mirror of
				https://github.com/rust-lang/rust.git
				synced 2025-10-31 13:04:42 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			302 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			302 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
| use std::assert_matches::assert_matches;
 | |
| 
 | |
| use rustc_middle::bug;
 | |
| use rustc_middle::ty::layout::{LayoutCx, TyAndLayout};
 | |
| use rustc_middle::ty::TyCtxt;
 | |
| use rustc_target::abi::*;
 | |
| 
 | |
| /// Enforce some basic invariants on layouts.
 | |
| pub(super) fn sanity_check_layout<'tcx>(
 | |
|     cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
 | |
|     layout: &TyAndLayout<'tcx>,
 | |
| ) {
 | |
|     // Type-level uninhabitedness should always imply ABI uninhabitedness.
 | |
|     if layout.ty.is_privately_uninhabited(cx.tcx, cx.param_env) {
 | |
|         assert!(layout.abi.is_uninhabited());
 | |
|     }
 | |
| 
 | |
|     if layout.size.bytes() % layout.align.abi.bytes() != 0 {
 | |
|         bug!("size is not a multiple of align, in the following layout:\n{layout:#?}");
 | |
|     }
 | |
|     if layout.size.bytes() >= cx.tcx.data_layout.obj_size_bound() {
 | |
|         bug!("size is too large, in the following layout:\n{layout:#?}");
 | |
|     }
 | |
| 
 | |
|     if !cfg!(debug_assertions) {
 | |
|         // Stop here, the rest is kind of expensive.
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /// Yields non-ZST fields of the type
 | |
|     fn non_zst_fields<'tcx, 'a>(
 | |
|         cx: &'a LayoutCx<'tcx, TyCtxt<'tcx>>,
 | |
|         layout: &'a TyAndLayout<'tcx>,
 | |
|     ) -> impl Iterator<Item = (Size, TyAndLayout<'tcx>)> + 'a {
 | |
|         (0..layout.layout.fields().count()).filter_map(|i| {
 | |
|             let field = layout.field(cx, i);
 | |
|             // Also checking `align == 1` here leads to test failures in
 | |
|             // `layout/zero-sized-array-union.rs`, where a type has a zero-size field with
 | |
|             // alignment 4 that still gets ignored during layout computation (which is okay
 | |
|             // since other fields already force alignment 4).
 | |
|             let zst = field.is_zst();
 | |
|             (!zst).then(|| (layout.fields.offset(i), field))
 | |
|         })
 | |
|     }
 | |
| 
 | |
|     fn skip_newtypes<'tcx>(
 | |
|         cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
 | |
|         layout: &TyAndLayout<'tcx>,
 | |
|     ) -> TyAndLayout<'tcx> {
 | |
|         if matches!(layout.layout.variants(), Variants::Multiple { .. }) {
 | |
|             // Definitely not a newtype of anything.
 | |
|             return *layout;
 | |
|         }
 | |
|         let mut fields = non_zst_fields(cx, layout);
 | |
|         let Some(first) = fields.next() else {
 | |
|             // No fields here, so this could be a primitive or enum -- either way it's not a newtype around a thing
 | |
|             return *layout;
 | |
|         };
 | |
|         if fields.next().is_none() {
 | |
|             let (offset, first) = first;
 | |
|             if offset == Size::ZERO && first.layout.size() == layout.size {
 | |
|                 // This is a newtype, so keep recursing.
 | |
|                 // FIXME(RalfJung): I don't think it would be correct to do any checks for
 | |
|                 // alignment here, so we don't. Is that correct?
 | |
|                 return skip_newtypes(cx, &first);
 | |
|             }
 | |
|         }
 | |
|         // No more newtypes here.
 | |
|         *layout
 | |
|     }
 | |
| 
 | |
|     fn check_layout_abi<'tcx>(cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, layout: &TyAndLayout<'tcx>) {
 | |
|         // Verify the ABI mandated alignment and size.
 | |
|         let align = layout.abi.inherent_align(cx).map(|align| align.abi);
 | |
|         let size = layout.abi.inherent_size(cx);
 | |
|         let Some((align, size)) = align.zip(size) else {
 | |
|             assert_matches!(
 | |
|                 layout.layout.abi(),
 | |
|                 Abi::Uninhabited | Abi::Aggregate { .. },
 | |
|                 "ABI unexpectedly missing alignment and/or size in {layout:#?}"
 | |
|             );
 | |
|             return;
 | |
|         };
 | |
|         assert_eq!(
 | |
|             layout.layout.align().abi,
 | |
|             align,
 | |
|             "alignment mismatch between ABI and layout in {layout:#?}"
 | |
|         );
 | |
|         assert_eq!(
 | |
|             layout.layout.size(),
 | |
|             size,
 | |
|             "size mismatch between ABI and layout in {layout:#?}"
 | |
|         );
 | |
| 
 | |
|         // Verify per-ABI invariants
 | |
|         match layout.layout.abi() {
 | |
|             Abi::Scalar(_) => {
 | |
|                 // Check that this matches the underlying field.
 | |
|                 let inner = skip_newtypes(cx, layout);
 | |
|                 assert!(
 | |
|                     matches!(inner.layout.abi(), Abi::Scalar(_)),
 | |
|                     "`Scalar` type {} is newtype around non-`Scalar` type {}",
 | |
|                     layout.ty,
 | |
|                     inner.ty
 | |
|                 );
 | |
|                 match inner.layout.fields() {
 | |
|                     FieldsShape::Primitive => {
 | |
|                         // Fine.
 | |
|                     }
 | |
|                     FieldsShape::Union(..) => {
 | |
|                         // FIXME: I guess we could also check something here? Like, look at all fields?
 | |
|                         return;
 | |
|                     }
 | |
|                     FieldsShape::Arbitrary { .. } => {
 | |
|                         // Should be an enum, the only field is the discriminant.
 | |
|                         assert!(
 | |
|                             inner.ty.is_enum(),
 | |
|                             "`Scalar` layout for non-primitive non-enum type {}",
 | |
|                             inner.ty
 | |
|                         );
 | |
|                         assert_eq!(
 | |
|                             inner.layout.fields().count(),
 | |
|                             1,
 | |
|                             "`Scalar` layout for multiple-field type in {inner:#?}",
 | |
|                         );
 | |
|                         let offset = inner.layout.fields().offset(0);
 | |
|                         let field = inner.field(cx, 0);
 | |
|                         // The field should be at the right offset, and match the `scalar` layout.
 | |
|                         assert_eq!(
 | |
|                             offset,
 | |
|                             Size::ZERO,
 | |
|                             "`Scalar` field at non-0 offset in {inner:#?}",
 | |
|                         );
 | |
|                         assert_eq!(field.size, size, "`Scalar` field with bad size in {inner:#?}",);
 | |
|                         assert_eq!(
 | |
|                             field.align.abi, align,
 | |
|                             "`Scalar` field with bad align in {inner:#?}",
 | |
|                         );
 | |
|                         assert!(
 | |
|                             matches!(field.abi, Abi::Scalar(_)),
 | |
|                             "`Scalar` field with bad ABI in {inner:#?}",
 | |
|                         );
 | |
|                     }
 | |
|                     _ => {
 | |
|                         panic!("`Scalar` layout for non-primitive non-enum type {}", inner.ty);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             Abi::ScalarPair(scalar1, scalar2) => {
 | |
|                 // Check that the underlying pair of fields matches.
 | |
|                 let inner = skip_newtypes(cx, layout);
 | |
|                 assert!(
 | |
|                     matches!(inner.layout.abi(), Abi::ScalarPair(..)),
 | |
|                     "`ScalarPair` type {} is newtype around non-`ScalarPair` type {}",
 | |
|                     layout.ty,
 | |
|                     inner.ty
 | |
|                 );
 | |
|                 if matches!(inner.layout.variants(), Variants::Multiple { .. }) {
 | |
|                     // FIXME: ScalarPair for enums is enormously complicated and it is very hard
 | |
|                     // to check anything about them.
 | |
|                     return;
 | |
|                 }
 | |
|                 match inner.layout.fields() {
 | |
|                     FieldsShape::Arbitrary { .. } => {
 | |
|                         // Checked below.
 | |
|                     }
 | |
|                     FieldsShape::Union(..) => {
 | |
|                         // FIXME: I guess we could also check something here? Like, look at all fields?
 | |
|                         return;
 | |
|                     }
 | |
|                     _ => {
 | |
|                         panic!("`ScalarPair` layout with unexpected field shape in {inner:#?}");
 | |
|                     }
 | |
|                 }
 | |
|                 let mut fields = non_zst_fields(cx, &inner);
 | |
|                 let (offset1, field1) = fields.next().unwrap_or_else(|| {
 | |
|                     panic!(
 | |
|                         "`ScalarPair` layout for type with not even one non-ZST field: {inner:#?}"
 | |
|                     )
 | |
|                 });
 | |
|                 let (offset2, field2) = fields.next().unwrap_or_else(|| {
 | |
|                     panic!(
 | |
|                         "`ScalarPair` layout for type with less than two non-ZST fields: {inner:#?}"
 | |
|                     )
 | |
|                 });
 | |
|                 assert_matches!(
 | |
|                     fields.next(),
 | |
|                     None,
 | |
|                     "`ScalarPair` layout for type with at least three non-ZST fields: {inner:#?}"
 | |
|                 );
 | |
|                 // The fields might be in opposite order.
 | |
|                 let (offset1, field1, offset2, field2) = if offset1 <= offset2 {
 | |
|                     (offset1, field1, offset2, field2)
 | |
|                 } else {
 | |
|                     (offset2, field2, offset1, field1)
 | |
|                 };
 | |
|                 // The fields should be at the right offset, and match the `scalar` layout.
 | |
|                 let size1 = scalar1.size(cx);
 | |
|                 let align1 = scalar1.align(cx).abi;
 | |
|                 let size2 = scalar2.size(cx);
 | |
|                 let align2 = scalar2.align(cx).abi;
 | |
|                 assert_eq!(
 | |
|                     offset1,
 | |
|                     Size::ZERO,
 | |
|                     "`ScalarPair` first field at non-0 offset in {inner:#?}",
 | |
|                 );
 | |
|                 assert_eq!(
 | |
|                     field1.size, size1,
 | |
|                     "`ScalarPair` first field with bad size in {inner:#?}",
 | |
|                 );
 | |
|                 assert_eq!(
 | |
|                     field1.align.abi, align1,
 | |
|                     "`ScalarPair` first field with bad align in {inner:#?}",
 | |
|                 );
 | |
|                 assert_matches!(
 | |
|                     field1.abi,
 | |
|                     Abi::Scalar(_),
 | |
|                     "`ScalarPair` first field with bad ABI in {inner:#?}",
 | |
|                 );
 | |
|                 let field2_offset = size1.align_to(align2);
 | |
|                 assert_eq!(
 | |
|                     offset2, field2_offset,
 | |
|                     "`ScalarPair` second field at bad offset in {inner:#?}",
 | |
|                 );
 | |
|                 assert_eq!(
 | |
|                     field2.size, size2,
 | |
|                     "`ScalarPair` second field with bad size in {inner:#?}",
 | |
|                 );
 | |
|                 assert_eq!(
 | |
|                     field2.align.abi, align2,
 | |
|                     "`ScalarPair` second field with bad align in {inner:#?}",
 | |
|                 );
 | |
|                 assert_matches!(
 | |
|                     field2.abi,
 | |
|                     Abi::Scalar(_),
 | |
|                     "`ScalarPair` second field with bad ABI in {inner:#?}",
 | |
|                 );
 | |
|             }
 | |
|             Abi::Vector { element, .. } => {
 | |
|                 assert!(align >= element.align(cx).abi); // just sanity-checking `vector_align`.
 | |
|                 // FIXME: Do some kind of check of the inner type, like for Scalar and ScalarPair.
 | |
|             }
 | |
|             Abi::Uninhabited | Abi::Aggregate { .. } => {} // Nothing to check.
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     check_layout_abi(cx, layout);
 | |
| 
 | |
|     if let Variants::Multiple { variants, .. } = &layout.variants {
 | |
|         for variant in variants.iter() {
 | |
|             // No nested "multiple".
 | |
|             assert_matches!(variant.variants, Variants::Single { .. });
 | |
|             // Variants should have the same or a smaller size as the full thing,
 | |
|             // and same for alignment.
 | |
|             if variant.size > layout.size {
 | |
|                 bug!(
 | |
|                     "Type with size {} bytes has variant with size {} bytes: {layout:#?}",
 | |
|                     layout.size.bytes(),
 | |
|                     variant.size.bytes(),
 | |
|                 )
 | |
|             }
 | |
|             if variant.align.abi > layout.align.abi {
 | |
|                 bug!(
 | |
|                     "Type with alignment {} bytes has variant with alignment {} bytes: {layout:#?}",
 | |
|                     layout.align.abi.bytes(),
 | |
|                     variant.align.abi.bytes(),
 | |
|                 )
 | |
|             }
 | |
|             // Skip empty variants.
 | |
|             if variant.size == Size::ZERO
 | |
|                 || variant.fields.count() == 0
 | |
|                 || variant.abi.is_uninhabited()
 | |
|             {
 | |
|                 // These are never actually accessed anyway, so we can skip the coherence check
 | |
|                 // for them. They also fail that check, since they have
 | |
|                 // `Aggregate`/`Uninhabited` ABI even when the main type is
 | |
|                 // `Scalar`/`ScalarPair`. (Note that sometimes, variants with fields have size
 | |
|                 // 0, and sometimes, variants without fields have non-0 size.)
 | |
|                 continue;
 | |
|             }
 | |
|             // The top-level ABI and the ABI of the variants should be coherent.
 | |
|             let scalar_coherent =
 | |
|                 |s1: Scalar, s2: Scalar| s1.size(cx) == s2.size(cx) && s1.align(cx) == s2.align(cx);
 | |
|             let abi_coherent = match (layout.abi, variant.abi) {
 | |
|                 (Abi::Scalar(s1), Abi::Scalar(s2)) => scalar_coherent(s1, s2),
 | |
|                 (Abi::ScalarPair(a1, b1), Abi::ScalarPair(a2, b2)) => {
 | |
|                     scalar_coherent(a1, a2) && scalar_coherent(b1, b2)
 | |
|                 }
 | |
|                 (Abi::Uninhabited, _) => true,
 | |
|                 (Abi::Aggregate { .. }, _) => true,
 | |
|                 _ => false,
 | |
|             };
 | |
|             if !abi_coherent {
 | |
|                 bug!(
 | |
|                     "Variant ABI is incompatible with top-level ABI:\nvariant={:#?}\nTop-level: {layout:#?}",
 | |
|                     variant
 | |
|                 );
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | 
