mirror of
				https://github.com/rust-lang/rust.git
				synced 2025-10-31 13:04:42 +00:00 
			
		
		
		
	 4852291417
			
		
	
	
		4852291417
		
	
	
	
	
		
			
			Currently some `Allocation`s are interned, some are not, and it's very hard to tell at a use point which is which. This commit introduces `ConstAllocation` for the known-interned ones, which makes the division much clearer. `ConstAllocation::inner()` is used to get the underlying `Allocation`. In some places it's natural to use an `Allocation`, in some it's natural to use a `ConstAllocation`, and in some places there's no clear choice. I've tried to make things look as nice as possible, while generally favouring `ConstAllocation`, which is the type that embodies more information. This does require quite a few calls to `inner()`. The commit also tweaks how `PartialOrd` works for `Interned`. The previous code was too clever by half, building on `T: Ord` to make the code shorter. That caused problems with deriving `PartialOrd` and `Ord` for `ConstAllocation`, so I changed it to build on `T: PartialOrd`, which is slightly more verbose but much more standard and avoided the problems.
		
			
				
	
	
		
			382 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			382 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
| use super::{CompileTimeEvalContext, CompileTimeInterpreter, ConstEvalErr, MemoryExtra};
 | |
| use crate::interpret::eval_nullary_intrinsic;
 | |
| use crate::interpret::{
 | |
|     intern_const_alloc_recursive, Allocation, ConstAlloc, ConstValue, CtfeValidationMode, GlobalId,
 | |
|     Immediate, InternKind, InterpCx, InterpResult, MPlaceTy, MemoryKind, OpTy, RefTracking, Scalar,
 | |
|     ScalarMaybeUninit, StackPopCleanup,
 | |
| };
 | |
| 
 | |
| use rustc_hir::def::DefKind;
 | |
| use rustc_middle::mir;
 | |
| use rustc_middle::mir::interpret::ErrorHandled;
 | |
| use rustc_middle::mir::pretty::display_allocation;
 | |
| use rustc_middle::traits::Reveal;
 | |
| use rustc_middle::ty::layout::LayoutOf;
 | |
| use rustc_middle::ty::print::with_no_trimmed_paths;
 | |
| use rustc_middle::ty::{self, subst::Subst, TyCtxt};
 | |
| use rustc_span::source_map::Span;
 | |
| use rustc_target::abi::Abi;
 | |
| use std::borrow::Cow;
 | |
| use std::convert::TryInto;
 | |
| 
 | |
| pub fn note_on_undefined_behavior_error() -> &'static str {
 | |
|     "The rules on what exactly is undefined behavior aren't clear, \
 | |
|      so this check might be overzealous. Please open an issue on the rustc \
 | |
|      repository if you believe it should not be considered undefined behavior."
 | |
| }
 | |
| 
 | |
| // Returns a pointer to where the result lives
 | |
| fn eval_body_using_ecx<'mir, 'tcx>(
 | |
|     ecx: &mut CompileTimeEvalContext<'mir, 'tcx>,
 | |
|     cid: GlobalId<'tcx>,
 | |
|     body: &'mir mir::Body<'tcx>,
 | |
| ) -> InterpResult<'tcx, MPlaceTy<'tcx>> {
 | |
|     debug!("eval_body_using_ecx: {:?}, {:?}", cid, ecx.param_env);
 | |
|     let tcx = *ecx.tcx;
 | |
|     assert!(
 | |
|         cid.promoted.is_some()
 | |
|             || matches!(
 | |
|                 ecx.tcx.def_kind(cid.instance.def_id()),
 | |
|                 DefKind::Const
 | |
|                     | DefKind::Static
 | |
|                     | DefKind::ConstParam
 | |
|                     | DefKind::AnonConst
 | |
|                     | DefKind::InlineConst
 | |
|                     | DefKind::AssocConst
 | |
|             ),
 | |
|         "Unexpected DefKind: {:?}",
 | |
|         ecx.tcx.def_kind(cid.instance.def_id())
 | |
|     );
 | |
|     let layout = ecx.layout_of(body.return_ty().subst(tcx, cid.instance.substs))?;
 | |
|     assert!(!layout.is_unsized());
 | |
|     let ret = ecx.allocate(layout, MemoryKind::Stack)?;
 | |
| 
 | |
|     trace!(
 | |
|         "eval_body_using_ecx: pushing stack frame for global: {}{}",
 | |
|         with_no_trimmed_paths!(ty::tls::with(|tcx| tcx.def_path_str(cid.instance.def_id()))),
 | |
|         cid.promoted.map_or_else(String::new, |p| format!("::promoted[{:?}]", p))
 | |
|     );
 | |
| 
 | |
|     ecx.push_stack_frame(
 | |
|         cid.instance,
 | |
|         body,
 | |
|         Some(&ret.into()),
 | |
|         StackPopCleanup::Root { cleanup: false },
 | |
|     )?;
 | |
| 
 | |
|     // The main interpreter loop.
 | |
|     ecx.run()?;
 | |
| 
 | |
|     // Intern the result
 | |
|     let intern_kind = if cid.promoted.is_some() {
 | |
|         InternKind::Promoted
 | |
|     } else {
 | |
|         match tcx.static_mutability(cid.instance.def_id()) {
 | |
|             Some(m) => InternKind::Static(m),
 | |
|             None => InternKind::Constant,
 | |
|         }
 | |
|     };
 | |
|     intern_const_alloc_recursive(ecx, intern_kind, &ret)?;
 | |
| 
 | |
|     debug!("eval_body_using_ecx done: {:?}", *ret);
 | |
|     Ok(ret)
 | |
| }
 | |
| 
 | |
| /// The `InterpCx` is only meant to be used to do field and index projections into constants for
 | |
| /// `simd_shuffle` and const patterns in match arms.
 | |
| ///
 | |
| /// The function containing the `match` that is currently being analyzed may have generic bounds
 | |
| /// that inform us about the generic bounds of the constant. E.g., using an associated constant
 | |
| /// of a function's generic parameter will require knowledge about the bounds on the generic
 | |
| /// parameter. These bounds are passed to `mk_eval_cx` via the `ParamEnv` argument.
 | |
| pub(super) fn mk_eval_cx<'mir, 'tcx>(
 | |
|     tcx: TyCtxt<'tcx>,
 | |
|     root_span: Span,
 | |
|     param_env: ty::ParamEnv<'tcx>,
 | |
|     can_access_statics: bool,
 | |
| ) -> CompileTimeEvalContext<'mir, 'tcx> {
 | |
|     debug!("mk_eval_cx: {:?}", param_env);
 | |
|     InterpCx::new(
 | |
|         tcx,
 | |
|         root_span,
 | |
|         param_env,
 | |
|         CompileTimeInterpreter::new(tcx.const_eval_limit()),
 | |
|         MemoryExtra { can_access_statics },
 | |
|     )
 | |
| }
 | |
| 
 | |
| /// This function converts an interpreter value into a constant that is meant for use in the
 | |
| /// type system.
 | |
| pub(super) fn op_to_const<'tcx>(
 | |
|     ecx: &CompileTimeEvalContext<'_, 'tcx>,
 | |
|     op: &OpTy<'tcx>,
 | |
| ) -> ConstValue<'tcx> {
 | |
|     // We do not have value optimizations for everything.
 | |
|     // Only scalars and slices, since they are very common.
 | |
|     // Note that further down we turn scalars of uninitialized bits back to `ByRef`. These can result
 | |
|     // from scalar unions that are initialized with one of their zero sized variants. We could
 | |
|     // instead allow `ConstValue::Scalar` to store `ScalarMaybeUninit`, but that would affect all
 | |
|     // the usual cases of extracting e.g. a `usize`, without there being a real use case for the
 | |
|     // `Undef` situation.
 | |
|     let try_as_immediate = match op.layout.abi {
 | |
|         Abi::Scalar(..) => true,
 | |
|         Abi::ScalarPair(..) => match op.layout.ty.kind() {
 | |
|             ty::Ref(_, inner, _) => match *inner.kind() {
 | |
|                 ty::Slice(elem) => elem == ecx.tcx.types.u8,
 | |
|                 ty::Str => true,
 | |
|                 _ => false,
 | |
|             },
 | |
|             _ => false,
 | |
|         },
 | |
|         _ => false,
 | |
|     };
 | |
|     let immediate = if try_as_immediate {
 | |
|         Err(ecx.read_immediate(op).expect("normalization works on validated constants"))
 | |
|     } else {
 | |
|         // It is guaranteed that any non-slice scalar pair is actually ByRef here.
 | |
|         // When we come back from raw const eval, we are always by-ref. The only way our op here is
 | |
|         // by-val is if we are in destructure_const, i.e., if this is (a field of) something that we
 | |
|         // "tried to make immediate" before. We wouldn't do that for non-slice scalar pairs or
 | |
|         // structs containing such.
 | |
|         op.try_as_mplace()
 | |
|     };
 | |
| 
 | |
|     // We know `offset` is relative to the allocation, so we can use `into_parts`.
 | |
|     let to_const_value = |mplace: &MPlaceTy<'_>| match mplace.ptr.into_parts() {
 | |
|         (Some(alloc_id), offset) => {
 | |
|             let alloc = ecx.tcx.global_alloc(alloc_id).unwrap_memory();
 | |
|             ConstValue::ByRef { alloc, offset }
 | |
|         }
 | |
|         (None, offset) => {
 | |
|             assert!(mplace.layout.is_zst());
 | |
|             assert_eq!(
 | |
|                 offset.bytes() % mplace.layout.align.abi.bytes(),
 | |
|                 0,
 | |
|                 "this MPlaceTy must come from a validated constant, thus we can assume the \
 | |
|                 alignment is correct",
 | |
|             );
 | |
|             ConstValue::Scalar(Scalar::ZST)
 | |
|         }
 | |
|     };
 | |
|     match immediate {
 | |
|         Ok(ref mplace) => to_const_value(mplace),
 | |
|         // see comment on `let try_as_immediate` above
 | |
|         Err(imm) => match *imm {
 | |
|             Immediate::Scalar(x) => match x {
 | |
|                 ScalarMaybeUninit::Scalar(s) => ConstValue::Scalar(s),
 | |
|                 ScalarMaybeUninit::Uninit => to_const_value(&op.assert_mem_place()),
 | |
|             },
 | |
|             Immediate::ScalarPair(a, b) => {
 | |
|                 // We know `offset` is relative to the allocation, so we can use `into_parts`.
 | |
|                 let (data, start) = match ecx.scalar_to_ptr(a.check_init().unwrap()).into_parts() {
 | |
|                     (Some(alloc_id), offset) => {
 | |
|                         (ecx.tcx.global_alloc(alloc_id).unwrap_memory(), offset.bytes())
 | |
|                     }
 | |
|                     (None, _offset) => (
 | |
|                         ecx.tcx.intern_const_alloc(Allocation::from_bytes_byte_aligned_immutable(
 | |
|                             b"" as &[u8],
 | |
|                         )),
 | |
|                         0,
 | |
|                     ),
 | |
|                 };
 | |
|                 let len = b.to_machine_usize(ecx).unwrap();
 | |
|                 let start = start.try_into().unwrap();
 | |
|                 let len: usize = len.try_into().unwrap();
 | |
|                 ConstValue::Slice { data, start, end: start + len }
 | |
|             }
 | |
|         },
 | |
|     }
 | |
| }
 | |
| 
 | |
| fn turn_into_const_value<'tcx>(
 | |
|     tcx: TyCtxt<'tcx>,
 | |
|     constant: ConstAlloc<'tcx>,
 | |
|     key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>,
 | |
| ) -> ConstValue<'tcx> {
 | |
|     let cid = key.value;
 | |
|     let def_id = cid.instance.def.def_id();
 | |
|     let is_static = tcx.is_static(def_id);
 | |
|     let ecx = mk_eval_cx(tcx, tcx.def_span(key.value.instance.def_id()), key.param_env, is_static);
 | |
| 
 | |
|     let mplace = ecx.raw_const_to_mplace(constant).expect(
 | |
|         "can only fail if layout computation failed, \
 | |
|         which should have given a good error before ever invoking this function",
 | |
|     );
 | |
|     assert!(
 | |
|         !is_static || cid.promoted.is_some(),
 | |
|         "the `eval_to_const_value_raw` query should not be used for statics, use `eval_to_allocation` instead"
 | |
|     );
 | |
|     // Turn this into a proper constant.
 | |
|     op_to_const(&ecx, &mplace.into())
 | |
| }
 | |
| 
 | |
| pub fn eval_to_const_value_raw_provider<'tcx>(
 | |
|     tcx: TyCtxt<'tcx>,
 | |
|     key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>,
 | |
| ) -> ::rustc_middle::mir::interpret::EvalToConstValueResult<'tcx> {
 | |
|     assert!(key.param_env.is_const());
 | |
|     // see comment in eval_to_allocation_raw_provider for what we're doing here
 | |
|     if key.param_env.reveal() == Reveal::All {
 | |
|         let mut key = key;
 | |
|         key.param_env = key.param_env.with_user_facing();
 | |
|         match tcx.eval_to_const_value_raw(key) {
 | |
|             // try again with reveal all as requested
 | |
|             Err(ErrorHandled::TooGeneric) => {}
 | |
|             // deduplicate calls
 | |
|             other => return other,
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // We call `const_eval` for zero arg intrinsics, too, in order to cache their value.
 | |
|     // Catch such calls and evaluate them instead of trying to load a constant's MIR.
 | |
|     if let ty::InstanceDef::Intrinsic(def_id) = key.value.instance.def {
 | |
|         let ty = key.value.instance.ty(tcx, key.param_env);
 | |
|         let ty::FnDef(_, substs) = ty.kind() else {
 | |
|             bug!("intrinsic with type {:?}", ty);
 | |
|         };
 | |
|         return eval_nullary_intrinsic(tcx, key.param_env, def_id, substs).map_err(|error| {
 | |
|             let span = tcx.def_span(def_id);
 | |
|             let error = ConstEvalErr { error: error.into_kind(), stacktrace: vec![], span };
 | |
|             error.report_as_error(tcx.at(span), "could not evaluate nullary intrinsic")
 | |
|         });
 | |
|     }
 | |
| 
 | |
|     tcx.eval_to_allocation_raw(key).map(|val| turn_into_const_value(tcx, val, key))
 | |
| }
 | |
| 
 | |
| pub fn eval_to_allocation_raw_provider<'tcx>(
 | |
|     tcx: TyCtxt<'tcx>,
 | |
|     key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>,
 | |
| ) -> ::rustc_middle::mir::interpret::EvalToAllocationRawResult<'tcx> {
 | |
|     assert!(key.param_env.is_const());
 | |
|     // Because the constant is computed twice (once per value of `Reveal`), we are at risk of
 | |
|     // reporting the same error twice here. To resolve this, we check whether we can evaluate the
 | |
|     // constant in the more restrictive `Reveal::UserFacing`, which most likely already was
 | |
|     // computed. For a large percentage of constants that will already have succeeded. Only
 | |
|     // associated constants of generic functions will fail due to not enough monomorphization
 | |
|     // information being available.
 | |
| 
 | |
|     // In case we fail in the `UserFacing` variant, we just do the real computation.
 | |
|     if key.param_env.reveal() == Reveal::All {
 | |
|         let mut key = key;
 | |
|         key.param_env = key.param_env.with_user_facing();
 | |
|         match tcx.eval_to_allocation_raw(key) {
 | |
|             // try again with reveal all as requested
 | |
|             Err(ErrorHandled::TooGeneric) => {}
 | |
|             // deduplicate calls
 | |
|             other => return other,
 | |
|         }
 | |
|     }
 | |
|     if cfg!(debug_assertions) {
 | |
|         // Make sure we format the instance even if we do not print it.
 | |
|         // This serves as a regression test against an ICE on printing.
 | |
|         // The next two lines concatenated contain some discussion:
 | |
|         // https://rust-lang.zulipchat.com/#narrow/stream/146212-t-compiler.2Fconst-eval/
 | |
|         // subject/anon_const_instance_printing/near/135980032
 | |
|         let instance = with_no_trimmed_paths!(key.value.instance.to_string());
 | |
|         trace!("const eval: {:?} ({})", key, instance);
 | |
|     }
 | |
| 
 | |
|     let cid = key.value;
 | |
|     let def = cid.instance.def.with_opt_param();
 | |
|     let is_static = tcx.is_static(def.did);
 | |
| 
 | |
|     let mut ecx = InterpCx::new(
 | |
|         tcx,
 | |
|         tcx.def_span(def.did),
 | |
|         key.param_env,
 | |
|         CompileTimeInterpreter::new(tcx.const_eval_limit()),
 | |
|         // Statics (and promoteds inside statics) may access other statics, because unlike consts
 | |
|         // they do not have to behave "as if" they were evaluated at runtime.
 | |
|         MemoryExtra { can_access_statics: is_static },
 | |
|     );
 | |
| 
 | |
|     let res = ecx.load_mir(cid.instance.def, cid.promoted);
 | |
|     match res.and_then(|body| eval_body_using_ecx(&mut ecx, cid, &body)) {
 | |
|         Err(error) => {
 | |
|             let err = ConstEvalErr::new(&ecx, error, None);
 | |
|             // Some CTFE errors raise just a lint, not a hard error; see
 | |
|             // <https://github.com/rust-lang/rust/issues/71800>.
 | |
|             let is_hard_err = if let Some(def) = def.as_local() {
 | |
|                 // (Associated) consts only emit a lint, since they might be unused.
 | |
|                 !matches!(tcx.def_kind(def.did.to_def_id()), DefKind::Const | DefKind::AssocConst)
 | |
|                     // check if the inner InterpError is hard
 | |
|                     || err.error.is_hard_err()
 | |
|             } else {
 | |
|                 // use of broken constant from other crate: always an error
 | |
|                 true
 | |
|             };
 | |
| 
 | |
|             if is_hard_err {
 | |
|                 let msg = if is_static {
 | |
|                     Cow::from("could not evaluate static initializer")
 | |
|                 } else {
 | |
|                     // If the current item has generics, we'd like to enrich the message with the
 | |
|                     // instance and its substs: to show the actual compile-time values, in addition to
 | |
|                     // the expression, leading to the const eval error.
 | |
|                     let instance = &key.value.instance;
 | |
|                     if !instance.substs.is_empty() {
 | |
|                         let instance = with_no_trimmed_paths!(instance.to_string());
 | |
|                         let msg = format!("evaluation of `{}` failed", instance);
 | |
|                         Cow::from(msg)
 | |
|                     } else {
 | |
|                         Cow::from("evaluation of constant value failed")
 | |
|                     }
 | |
|                 };
 | |
| 
 | |
|                 Err(err.report_as_error(ecx.tcx.at(ecx.cur_span()), &msg))
 | |
|             } else {
 | |
|                 let hir_id = tcx.hir().local_def_id_to_hir_id(def.as_local().unwrap().did);
 | |
|                 Err(err.report_as_lint(
 | |
|                     tcx.at(tcx.def_span(def.did)),
 | |
|                     "any use of this value will cause an error",
 | |
|                     hir_id,
 | |
|                     Some(err.span),
 | |
|                 ))
 | |
|             }
 | |
|         }
 | |
|         Ok(mplace) => {
 | |
|             // Since evaluation had no errors, validate the resulting constant.
 | |
|             // This is a separate `try` block to provide more targeted error reporting.
 | |
|             let validation = try {
 | |
|                 let mut ref_tracking = RefTracking::new(mplace);
 | |
|                 let mut inner = false;
 | |
|                 while let Some((mplace, path)) = ref_tracking.todo.pop() {
 | |
|                     let mode = match tcx.static_mutability(cid.instance.def_id()) {
 | |
|                         Some(_) if cid.promoted.is_some() => {
 | |
|                             // Promoteds in statics are allowed to point to statics.
 | |
|                             CtfeValidationMode::Const { inner, allow_static_ptrs: true }
 | |
|                         }
 | |
|                         Some(_) => CtfeValidationMode::Regular, // a `static`
 | |
|                         None => CtfeValidationMode::Const { inner, allow_static_ptrs: false },
 | |
|                     };
 | |
|                     ecx.const_validate_operand(&mplace.into(), path, &mut ref_tracking, mode)?;
 | |
|                     inner = true;
 | |
|                 }
 | |
|             };
 | |
|             let alloc_id = mplace.ptr.provenance.unwrap();
 | |
|             if let Err(error) = validation {
 | |
|                 // Validation failed, report an error. This is always a hard error.
 | |
|                 let err = ConstEvalErr::new(&ecx, error, None);
 | |
|                 Err(err.struct_error(
 | |
|                     ecx.tcx,
 | |
|                     "it is undefined behavior to use this value",
 | |
|                     |diag| {
 | |
|                         diag.note(note_on_undefined_behavior_error());
 | |
|                         diag.note(&format!(
 | |
|                             "the raw bytes of the constant ({}",
 | |
|                             display_allocation(
 | |
|                                 *ecx.tcx,
 | |
|                                 ecx.tcx.global_alloc(alloc_id).unwrap_memory().inner()
 | |
|                             )
 | |
|                         ));
 | |
|                     },
 | |
|                 ))
 | |
|             } else {
 | |
|                 // Convert to raw constant
 | |
|                 Ok(ConstAlloc { alloc_id, ty: mplace.layout.ty })
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 |