false,
 | |
|     }
 | |
| }
 | |
| 
 | |
| struct LtoData {
 | |
|     // TODO(antoyo): use symbols_below_threshold.
 | |
|     //symbols_below_threshold: Vec<CString>,
 | |
|     upstream_modules: Vec<(SerializedModule<ModuleBuffer>, CString)>,
 | |
|     tmp_path: TempDir,
 | |
| }
 | |
| 
 | |
| fn prepare_lto(
 | |
|     cgcx: &CodegenContext<GccCodegenBackend>,
 | |
|     dcx: DiagCtxtHandle<'_>,
 | |
| ) -> Result<LtoData, FatalError> {
 | |
|     let export_threshold = match cgcx.lto {
 | |
|         // We're just doing LTO for our one crate
 | |
|         Lto::ThinLocal => SymbolExportLevel::Rust,
 | |
| 
 | |
|         // We're doing LTO for the entire crate graph
 | |
|         Lto::Fat | Lto::Thin => symbol_export::crates_export_threshold(&cgcx.crate_types),
 | |
| 
 | |
|         Lto::No => panic!("didn't request LTO but we're doing LTO"),
 | |
|     };
 | |
| 
 | |
|     let tmp_path = match tempdir() {
 | |
|         Ok(tmp_path) => tmp_path,
 | |
|         Err(error) => {
 | |
|             eprintln!("Cannot create temporary directory: {}", error);
 | |
|             return Err(FatalError);
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     let symbol_filter = &|&(ref name, info): &(String, SymbolExportInfo)| {
 | |
|         if info.level.is_below_threshold(export_threshold) || info.used {
 | |
|             Some(CString::new(name.as_str()).unwrap())
 | |
|         } else {
 | |
|             None
 | |
|         }
 | |
|     };
 | |
|     let exported_symbols = cgcx.exported_symbols.as_ref().expect("needs exported symbols for LTO");
 | |
|     let mut symbols_below_threshold = {
 | |
|         let _timer = cgcx.prof.generic_activity("GCC_lto_generate_symbols_below_threshold");
 | |
|         exported_symbols[&LOCAL_CRATE].iter().filter_map(symbol_filter).collect::<Vec<CString>>()
 | |
|     };
 | |
|     info!("{} symbols to preserve in this crate", symbols_below_threshold.len());
 | |
| 
 | |
|     // If we're performing LTO for the entire crate graph, then for each of our
 | |
|     // upstream dependencies, find the corresponding rlib and load the bitcode
 | |
|     // from the archive.
 | |
|     //
 | |
|     // We save off all the bytecode and GCC module file path for later processing
 | |
|     // with either fat or thin LTO
 | |
|     let mut upstream_modules = Vec::new();
 | |
|     if cgcx.lto != Lto::ThinLocal {
 | |
|         // Make sure we actually can run LTO
 | |
|         for crate_type in cgcx.crate_types.iter() {
 | |
|             if !crate_type_allows_lto(*crate_type) {
 | |
|                 dcx.emit_err(LtoDisallowed);
 | |
|                 return Err(FatalError);
 | |
|             }
 | |
|             if *crate_type == CrateType::Dylib && !cgcx.opts.unstable_opts.dylib_lto {
 | |
|                 dcx.emit_err(LtoDylib);
 | |
|                 return Err(FatalError);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if cgcx.opts.cg.prefer_dynamic && !cgcx.opts.unstable_opts.dylib_lto {
 | |
|             dcx.emit_err(DynamicLinkingWithLTO);
 | |
|             return Err(FatalError);
 | |
|         }
 | |
| 
 | |
|         for &(cnum, ref path) in cgcx.each_linked_rlib_for_lto.iter() {
 | |
|             let exported_symbols =
 | |
|                 cgcx.exported_symbols.as_ref().expect("needs exported symbols for LTO");
 | |
|             {
 | |
|                 let _timer = cgcx.prof.generic_activity("GCC_lto_generate_symbols_below_threshold");
 | |
|                 symbols_below_threshold
 | |
|                     .extend(exported_symbols[&cnum].iter().filter_map(symbol_filter));
 | |
|             }
 | |
| 
 | |
|             let archive_data = unsafe {
 | |
|                 Mmap::map(File::open(path).expect("couldn't open rlib")).expect("couldn't map rlib")
 | |
|             };
 | |
|             let archive = ArchiveFile::parse(&*archive_data).expect("wanted an rlib");
 | |
|             let obj_files = archive
 | |
|                 .members()
 | |
|                 .filter_map(|child| {
 | |
|                     child.ok().and_then(|c| {
 | |
|                         std::str::from_utf8(c.name()).ok().map(|name| (name.trim(), c))
 | |
|                     })
 | |
|                 })
 | |
|                 .filter(|&(name, _)| looks_like_rust_object_file(name));
 | |
|             for (name, child) in obj_files {
 | |
|                 info!("adding bitcode from {}", name);
 | |
|                 let path = tmp_path.path().join(name);
 | |
|                 match save_as_file(child.data(&*archive_data).expect("corrupt rlib"), &path) {
 | |
|                     Ok(()) => {
 | |
|                         let buffer = ModuleBuffer::new(path);
 | |
|                         let module = SerializedModule::Local(buffer);
 | |
|                         upstream_modules.push((module, CString::new(name).unwrap()));
 | |
|                     }
 | |
|                     Err(e) => {
 | |
|                         dcx.emit_err(e);
 | |
|                         return Err(FatalError);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     Ok(LtoData {
 | |
|         //symbols_below_threshold,
 | |
|         upstream_modules,
 | |
|         tmp_path,
 | |
|     })
 | |
| }
 | |
| 
 | |
| fn save_as_file(obj: &[u8], path: &Path) -> Result<(), LtoBitcodeFromRlib> {
 | |
|     fs::write(path, obj).map_err(|error| LtoBitcodeFromRlib {
 | |
|         gcc_err: format!("write object file to temp dir: {}", error),
 | |
|     })
 | |
| }
 | |
| 
 | |
| /// Performs fat LTO by merging all modules into a single one and returning it
 | |
| /// for further optimization.
 | |
| pub(crate) fn run_fat(
 | |
|     cgcx: &CodegenContext<GccCodegenBackend>,
 | |
|     modules: Vec<FatLtoInput<GccCodegenBackend>>,
 | |
|     cached_modules: Vec<(SerializedModule<ModuleBuffer>, WorkProduct)>,
 | |
| ) -> Result<LtoModuleCodegen<GccCodegenBackend>, FatalError> {
 | |
|     let dcx = cgcx.create_dcx();
 | |
|     let dcx = dcx.handle();
 | |
|     let lto_data = prepare_lto(cgcx, dcx)?;
 | |
|     /*let symbols_below_threshold =
 | |
|     lto_data.symbols_below_threshold.iter().map(|c| c.as_ptr()).collect::<Vec<_>>();*/
 | |
|     fat_lto(
 | |
|         cgcx,
 | |
|         dcx,
 | |
|         modules,
 | |
|         cached_modules,
 | |
|         lto_data.upstream_modules,
 | |
|         lto_data.tmp_path,
 | |
|         //&symbols_below_threshold,
 | |
|     )
 | |
| }
 | |
| 
 | |
| fn fat_lto(
 | |
|     cgcx: &CodegenContext<GccCodegenBackend>,
 | |
|     _dcx: DiagCtxtHandle<'_>,
 | |
|     modules: Vec<FatLtoInput<GccCodegenBackend>>,
 | |
|     cached_modules: Vec<(SerializedModule<ModuleBuffer>, WorkProduct)>,
 | |
|     mut serialized_modules: Vec<(SerializedModule<ModuleBuffer>, CString)>,
 | |
|     tmp_path: TempDir,
 | |
|     //symbols_below_threshold: &[*const libc::c_char],
 | |
| ) -> Result<LtoModuleCodegen<GccCodegenBackend>, FatalError> {
 | |
|     let _timer = cgcx.prof.generic_activity("GCC_fat_lto_build_monolithic_module");
 | |
|     info!("going for a fat lto");
 | |
| 
 | |
|     // Sort out all our lists of incoming modules into two lists.
 | |
|     //
 | |
|     // * `serialized_modules` (also and argument to this function) contains all
 | |
|     //   modules that are serialized in-memory.
 | |
|     // * `in_memory` contains modules which are already parsed and in-memory,
 | |
|     //   such as from multi-CGU builds.
 | |
|     //
 | |
|     // All of `cached_modules` (cached from previous incremental builds) can
 | |
|     // immediately go onto the `serialized_modules` modules list and then we can
 | |
|     // split the `modules` array into these two lists.
 | |
|     let mut in_memory = Vec::new();
 | |
|     serialized_modules.extend(cached_modules.into_iter().map(|(buffer, wp)| {
 | |
|         info!("pushing cached module {:?}", wp.cgu_name);
 | |
|         (buffer, CString::new(wp.cgu_name).unwrap())
 | |
|     }));
 | |
|     for module in modules {
 | |
|         match module {
 | |
|             FatLtoInput::InMemory(m) => in_memory.push(m),
 | |
|             FatLtoInput::Serialized { name, buffer } => {
 | |
|                 info!("pushing serialized module {:?}", name);
 | |
|                 let buffer = SerializedModule::Local(buffer);
 | |
|                 serialized_modules.push((buffer, CString::new(name).unwrap()));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Find the "costliest" module and merge everything into that codegen unit.
 | |
|     // All the other modules will be serialized and reparsed into the new
 | |
|     // context, so this hopefully avoids serializing and parsing the largest
 | |
|     // codegen unit.
 | |
|     //
 | |
|     // Additionally use a regular module as the base here to ensure that various
 | |
|     // file copy operations in the backend work correctly. The only other kind
 | |
|     // of module here should be an allocator one, and if your crate is smaller
 | |
|     // than the allocator module then the size doesn't really matter anyway.
 | |
|     let costliest_module = in_memory
 | |
|         .iter()
 | |
|         .enumerate()
 | |
|         .filter(|&(_, module)| module.kind == ModuleKind::Regular)
 | |
|         .map(|(i, _module)| {
 | |
|             //let cost = unsafe { llvm::LLVMRustModuleCost(module.module_llvm.llmod()) };
 | |
|             // TODO(antoyo): compute the cost of a module if GCC allows this.
 | |
|             (0, i)
 | |
|         })
 | |
|         .max();
 | |
| 
 | |
|     // If we found a costliest module, we're good to go. Otherwise all our
 | |
|     // inputs were serialized which could happen in the case, for example, that
 | |
|     // all our inputs were incrementally reread from the cache and we're just
 | |
|     // re-executing the LTO passes. If that's the case deserialize the first
 | |
|     // module and create a linker with it.
 | |
|     let mut module: ModuleCodegen<GccContext> = match costliest_module {
 | |
|         Some((_cost, i)) => in_memory.remove(i),
 | |
|         None => {
 | |
|             unimplemented!("Incremental");
 | |
|             /*assert!(!serialized_modules.is_empty(), "must have at least one serialized module");
 | |
|             let (buffer, name) = serialized_modules.remove(0);
 | |
|             info!("no in-memory regular modules to choose from, parsing {:?}", name);
 | |
|             ModuleCodegen {
 | |
|                 module_llvm: GccContext::parse(cgcx, &name, buffer.data(), dcx)?,
 | |
|                 name: name.into_string().unwrap(),
 | |
|                 kind: ModuleKind::Regular,
 | |
|             }*/
 | |
|         }
 | |
|     };
 | |
|     let mut serialized_bitcode = Vec::new();
 | |
|     {
 | |
|         info!("using {:?} as a base module", module.name);
 | |
| 
 | |
|         // We cannot load and merge GCC contexts in memory like cg_llvm is doing.
 | |
|         // Instead, we combine the object files into a single object file.
 | |
|         for module in in_memory {
 | |
|             let path = tmp_path.path().to_path_buf().join(&module.name);
 | |
|             let path = path.to_str().expect("path");
 | |
|             let context = &module.module_llvm.context;
 | |
|             let config = cgcx.config(module.kind);
 | |
|             // NOTE: we need to set the optimization level here in order for LTO to do its job.
 | |
|             context.set_optimization_level(to_gcc_opt_level(config.opt_level));
 | |
|             context.add_command_line_option("-flto=auto");
 | |
|             context.add_command_line_option("-flto-partition=one");
 | |
|             context.compile_to_file(OutputKind::ObjectFile, path);
 | |
|             let buffer = ModuleBuffer::new(PathBuf::from(path));
 | |
|             let llmod_id = CString::new(&module.name[..]).unwrap();
 | |
|             serialized_modules.push((SerializedModule::Local(buffer), llmod_id));
 | |
|         }
 | |
|         // Sort the modules to ensure we produce deterministic results.
 | |
|         serialized_modules.sort_by(|module1, module2| module1.1.cmp(&module2.1));
 | |
| 
 | |
|         // We add the object files and save in should_combine_object_files that we should combine
 | |
|         // them into a single object file when compiling later.
 | |
|         for (bc_decoded, name) in serialized_modules {
 | |
|             let _timer = cgcx
 | |
|                 .prof
 | |
|                 .generic_activity_with_arg_recorder("GCC_fat_lto_link_module", |recorder| {
 | |
|                     recorder.record_arg(format!("{:?}", name))
 | |
|                 });
 | |
|             info!("linking {:?}", name);
 | |
|             match bc_decoded {
 | |
|                 SerializedModule::Local(ref module_buffer) => {
 | |
|                     module.module_llvm.should_combine_object_files = true;
 | |
|                     module
 | |
|                         .module_llvm
 | |
|                         .context
 | |
|                         .add_driver_option(module_buffer.0.to_str().expect("path"));
 | |
|                 }
 | |
|                 SerializedModule::FromRlib(_) => unimplemented!("from rlib"),
 | |
|                 SerializedModule::FromUncompressedFile(_) => {
 | |
|                     unimplemented!("from uncompressed file")
 | |
|                 }
 | |
|             }
 | |
|             serialized_bitcode.push(bc_decoded);
 | |
|         }
 | |
|         save_temp_bitcode(cgcx, &module, "lto.input");
 | |
| 
 | |
|         // Internalize everything below threshold to help strip out more modules and such.
 | |
|         /*unsafe {
 | |
|         let ptr = symbols_below_threshold.as_ptr();
 | |
|         llvm::LLVMRustRunRestrictionPass(
 | |
|             llmod,
 | |
|             ptr as *const *const libc::c_char,
 | |
|             symbols_below_threshold.len() as libc::size_t,
 | |
|         );*/
 | |
|         save_temp_bitcode(cgcx, &module, "lto.after-restriction");
 | |
|         //}
 | |
|     }
 | |
| 
 | |
|     // NOTE: save the temporary directory used by LTO so that it gets deleted after linking instead
 | |
|     // of now.
 | |
|     module.module_llvm.temp_dir = Some(tmp_path);
 | |
| 
 | |
|     Ok(LtoModuleCodegen::Fat { module, _serialized_bitcode: serialized_bitcode })
 | |
| }
 | |
| 
 | |
| pub struct ModuleBuffer(PathBuf);
 | |
| 
 | |
| impl ModuleBuffer {
 | |
|     pub fn new(path: PathBuf) -> ModuleBuffer {
 | |
|         ModuleBuffer(path)
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl ModuleBufferMethods for ModuleBuffer {
 | |
|     fn data(&self) -> &[u8] {
 | |
|         &[]
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// Performs thin LTO by performing necessary global analysis and returning two
 | |
| /// lists, one of the modules that need optimization and another for modules that
 | |
| /// can simply be copied over from the incr. comp. cache.
 | |
| pub(crate) fn run_thin(
 | |
|     cgcx: &CodegenContext<GccCodegenBackend>,
 | |
|     modules: Vec<(String, ThinBuffer)>,
 | |
|     cached_modules: Vec<(SerializedModule<ModuleBuffer>, WorkProduct)>,
 | |
| ) -> Result<(Vec<LtoModuleCodegen<GccCodegenBackend>>, Vec<WorkProduct>), FatalError> {
 | |
|     let dcx = cgcx.create_dcx();
 | |
|     let dcx = dcx.handle();
 | |
|     let lto_data = prepare_lto(cgcx, dcx)?;
 | |
|     /*let symbols_below_threshold =
 | |
|     symbols_below_threshold.iter().map(|c| c.as_ptr()).collect::<Vec<_>>();*/
 | |
|     if cgcx.opts.cg.linker_plugin_lto.enabled() {
 | |
|         unreachable!(
 | |
|             "We should never reach this case if the LTO step \
 | |
|                       is deferred to the linker"
 | |
|         );
 | |
|     }
 | |
|     thin_lto(
 | |
|         cgcx,
 | |
|         dcx,
 | |
|         modules,
 | |
|         lto_data.upstream_modules,
 | |
|         lto_data.tmp_path,
 | |
|         cached_modules, /*, &symbols_below_threshold*/
 | |
|     )
 | |
| }
 | |
| 
 | |
| pub(crate) fn prepare_thin(
 | |
|     module: ModuleCodegen<GccContext>,
 | |
|     _emit_summary: bool,
 | |
| ) -> (String, ThinBuffer) {
 | |
|     let name = module.name;
 | |
|     //let buffer = ThinBuffer::new(module.module_llvm.context, true, emit_summary);
 | |
|     let buffer = ThinBuffer::new(&module.module_llvm.context);
 | |
|     (name, buffer)
 | |
| }
 | |
| 
 | |
| /// Prepare "thin" LTO to get run on these modules.
 | |
| ///
 | |
| /// The general structure of ThinLTO is quite different from the structure of
 | |
| /// "fat" LTO above. With "fat" LTO all LLVM modules in question are merged into
 | |
| /// one giant LLVM module, and then we run more optimization passes over this
 | |
| /// big module after internalizing most symbols. Thin LTO, on the other hand,
 | |
| /// avoid this large bottleneck through more targeted optimization.
 | |
| ///
 | |
| /// At a high level Thin LTO looks like:
 | |
| ///
 | |
| ///    1. Prepare a "summary" of each LLVM module in question which describes
 | |
| ///       the values inside, cost of the values, etc.
 | |
| ///    2. Merge the summaries of all modules in question into one "index"
 | |
| ///    3. Perform some global analysis on this index
 | |
| ///    4. For each module, use the index and analysis calculated previously to
 | |
| ///       perform local transformations on the module, for example inlining
 | |
| ///       small functions from other modules.
 | |
| ///    5. Run thin-specific optimization passes over each module, and then code
 | |
| ///       generate everything at the end.
 | |
| ///
 | |
| /// The summary for each module is intended to be quite cheap, and the global
 | |
| /// index is relatively quite cheap to create as well. As a result, the goal of
 | |
| /// ThinLTO is to reduce the bottleneck on LTO and enable LTO to be used in more
 | |
| /// situations. For example one cheap optimization is that we can parallelize
 | |
| /// all codegen modules, easily making use of all the cores on a machine.
 | |
| ///
 | |
| /// With all that in mind, the function here is designed at specifically just
 | |
| /// calculating the *index* for ThinLTO. This index will then be shared amongst
 | |
| /// all of the `LtoModuleCodegen` units returned below and destroyed once
 | |
| /// they all go out of scope.
 | |
| fn thin_lto(
 | |
|     cgcx: &CodegenContext<GccCodegenBackend>,
 | |
|     _dcx: DiagCtxtHandle<'_>,
 | |
|     modules: Vec<(String, ThinBuffer)>,
 | |
|     serialized_modules: Vec<(SerializedModule<ModuleBuffer>, CString)>,
 | |
|     tmp_path: TempDir,
 | |
|     cached_modules: Vec<(SerializedModule<ModuleBuffer>, WorkProduct)>,
 | |
|     //symbols_below_threshold: &[*const libc::c_char],
 | |
| ) -> Result<(Vec<LtoModuleCodegen<GccCodegenBackend>>, Vec<WorkProduct>), FatalError> {
 | |
|     let _timer = cgcx.prof.generic_activity("LLVM_thin_lto_global_analysis");
 | |
|     info!("going for that thin, thin LTO");
 | |
| 
 | |
|     /*let green_modules: FxHashMap<_, _> =
 | |
|     cached_modules.iter().map(|(_, wp)| (wp.cgu_name.clone(), wp.clone())).collect();*/
 | |
| 
 | |
|     let full_scope_len = modules.len() + serialized_modules.len() + cached_modules.len();
 | |
|     let mut thin_buffers = Vec::with_capacity(modules.len());
 | |
|     let mut module_names = Vec::with_capacity(full_scope_len);
 | |
|     //let mut thin_modules = Vec::with_capacity(full_scope_len);
 | |
| 
 | |
|     for (i, (name, buffer)) in modules.into_iter().enumerate() {
 | |
|         info!("local module: {} - {}", i, name);
 | |
|         let cname = CString::new(name.as_bytes()).unwrap();
 | |
|         /*thin_modules.push(llvm::ThinLTOModule {
 | |
|             identifier: cname.as_ptr(),
 | |
|             data: buffer.data().as_ptr(),
 | |
|             len: buffer.data().len(),
 | |
|         });*/
 | |
|         thin_buffers.push(buffer);
 | |
|         module_names.push(cname);
 | |
|     }
 | |
| 
 | |
|     // FIXME: All upstream crates are deserialized internally in the
 | |
|     //        function below to extract their summary and modules. Note that
 | |
|     //        unlike the loop above we *must* decode and/or read something
 | |
|     //        here as these are all just serialized files on disk. An
 | |
|     //        improvement, however, to make here would be to store the
 | |
|     //        module summary separately from the actual module itself. Right
 | |
|     //        now this is store in one large bitcode file, and the entire
 | |
|     //        file is deflate-compressed. We could try to bypass some of the
 | |
|     //        decompression by storing the index uncompressed and only
 | |
|     //        lazily decompressing the bytecode if necessary.
 | |
|     //
 | |
|     //        Note that truly taking advantage of this optimization will
 | |
|     //        likely be further down the road. We'd have to implement
 | |
|     //        incremental ThinLTO first where we could actually avoid
 | |
|     //        looking at upstream modules entirely sometimes (the contents,
 | |
|     //        we must always unconditionally look at the index).
 | |
|     let mut serialized = Vec::with_capacity(serialized_modules.len() + cached_modules.len());
 | |
| 
 | |
|     let cached_modules =
 | |
|         cached_modules.into_iter().map(|(sm, wp)| (sm, CString::new(wp.cgu_name).unwrap()));
 | |
| 
 | |
|     for (module, name) in serialized_modules.into_iter().chain(cached_modules) {
 | |
|         info!("upstream or cached module {:?}", name);
 | |
|         /*thin_modules.push(llvm::ThinLTOModule {
 | |
|             identifier: name.as_ptr(),
 | |
|             data: module.data().as_ptr(),
 | |
|             len: module.data().len(),
 | |
|         });*/
 | |
| 
 | |
|         match module {
 | |
|             SerializedModule::Local(_) => {
 | |
|                 //let path = module_buffer.0.to_str().expect("path");
 | |
|                 //let my_path = PathBuf::from(path);
 | |
|                 //let exists = my_path.exists();
 | |
|                 /*module.module_llvm.should_combine_object_files = true;
 | |
|                 module
 | |
|                 .module_llvm
 | |
|                 .context
 | |
|                 .add_driver_option(module_buffer.0.to_str().expect("path"));*/
 | |
|             }
 | |
|             SerializedModule::FromRlib(_) => unimplemented!("from rlib"),
 | |
|             SerializedModule::FromUncompressedFile(_) => {
 | |
|                 unimplemented!("from uncompressed file")
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         serialized.push(module);
 | |
|         module_names.push(name);
 | |
|     }
 | |
| 
 | |
|     // Sanity check
 | |
|     //assert_eq!(thin_modules.len(), module_names.len());
 | |
| 
 | |
|     // Delegate to the C++ bindings to create some data here. Once this is a
 | |
|     // tried-and-true interface we may wish to try to upstream some of this
 | |
|     // to LLVM itself, right now we reimplement a lot of what they do
 | |
|     // upstream...
 | |
|     /*let data = llvm::LLVMRustCreateThinLTOData(
 | |
|         thin_modules.as_ptr(),
 | |
|         thin_modules.len() as u32,
 | |
|         symbols_below_threshold.as_ptr(),
 | |
|         symbols_below_threshold.len() as u32,
 | |
|     )
 | |
|     .ok_or_else(|| write::llvm_err(dcx, LlvmError::PrepareThinLtoContext))?;
 | |
|     */
 | |
| 
 | |
|     let data = ThinData; //(Arc::new(tmp_path))/*(data)*/;
 | |
| 
 | |
|     info!("thin LTO data created");
 | |
| 
 | |
|     /*let (key_map_path, prev_key_map, curr_key_map) =
 | |
|         if let Some(ref incr_comp_session_dir) = cgcx.incr_comp_session_dir {
 | |
|             let path = incr_comp_session_dir.join(THIN_LTO_KEYS_INCR_COMP_FILE_NAME);
 | |
|             // If the previous file was deleted, or we get an IO error
 | |
|             // reading the file, then we'll just use `None` as the
 | |
|             // prev_key_map, which will force the code to be recompiled.
 | |
|             let prev =
 | |
|                 if path.exists() { ThinLTOKeysMap::load_from_file(&path).ok() } else { None };
 | |
|             let curr = ThinLTOKeysMap::from_thin_lto_modules(&data, &thin_modules, &module_names);
 | |
|             (Some(path), prev, curr)
 | |
|         }
 | |
|         else {
 | |
|             // If we don't compile incrementally, we don't need to load the
 | |
|             // import data from LLVM.
 | |
|             assert!(green_modules.is_empty());
 | |
|             let curr = ThinLTOKeysMap::default();
 | |
|             (None, None, curr)
 | |
|         };
 | |
|     info!("thin LTO cache key map loaded");
 | |
|     info!("prev_key_map: {:#?}", prev_key_map);
 | |
|     info!("curr_key_map: {:#?}", curr_key_map);*/
 | |
| 
 | |
|     // Throw our data in an `Arc` as we'll be sharing it across threads. We
 | |
|     // also put all memory referenced by the C++ data (buffers, ids, etc)
 | |
|     // into the arc as well. After this we'll create a thin module
 | |
|     // codegen per module in this data.
 | |
|     let shared =
 | |
|         Arc::new(ThinShared { data, thin_buffers, serialized_modules: serialized, module_names });
 | |
| 
 | |
|     let copy_jobs = vec![];
 | |
|     let mut opt_jobs = vec![];
 | |
| 
 | |
|     info!("checking which modules can be-reused and which have to be re-optimized.");
 | |
|     for (module_index, module_name) in shared.module_names.iter().enumerate() {
 | |
|         let module_name = module_name_to_str(module_name);
 | |
|         /*if let (Some(prev_key_map), true) =
 | |
|             (prev_key_map.as_ref(), green_modules.contains_key(module_name))
 | |
|         {
 | |
|             assert!(cgcx.incr_comp_session_dir.is_some());
 | |
| 
 | |
|             // If a module exists in both the current and the previous session,
 | |
|             // and has the same LTO cache key in both sessions, then we can re-use it
 | |
|             if prev_key_map.keys.get(module_name) == curr_key_map.keys.get(module_name) {
 | |
|                 let work_product = green_modules[module_name].clone();
 | |
|                 copy_jobs.push(work_product);
 | |
|                 info!(" - {}: re-used", module_name);
 | |
|                 assert!(cgcx.incr_comp_session_dir.is_some());
 | |
|                 continue;
 | |
|             }
 | |
|         }*/
 | |
| 
 | |
|         info!(" - {}: re-compiled", module_name);
 | |
|         opt_jobs
 | |
|             .push(LtoModuleCodegen::Thin(ThinModule { shared: shared.clone(), idx: module_index }));
 | |
|     }
 | |
| 
 | |
|     // Save the current ThinLTO import information for the next compilation
 | |
|     // session, overwriting the previous serialized data (if any).
 | |
|     /*if let Some(path) = key_map_path {
 | |
|         if let Err(err) = curr_key_map.save_to_file(&path) {
 | |
|             return Err(write::llvm_err(dcx, LlvmError::WriteThinLtoKey { err }));
 | |
|         }
 | |
|     }*/
 | |
| 
 | |
|     // NOTE: save the temporary directory used by LTO so that it gets deleted after linking instead
 | |
|     // of now.
 | |
|     //module.module_llvm.temp_dir = Some(tmp_path);
 | |
|     // TODO: save the directory so that it gets deleted later.
 | |
|     std::mem::forget(tmp_path);
 | |
| 
 | |
|     Ok((opt_jobs, copy_jobs))
 | |
| }
 | |
| 
 | |
| pub unsafe fn optimize_thin_module(
 | |
|     thin_module: ThinModule<GccCodegenBackend>,
 | |
|     _cgcx: &CodegenContext<GccCodegenBackend>,
 | |
| ) -> Result<ModuleCodegen<GccContext>, FatalError> {
 | |
|     //let dcx = cgcx.create_dcx();
 | |
| 
 | |
|     //let module_name = &thin_module.shared.module_names[thin_module.idx];
 | |
|     /*let tm_factory_config = TargetMachineFactoryConfig::new(cgcx, module_name.to_str().unwrap());
 | |
|     let tm = (cgcx.tm_factory)(tm_factory_config).map_err(|e| write::llvm_err(&dcx, e))?;*/
 | |
| 
 | |
|     // Right now the implementation we've got only works over serialized
 | |
|     // modules, so we create a fresh new LLVM context and parse the module
 | |
|     // into that context. One day, however, we may do this for upstream
 | |
|     // crates but for locally codegened modules we may be able to reuse
 | |
|     // that LLVM Context and Module.
 | |
|     //let llcx = llvm::LLVMRustContextCreate(cgcx.fewer_names);
 | |
|     //let llmod_raw = parse_module(llcx, module_name, thin_module.data(), &dcx)? as *const _;
 | |
|     let mut should_combine_object_files = false;
 | |
|     let context = match thin_module.shared.thin_buffers.get(thin_module.idx) {
 | |
|         Some(thin_buffer) => Arc::clone(&thin_buffer.context),
 | |
|         None => {
 | |
|             let context = Context::default();
 | |
|             let len = thin_module.shared.thin_buffers.len();
 | |
|             let module = &thin_module.shared.serialized_modules[thin_module.idx - len];
 | |
|             match *module {
 | |
|                 SerializedModule::Local(ref module_buffer) => {
 | |
|                     let path = module_buffer.0.to_str().expect("path");
 | |
|                     context.add_driver_option(path);
 | |
|                     should_combine_object_files = true;
 | |
|                     /*module.module_llvm.should_combine_object_files = true;
 | |
|                     module
 | |
|                         .module_llvm
 | |
|                         .context
 | |
|                         .add_driver_option(module_buffer.0.to_str().expect("path"));*/
 | |
|                 }
 | |
|                 SerializedModule::FromRlib(_) => unimplemented!("from rlib"),
 | |
|                 SerializedModule::FromUncompressedFile(_) => {
 | |
|                     unimplemented!("from uncompressed file")
 | |
|                 }
 | |
|             }
 | |
|             Arc::new(SyncContext::new(context))
 | |
|         }
 | |
|     };
 | |
|     let module = ModuleCodegen {
 | |
|         module_llvm: GccContext { context, should_combine_object_files, temp_dir: None },
 | |
|         name: thin_module.name().to_string(),
 | |
|         kind: ModuleKind::Regular,
 | |
|     };
 | |
|     /*{
 | |
|         let target = &*module.module_llvm.tm;
 | |
|         let llmod = module.module_llvm.llmod();
 | |
|         save_temp_bitcode(cgcx, &module, "thin-lto-input");
 | |
| 
 | |
|         // Up next comes the per-module local analyses that we do for Thin LTO.
 | |
|         // Each of these functions is basically copied from the LLVM
 | |
|         // implementation and then tailored to suit this implementation. Ideally
 | |
|         // each of these would be supported by upstream LLVM but that's perhaps
 | |
|         // a patch for another day!
 | |
|         //
 | |
|         // You can find some more comments about these functions in the LLVM
 | |
|         // bindings we've got (currently `PassWrapper.cpp`)
 | |
|         {
 | |
|             let _timer =
 | |
|                 cgcx.prof.generic_activity_with_arg("LLVM_thin_lto_rename", thin_module.name());
 | |
|             if !llvm::LLVMRustPrepareThinLTORename(thin_module.shared.data.0, llmod, target) {
 | |
|                 return Err(write::llvm_err(&dcx, LlvmError::PrepareThinLtoModule));
 | |
|             }
 | |
|             save_temp_bitcode(cgcx, &module, "thin-lto-after-rename");
 | |
|         }
 | |
| 
 | |
|         {
 | |
|             let _timer = cgcx
 | |
|                 .prof
 | |
|                 .generic_activity_with_arg("LLVM_thin_lto_resolve_weak", thin_module.name());
 | |
|             if !llvm::LLVMRustPrepareThinLTOResolveWeak(thin_module.shared.data.0, llmod) {
 | |
|                 return Err(write::llvm_err(&dcx, LlvmError::PrepareThinLtoModule));
 | |
|             }
 | |
|             save_temp_bitcode(cgcx, &module, "thin-lto-after-resolve");
 | |
|         }
 | |
| 
 | |
|         {
 | |
|             let _timer = cgcx
 | |
|                 .prof
 | |
|                 .generic_activity_with_arg("LLVM_thin_lto_internalize", thin_module.name());
 | |
|             if !llvm::LLVMRustPrepareThinLTOInternalize(thin_module.shared.data.0, llmod) {
 | |
|                 return Err(write::llvm_err(&dcx, LlvmError::PrepareThinLtoModule));
 | |
|             }
 | |
|             save_temp_bitcode(cgcx, &module, "thin-lto-after-internalize");
 | |
|         }
 | |
| 
 | |
|         {
 | |
|             let _timer =
 | |
|                 cgcx.prof.generic_activity_with_arg("LLVM_thin_lto_import", thin_module.name());
 | |
|             if !llvm::LLVMRustPrepareThinLTOImport(thin_module.shared.data.0, llmod, target) {
 | |
|                 return Err(write::llvm_err(&dcx, LlvmError::PrepareThinLtoModule));
 | |
|             }
 | |
|             save_temp_bitcode(cgcx, &module, "thin-lto-after-import");
 | |
|         }
 | |
| 
 | |
|         // Alright now that we've done everything related to the ThinLTO
 | |
|         // analysis it's time to run some optimizations! Here we use the same
 | |
|         // `run_pass_manager` as the "fat" LTO above except that we tell it to
 | |
|         // populate a thin-specific pass manager, which presumably LLVM treats a
 | |
|         // little differently.
 | |
|         {
 | |
|             info!("running thin lto passes over {}", module.name);
 | |
|             run_pass_manager(cgcx, &dcx, &mut module, true)?;
 | |
|             save_temp_bitcode(cgcx, &module, "thin-lto-after-pm");
 | |
|         }
 | |
|     }*/
 | |
|     Ok(module)
 | |
| }
 | |
| 
 | |
| pub struct ThinBuffer {
 | |
|     context: Arc<SyncContext>,
 | |
| }
 | |
| 
 | |
| // TODO: check if this makes sense to make ThinBuffer Send and Sync.
 | |
| unsafe impl Send for ThinBuffer {}
 | |
| unsafe impl Sync for ThinBuffer {}
 | |
| 
 | |
| impl ThinBuffer {
 | |
|     pub(crate) fn new(context: &Arc<SyncContext>) -> Self {
 | |
|         Self { context: Arc::clone(context) }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl ThinBufferMethods for ThinBuffer {
 | |
|     fn data(&self) -> &[u8] {
 | |
|         &[]
 | |
|     }
 | |
| 
 | |
|     fn thin_link_data(&self) -> &[u8] {
 | |
|         unimplemented!();
 | |
|     }
 | |
| }
 | |
| 
 | |
| pub struct ThinData; //(Arc<TempDir>);
 | |
| 
 | |
| fn module_name_to_str(c_str: &CStr) -> &str {
 | |
|     c_str.to_str().unwrap_or_else(|e| {
 | |
|         bug!("Encountered non-utf8 GCC module name `{}`: {}", c_str.to_string_lossy(), e)
 | |
|     })
 | |
| }
 | 
