Nikita Popov 30331828cb Use poison instead of undef
In cases where it is legal, we should prefer poison values over
undef values.

This replaces undef with poison for aggregate construction and
for uninhabited types. There are more places where we can likely
use poison, but I wanted to stay conservative to start with.

In particular the aggregate case is important for newer LLVM
versions, which are not able to handle an undef base value during
early optimization due to poison-propagation concerns.
2023-03-16 15:07:04 +01:00

445 lines
16 KiB
Rust

//! Code that is useful in various codegen modules.
use crate::consts::{self, const_alloc_to_llvm};
pub use crate::context::CodegenCx;
use crate::llvm::{self, BasicBlock, Bool, ConstantInt, False, OperandBundleDef, True};
use crate::type_::Type;
use crate::type_of::LayoutLlvmExt;
use crate::value::Value;
use rustc_ast::Mutability;
use rustc_codegen_ssa::mir::place::PlaceRef;
use rustc_codegen_ssa::traits::*;
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
use rustc_hir::def_id::DefId;
use rustc_middle::bug;
use rustc_middle::mir::interpret::{ConstAllocation, GlobalAlloc, Scalar};
use rustc_middle::ty::layout::{LayoutOf, TyAndLayout};
use rustc_middle::ty::TyCtxt;
use rustc_session::cstore::{DllCallingConvention, DllImport, PeImportNameType};
use rustc_target::abi::{self, AddressSpace, HasDataLayout, Pointer, Size};
use rustc_target::spec::Target;
use libc::{c_char, c_uint};
use std::fmt::Write;
/*
* A note on nomenclature of linking: "extern", "foreign", and "upcall".
*
* An "extern" is an LLVM symbol we wind up emitting an undefined external
* reference to. This means "we don't have the thing in this compilation unit,
* please make sure you link it in at runtime". This could be a reference to
* C code found in a C library, or rust code found in a rust crate.
*
* Most "externs" are implicitly declared (automatically) as a result of a
* user declaring an extern _module_ dependency; this causes the rust driver
* to locate an extern crate, scan its compilation metadata, and emit extern
* declarations for any symbols used by the declaring crate.
*
* A "foreign" is an extern that references C (or other non-rust ABI) code.
* There is no metadata to scan for extern references so in these cases either
* a header-digester like bindgen, or manual function prototypes, have to
* serve as declarators. So these are usually given explicitly as prototype
* declarations, in rust code, with ABI attributes on them noting which ABI to
* link via.
*
* An "upcall" is a foreign call generated by the compiler (not corresponding
* to any user-written call in the code) into the runtime library, to perform
* some helper task such as bringing a task to life, allocating memory, etc.
*
*/
/// A structure representing an active landing pad for the duration of a basic
/// block.
///
/// Each `Block` may contain an instance of this, indicating whether the block
/// is part of a landing pad or not. This is used to make decision about whether
/// to emit `invoke` instructions (e.g., in a landing pad we don't continue to
/// use `invoke`) and also about various function call metadata.
///
/// For GNU exceptions (`landingpad` + `resume` instructions) this structure is
/// just a bunch of `None` instances (not too interesting), but for MSVC
/// exceptions (`cleanuppad` + `cleanupret` instructions) this contains data.
/// When inside of a landing pad, each function call in LLVM IR needs to be
/// annotated with which landing pad it's a part of. This is accomplished via
/// the `OperandBundleDef` value created for MSVC landing pads.
pub struct Funclet<'ll> {
cleanuppad: &'ll Value,
operand: OperandBundleDef<'ll>,
}
impl<'ll> Funclet<'ll> {
pub fn new(cleanuppad: &'ll Value) -> Self {
Funclet { cleanuppad, operand: OperandBundleDef::new("funclet", &[cleanuppad]) }
}
pub fn cleanuppad(&self) -> &'ll Value {
self.cleanuppad
}
pub fn bundle(&self) -> &OperandBundleDef<'ll> {
&self.operand
}
}
impl<'ll> BackendTypes for CodegenCx<'ll, '_> {
type Value = &'ll Value;
// FIXME(eddyb) replace this with a `Function` "subclass" of `Value`.
type Function = &'ll Value;
type BasicBlock = &'ll BasicBlock;
type Type = &'ll Type;
type Funclet = Funclet<'ll>;
type DIScope = &'ll llvm::debuginfo::DIScope;
type DILocation = &'ll llvm::debuginfo::DILocation;
type DIVariable = &'ll llvm::debuginfo::DIVariable;
}
impl<'ll> CodegenCx<'ll, '_> {
pub fn const_array(&self, ty: &'ll Type, elts: &[&'ll Value]) -> &'ll Value {
unsafe { llvm::LLVMConstArray(ty, elts.as_ptr(), elts.len() as c_uint) }
}
pub fn const_vector(&self, elts: &[&'ll Value]) -> &'ll Value {
unsafe { llvm::LLVMConstVector(elts.as_ptr(), elts.len() as c_uint) }
}
pub fn const_bytes(&self, bytes: &[u8]) -> &'ll Value {
bytes_in_context(self.llcx, bytes)
}
pub fn const_get_elt(&self, v: &'ll Value, idx: u64) -> &'ll Value {
unsafe {
assert_eq!(idx as c_uint as u64, idx);
let r = llvm::LLVMGetAggregateElement(v, idx as c_uint).unwrap();
debug!("const_get_elt(v={:?}, idx={}, r={:?})", v, idx, r);
r
}
}
}
impl<'ll, 'tcx> ConstMethods<'tcx> for CodegenCx<'ll, 'tcx> {
fn const_null(&self, t: &'ll Type) -> &'ll Value {
unsafe { llvm::LLVMConstNull(t) }
}
fn const_undef(&self, t: &'ll Type) -> &'ll Value {
unsafe { llvm::LLVMGetUndef(t) }
}
fn const_poison(&self, t: &'ll Type) -> &'ll Value {
unsafe { llvm::LLVMGetPoison(t) }
}
fn const_int(&self, t: &'ll Type, i: i64) -> &'ll Value {
unsafe { llvm::LLVMConstInt(t, i as u64, True) }
}
fn const_uint(&self, t: &'ll Type, i: u64) -> &'ll Value {
unsafe { llvm::LLVMConstInt(t, i, False) }
}
fn const_uint_big(&self, t: &'ll Type, u: u128) -> &'ll Value {
unsafe {
let words = [u as u64, (u >> 64) as u64];
llvm::LLVMConstIntOfArbitraryPrecision(t, 2, words.as_ptr())
}
}
fn const_bool(&self, val: bool) -> &'ll Value {
self.const_uint(self.type_i1(), val as u64)
}
fn const_i16(&self, i: i16) -> &'ll Value {
self.const_int(self.type_i16(), i as i64)
}
fn const_i32(&self, i: i32) -> &'ll Value {
self.const_int(self.type_i32(), i as i64)
}
fn const_u32(&self, i: u32) -> &'ll Value {
self.const_uint(self.type_i32(), i as u64)
}
fn const_u64(&self, i: u64) -> &'ll Value {
self.const_uint(self.type_i64(), i)
}
fn const_usize(&self, i: u64) -> &'ll Value {
let bit_size = self.data_layout().pointer_size.bits();
if bit_size < 64 {
// make sure it doesn't overflow
assert!(i < (1 << bit_size));
}
self.const_uint(self.isize_ty, i)
}
fn const_u8(&self, i: u8) -> &'ll Value {
self.const_uint(self.type_i8(), i as u64)
}
fn const_real(&self, t: &'ll Type, val: f64) -> &'ll Value {
unsafe { llvm::LLVMConstReal(t, val) }
}
fn const_str(&self, s: &str) -> (&'ll Value, &'ll Value) {
let str_global = *self
.const_str_cache
.borrow_mut()
.raw_entry_mut()
.from_key(s)
.or_insert_with(|| {
let sc = self.const_bytes(s.as_bytes());
let sym = self.generate_local_symbol_name("str");
let g = self.define_global(&sym, self.val_ty(sc)).unwrap_or_else(|| {
bug!("symbol `{}` is already defined", sym);
});
unsafe {
llvm::LLVMSetInitializer(g, sc);
llvm::LLVMSetGlobalConstant(g, True);
llvm::LLVMRustSetLinkage(g, llvm::Linkage::InternalLinkage);
}
(s.to_owned(), g)
})
.1;
let len = s.len();
let cs = consts::ptrcast(
str_global,
self.type_ptr_to(self.layout_of(self.tcx.types.str_).llvm_type(self)),
);
(cs, self.const_usize(len as u64))
}
fn const_struct(&self, elts: &[&'ll Value], packed: bool) -> &'ll Value {
struct_in_context(self.llcx, elts, packed)
}
fn const_to_opt_uint(&self, v: &'ll Value) -> Option<u64> {
try_as_const_integral(v).and_then(|v| unsafe {
let mut i = 0u64;
let success = llvm::LLVMRustConstIntGetZExtValue(v, &mut i);
success.then_some(i)
})
}
fn const_to_opt_u128(&self, v: &'ll Value, sign_ext: bool) -> Option<u128> {
try_as_const_integral(v).and_then(|v| unsafe {
let (mut lo, mut hi) = (0u64, 0u64);
let success = llvm::LLVMRustConstInt128Get(v, sign_ext, &mut hi, &mut lo);
success.then_some(hi_lo_to_u128(lo, hi))
})
}
fn scalar_to_backend(&self, cv: Scalar, layout: abi::Scalar, llty: &'ll Type) -> &'ll Value {
let bitsize = if layout.is_bool() { 1 } else { layout.size(self).bits() };
match cv {
Scalar::Int(int) => {
let data = int.assert_bits(layout.size(self));
let llval = self.const_uint_big(self.type_ix(bitsize), data);
if matches!(layout.primitive(), Pointer(_)) {
unsafe { llvm::LLVMConstIntToPtr(llval, llty) }
} else {
self.const_bitcast(llval, llty)
}
}
Scalar::Ptr(ptr, _size) => {
let (alloc_id, offset) = ptr.into_parts();
let (base_addr, base_addr_space) = match self.tcx.global_alloc(alloc_id) {
GlobalAlloc::Memory(alloc) => {
let init = const_alloc_to_llvm(self, alloc);
let alloc = alloc.inner();
let value = match alloc.mutability {
Mutability::Mut => self.static_addr_of_mut(init, alloc.align, None),
_ => self.static_addr_of(init, alloc.align, None),
};
if !self.sess().fewer_names() && llvm::get_value_name(value).is_empty() {
let hash = self.tcx.with_stable_hashing_context(|mut hcx| {
let mut hasher = StableHasher::new();
alloc.hash_stable(&mut hcx, &mut hasher);
hasher.finish::<u128>()
});
llvm::set_value_name(value, format!("alloc_{hash:032x}").as_bytes());
}
(value, AddressSpace::DATA)
}
GlobalAlloc::Function(fn_instance) => (
self.get_fn_addr(fn_instance.polymorphize(self.tcx)),
self.data_layout().instruction_address_space,
),
GlobalAlloc::VTable(ty, trait_ref) => {
let alloc = self
.tcx
.global_alloc(self.tcx.vtable_allocation((ty, trait_ref)))
.unwrap_memory();
let init = const_alloc_to_llvm(self, alloc);
let value = self.static_addr_of(init, alloc.inner().align, None);
(value, AddressSpace::DATA)
}
GlobalAlloc::Static(def_id) => {
assert!(self.tcx.is_static(def_id));
assert!(!self.tcx.is_thread_local_static(def_id));
(self.get_static(def_id), AddressSpace::DATA)
}
};
let llval = unsafe {
llvm::LLVMRustConstInBoundsGEP2(
self.type_i8(),
self.const_bitcast(base_addr, self.type_i8p_ext(base_addr_space)),
&self.const_usize(offset.bytes()),
1,
)
};
if !matches!(layout.primitive(), Pointer(_)) {
unsafe { llvm::LLVMConstPtrToInt(llval, llty) }
} else {
self.const_bitcast(llval, llty)
}
}
}
}
fn const_data_from_alloc(&self, alloc: ConstAllocation<'tcx>) -> Self::Value {
const_alloc_to_llvm(self, alloc)
}
fn from_const_alloc(
&self,
layout: TyAndLayout<'tcx>,
alloc: ConstAllocation<'tcx>,
offset: Size,
) -> PlaceRef<'tcx, &'ll Value> {
let alloc_align = alloc.inner().align;
assert_eq!(alloc_align, layout.align.abi);
let llty = self.type_ptr_to(layout.llvm_type(self));
let llval = if layout.size == Size::ZERO {
let llval = self.const_usize(alloc_align.bytes());
unsafe { llvm::LLVMConstIntToPtr(llval, llty) }
} else {
let init = const_alloc_to_llvm(self, alloc);
let base_addr = self.static_addr_of(init, alloc_align, None);
let llval = unsafe {
llvm::LLVMRustConstInBoundsGEP2(
self.type_i8(),
self.const_bitcast(base_addr, self.type_i8p()),
&self.const_usize(offset.bytes()),
1,
)
};
self.const_bitcast(llval, llty)
};
PlaceRef::new_sized(llval, layout)
}
fn const_ptrcast(&self, val: &'ll Value, ty: &'ll Type) -> &'ll Value {
consts::ptrcast(val, ty)
}
}
/// Get the [LLVM type][Type] of a [`Value`].
pub fn val_ty(v: &Value) -> &Type {
unsafe { llvm::LLVMTypeOf(v) }
}
pub fn bytes_in_context<'ll>(llcx: &'ll llvm::Context, bytes: &[u8]) -> &'ll Value {
unsafe {
let ptr = bytes.as_ptr() as *const c_char;
llvm::LLVMConstStringInContext(llcx, ptr, bytes.len() as c_uint, True)
}
}
pub fn struct_in_context<'ll>(
llcx: &'ll llvm::Context,
elts: &[&'ll Value],
packed: bool,
) -> &'ll Value {
unsafe {
llvm::LLVMConstStructInContext(llcx, elts.as_ptr(), elts.len() as c_uint, packed as Bool)
}
}
#[inline]
fn hi_lo_to_u128(lo: u64, hi: u64) -> u128 {
((hi as u128) << 64) | (lo as u128)
}
fn try_as_const_integral(v: &Value) -> Option<&ConstantInt> {
unsafe { llvm::LLVMIsAConstantInt(v) }
}
pub(crate) fn get_dllimport<'tcx>(
tcx: TyCtxt<'tcx>,
id: DefId,
name: &str,
) -> Option<&'tcx DllImport> {
tcx.native_library(id)
.map(|lib| lib.dll_imports.iter().find(|di| di.name.as_str() == name))
.flatten()
}
pub(crate) fn is_mingw_gnu_toolchain(target: &Target) -> bool {
target.vendor == "pc" && target.os == "windows" && target.env == "gnu" && target.abi.is_empty()
}
pub(crate) fn i686_decorated_name(
dll_import: &DllImport,
mingw: bool,
disable_name_mangling: bool,
) -> String {
let name = dll_import.name.as_str();
let (add_prefix, add_suffix) = match dll_import.import_name_type {
Some(PeImportNameType::NoPrefix) => (false, true),
Some(PeImportNameType::Undecorated) => (false, false),
_ => (true, true),
};
// Worst case: +1 for disable name mangling, +1 for prefix, +4 for suffix (@@__).
let mut decorated_name = String::with_capacity(name.len() + 6);
if disable_name_mangling {
// LLVM uses a binary 1 ('\x01') prefix to a name to indicate that mangling needs to be disabled.
decorated_name.push('\x01');
}
let prefix = if add_prefix && dll_import.is_fn {
match dll_import.calling_convention {
DllCallingConvention::C | DllCallingConvention::Vectorcall(_) => None,
DllCallingConvention::Stdcall(_) => (!mingw
|| dll_import.import_name_type == Some(PeImportNameType::Decorated))
.then_some('_'),
DllCallingConvention::Fastcall(_) => Some('@'),
}
} else if !dll_import.is_fn && !mingw {
// For static variables, prefix with '_' on MSVC.
Some('_')
} else {
None
};
if let Some(prefix) = prefix {
decorated_name.push(prefix);
}
decorated_name.push_str(name);
if add_suffix && dll_import.is_fn {
match dll_import.calling_convention {
DllCallingConvention::C => {}
DllCallingConvention::Stdcall(arg_list_size)
| DllCallingConvention::Fastcall(arg_list_size) => {
write!(&mut decorated_name, "@{}", arg_list_size).unwrap();
}
DllCallingConvention::Vectorcall(arg_list_size) => {
write!(&mut decorated_name, "@@{}", arg_list_size).unwrap();
}
}
}
decorated_name
}