mirror of
				https://github.com/rust-lang/rust.git
				synced 2025-10-31 13:04:42 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1881 lines
		
	
	
		
			73 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			1881 lines
		
	
	
		
			73 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
| use crate::abi::{Abi, FnAbi, FnAbiLlvmExt, LlvmType, PassMode};
 | ||
| use crate::builder::Builder;
 | ||
| use crate::context::CodegenCx;
 | ||
| use crate::llvm;
 | ||
| use crate::type_::Type;
 | ||
| use crate::type_of::LayoutLlvmExt;
 | ||
| use crate::va_arg::emit_va_arg;
 | ||
| use crate::value::Value;
 | ||
| 
 | ||
| use rustc_ast as ast;
 | ||
| use rustc_codegen_ssa::base::{compare_simd_types, wants_msvc_seh};
 | ||
| use rustc_codegen_ssa::common::span_invalid_monomorphization_error;
 | ||
| use rustc_codegen_ssa::common::{IntPredicate, TypeKind};
 | ||
| use rustc_codegen_ssa::mir::operand::OperandRef;
 | ||
| use rustc_codegen_ssa::mir::place::PlaceRef;
 | ||
| use rustc_codegen_ssa::traits::*;
 | ||
| use rustc_hir as hir;
 | ||
| use rustc_middle::ty::layout::{FnAbiOf, HasTyCtxt, LayoutOf};
 | ||
| use rustc_middle::ty::{self, Ty};
 | ||
| use rustc_middle::{bug, span_bug};
 | ||
| use rustc_span::{sym, symbol::kw, Span, Symbol};
 | ||
| use rustc_target::abi::{self, Align, HasDataLayout, Primitive};
 | ||
| use rustc_target::spec::{HasTargetSpec, PanicStrategy};
 | ||
| 
 | ||
| use std::cmp::Ordering;
 | ||
| use std::iter;
 | ||
| 
 | ||
| fn get_simple_intrinsic(cx: &CodegenCx<'ll, '_>, name: Symbol) -> Option<(&'ll Type, &'ll Value)> {
 | ||
|     let llvm_name = match name {
 | ||
|         sym::sqrtf32 => "llvm.sqrt.f32",
 | ||
|         sym::sqrtf64 => "llvm.sqrt.f64",
 | ||
|         sym::powif32 => "llvm.powi.f32",
 | ||
|         sym::powif64 => "llvm.powi.f64",
 | ||
|         sym::sinf32 => "llvm.sin.f32",
 | ||
|         sym::sinf64 => "llvm.sin.f64",
 | ||
|         sym::cosf32 => "llvm.cos.f32",
 | ||
|         sym::cosf64 => "llvm.cos.f64",
 | ||
|         sym::powf32 => "llvm.pow.f32",
 | ||
|         sym::powf64 => "llvm.pow.f64",
 | ||
|         sym::expf32 => "llvm.exp.f32",
 | ||
|         sym::expf64 => "llvm.exp.f64",
 | ||
|         sym::exp2f32 => "llvm.exp2.f32",
 | ||
|         sym::exp2f64 => "llvm.exp2.f64",
 | ||
|         sym::logf32 => "llvm.log.f32",
 | ||
|         sym::logf64 => "llvm.log.f64",
 | ||
|         sym::log10f32 => "llvm.log10.f32",
 | ||
|         sym::log10f64 => "llvm.log10.f64",
 | ||
|         sym::log2f32 => "llvm.log2.f32",
 | ||
|         sym::log2f64 => "llvm.log2.f64",
 | ||
|         sym::fmaf32 => "llvm.fma.f32",
 | ||
|         sym::fmaf64 => "llvm.fma.f64",
 | ||
|         sym::fabsf32 => "llvm.fabs.f32",
 | ||
|         sym::fabsf64 => "llvm.fabs.f64",
 | ||
|         sym::minnumf32 => "llvm.minnum.f32",
 | ||
|         sym::minnumf64 => "llvm.minnum.f64",
 | ||
|         sym::maxnumf32 => "llvm.maxnum.f32",
 | ||
|         sym::maxnumf64 => "llvm.maxnum.f64",
 | ||
|         sym::copysignf32 => "llvm.copysign.f32",
 | ||
|         sym::copysignf64 => "llvm.copysign.f64",
 | ||
|         sym::floorf32 => "llvm.floor.f32",
 | ||
|         sym::floorf64 => "llvm.floor.f64",
 | ||
|         sym::ceilf32 => "llvm.ceil.f32",
 | ||
|         sym::ceilf64 => "llvm.ceil.f64",
 | ||
|         sym::truncf32 => "llvm.trunc.f32",
 | ||
|         sym::truncf64 => "llvm.trunc.f64",
 | ||
|         sym::rintf32 => "llvm.rint.f32",
 | ||
|         sym::rintf64 => "llvm.rint.f64",
 | ||
|         sym::nearbyintf32 => "llvm.nearbyint.f32",
 | ||
|         sym::nearbyintf64 => "llvm.nearbyint.f64",
 | ||
|         sym::roundf32 => "llvm.round.f32",
 | ||
|         sym::roundf64 => "llvm.round.f64",
 | ||
|         _ => return None,
 | ||
|     };
 | ||
|     Some(cx.get_intrinsic(llvm_name))
 | ||
| }
 | ||
| 
 | ||
| impl IntrinsicCallMethods<'tcx> for Builder<'a, 'll, 'tcx> {
 | ||
|     fn codegen_intrinsic_call(
 | ||
|         &mut self,
 | ||
|         instance: ty::Instance<'tcx>,
 | ||
|         fn_abi: &FnAbi<'tcx, Ty<'tcx>>,
 | ||
|         args: &[OperandRef<'tcx, &'ll Value>],
 | ||
|         llresult: &'ll Value,
 | ||
|         span: Span,
 | ||
|     ) {
 | ||
|         let tcx = self.tcx;
 | ||
|         let callee_ty = instance.ty(tcx, ty::ParamEnv::reveal_all());
 | ||
| 
 | ||
|         let (def_id, substs) = match *callee_ty.kind() {
 | ||
|             ty::FnDef(def_id, substs) => (def_id, substs),
 | ||
|             _ => bug!("expected fn item type, found {}", callee_ty),
 | ||
|         };
 | ||
| 
 | ||
|         let sig = callee_ty.fn_sig(tcx);
 | ||
|         let sig = tcx.normalize_erasing_late_bound_regions(ty::ParamEnv::reveal_all(), sig);
 | ||
|         let arg_tys = sig.inputs();
 | ||
|         let ret_ty = sig.output();
 | ||
|         let name = tcx.item_name(def_id);
 | ||
| 
 | ||
|         let llret_ty = self.layout_of(ret_ty).llvm_type(self);
 | ||
|         let result = PlaceRef::new_sized(llresult, fn_abi.ret.layout);
 | ||
| 
 | ||
|         let simple = get_simple_intrinsic(self, name);
 | ||
|         let llval = match name {
 | ||
|             _ if simple.is_some() => {
 | ||
|                 let (simple_ty, simple_fn) = simple.unwrap();
 | ||
|                 self.call(
 | ||
|                     simple_ty,
 | ||
|                     simple_fn,
 | ||
|                     &args.iter().map(|arg| arg.immediate()).collect::<Vec<_>>(),
 | ||
|                     None,
 | ||
|                 )
 | ||
|             }
 | ||
|             sym::likely => {
 | ||
|                 self.call_intrinsic("llvm.expect.i1", &[args[0].immediate(), self.const_bool(true)])
 | ||
|             }
 | ||
|             sym::unlikely => self
 | ||
|                 .call_intrinsic("llvm.expect.i1", &[args[0].immediate(), self.const_bool(false)]),
 | ||
|             kw::Try => {
 | ||
|                 try_intrinsic(
 | ||
|                     self,
 | ||
|                     args[0].immediate(),
 | ||
|                     args[1].immediate(),
 | ||
|                     args[2].immediate(),
 | ||
|                     llresult,
 | ||
|                 );
 | ||
|                 return;
 | ||
|             }
 | ||
|             sym::breakpoint => self.call_intrinsic("llvm.debugtrap", &[]),
 | ||
|             sym::va_copy => {
 | ||
|                 self.call_intrinsic("llvm.va_copy", &[args[0].immediate(), args[1].immediate()])
 | ||
|             }
 | ||
|             sym::va_arg => {
 | ||
|                 match fn_abi.ret.layout.abi {
 | ||
|                     abi::Abi::Scalar(scalar) => {
 | ||
|                         match scalar.value {
 | ||
|                             Primitive::Int(..) => {
 | ||
|                                 if self.cx().size_of(ret_ty).bytes() < 4 {
 | ||
|                                     // `va_arg` should not be called on an integer type
 | ||
|                                     // less than 4 bytes in length. If it is, promote
 | ||
|                                     // the integer to an `i32` and truncate the result
 | ||
|                                     // back to the smaller type.
 | ||
|                                     let promoted_result = emit_va_arg(self, args[0], tcx.types.i32);
 | ||
|                                     self.trunc(promoted_result, llret_ty)
 | ||
|                                 } else {
 | ||
|                                     emit_va_arg(self, args[0], ret_ty)
 | ||
|                                 }
 | ||
|                             }
 | ||
|                             Primitive::F64 | Primitive::Pointer => {
 | ||
|                                 emit_va_arg(self, args[0], ret_ty)
 | ||
|                             }
 | ||
|                             // `va_arg` should never be used with the return type f32.
 | ||
|                             Primitive::F32 => bug!("the va_arg intrinsic does not work with `f32`"),
 | ||
|                         }
 | ||
|                     }
 | ||
|                     _ => bug!("the va_arg intrinsic does not work with non-scalar types"),
 | ||
|                 }
 | ||
|             }
 | ||
| 
 | ||
|             sym::volatile_load | sym::unaligned_volatile_load => {
 | ||
|                 let tp_ty = substs.type_at(0);
 | ||
|                 let ptr = args[0].immediate();
 | ||
|                 let load = if let PassMode::Cast(ty) = fn_abi.ret.mode {
 | ||
|                     let llty = ty.llvm_type(self);
 | ||
|                     let ptr = self.pointercast(ptr, self.type_ptr_to(llty));
 | ||
|                     self.volatile_load(llty, ptr)
 | ||
|                 } else {
 | ||
|                     self.volatile_load(self.layout_of(tp_ty).llvm_type(self), ptr)
 | ||
|                 };
 | ||
|                 let align = if name == sym::unaligned_volatile_load {
 | ||
|                     1
 | ||
|                 } else {
 | ||
|                     self.align_of(tp_ty).bytes() as u32
 | ||
|                 };
 | ||
|                 unsafe {
 | ||
|                     llvm::LLVMSetAlignment(load, align);
 | ||
|                 }
 | ||
|                 self.to_immediate(load, self.layout_of(tp_ty))
 | ||
|             }
 | ||
|             sym::volatile_store => {
 | ||
|                 let dst = args[0].deref(self.cx());
 | ||
|                 args[1].val.volatile_store(self, dst);
 | ||
|                 return;
 | ||
|             }
 | ||
|             sym::unaligned_volatile_store => {
 | ||
|                 let dst = args[0].deref(self.cx());
 | ||
|                 args[1].val.unaligned_volatile_store(self, dst);
 | ||
|                 return;
 | ||
|             }
 | ||
|             sym::prefetch_read_data
 | ||
|             | sym::prefetch_write_data
 | ||
|             | sym::prefetch_read_instruction
 | ||
|             | sym::prefetch_write_instruction => {
 | ||
|                 let (rw, cache_type) = match name {
 | ||
|                     sym::prefetch_read_data => (0, 1),
 | ||
|                     sym::prefetch_write_data => (1, 1),
 | ||
|                     sym::prefetch_read_instruction => (0, 0),
 | ||
|                     sym::prefetch_write_instruction => (1, 0),
 | ||
|                     _ => bug!(),
 | ||
|                 };
 | ||
|                 self.call_intrinsic(
 | ||
|                     "llvm.prefetch",
 | ||
|                     &[
 | ||
|                         args[0].immediate(),
 | ||
|                         self.const_i32(rw),
 | ||
|                         args[1].immediate(),
 | ||
|                         self.const_i32(cache_type),
 | ||
|                     ],
 | ||
|                 )
 | ||
|             }
 | ||
|             sym::ctlz
 | ||
|             | sym::ctlz_nonzero
 | ||
|             | sym::cttz
 | ||
|             | sym::cttz_nonzero
 | ||
|             | sym::ctpop
 | ||
|             | sym::bswap
 | ||
|             | sym::bitreverse
 | ||
|             | sym::rotate_left
 | ||
|             | sym::rotate_right
 | ||
|             | sym::saturating_add
 | ||
|             | sym::saturating_sub => {
 | ||
|                 let ty = arg_tys[0];
 | ||
|                 match int_type_width_signed(ty, self) {
 | ||
|                     Some((width, signed)) => match name {
 | ||
|                         sym::ctlz | sym::cttz => {
 | ||
|                             let y = self.const_bool(false);
 | ||
|                             self.call_intrinsic(
 | ||
|                                 &format!("llvm.{}.i{}", name, width),
 | ||
|                                 &[args[0].immediate(), y],
 | ||
|                             )
 | ||
|                         }
 | ||
|                         sym::ctlz_nonzero => {
 | ||
|                             let y = self.const_bool(true);
 | ||
|                             let llvm_name = &format!("llvm.ctlz.i{}", width);
 | ||
|                             self.call_intrinsic(llvm_name, &[args[0].immediate(), y])
 | ||
|                         }
 | ||
|                         sym::cttz_nonzero => {
 | ||
|                             let y = self.const_bool(true);
 | ||
|                             let llvm_name = &format!("llvm.cttz.i{}", width);
 | ||
|                             self.call_intrinsic(llvm_name, &[args[0].immediate(), y])
 | ||
|                         }
 | ||
|                         sym::ctpop => self.call_intrinsic(
 | ||
|                             &format!("llvm.ctpop.i{}", width),
 | ||
|                             &[args[0].immediate()],
 | ||
|                         ),
 | ||
|                         sym::bswap => {
 | ||
|                             if width == 8 {
 | ||
|                                 args[0].immediate() // byte swap a u8/i8 is just a no-op
 | ||
|                             } else {
 | ||
|                                 self.call_intrinsic(
 | ||
|                                     &format!("llvm.bswap.i{}", width),
 | ||
|                                     &[args[0].immediate()],
 | ||
|                                 )
 | ||
|                             }
 | ||
|                         }
 | ||
|                         sym::bitreverse => self.call_intrinsic(
 | ||
|                             &format!("llvm.bitreverse.i{}", width),
 | ||
|                             &[args[0].immediate()],
 | ||
|                         ),
 | ||
|                         sym::rotate_left | sym::rotate_right => {
 | ||
|                             let is_left = name == sym::rotate_left;
 | ||
|                             let val = args[0].immediate();
 | ||
|                             let raw_shift = args[1].immediate();
 | ||
|                             // rotate = funnel shift with first two args the same
 | ||
|                             let llvm_name =
 | ||
|                                 &format!("llvm.fsh{}.i{}", if is_left { 'l' } else { 'r' }, width);
 | ||
|                             self.call_intrinsic(llvm_name, &[val, val, raw_shift])
 | ||
|                         }
 | ||
|                         sym::saturating_add | sym::saturating_sub => {
 | ||
|                             let is_add = name == sym::saturating_add;
 | ||
|                             let lhs = args[0].immediate();
 | ||
|                             let rhs = args[1].immediate();
 | ||
|                             let llvm_name = &format!(
 | ||
|                                 "llvm.{}{}.sat.i{}",
 | ||
|                                 if signed { 's' } else { 'u' },
 | ||
|                                 if is_add { "add" } else { "sub" },
 | ||
|                                 width
 | ||
|                             );
 | ||
|                             self.call_intrinsic(llvm_name, &[lhs, rhs])
 | ||
|                         }
 | ||
|                         _ => bug!(),
 | ||
|                     },
 | ||
|                     None => {
 | ||
|                         span_invalid_monomorphization_error(
 | ||
|                             tcx.sess,
 | ||
|                             span,
 | ||
|                             &format!(
 | ||
|                                 "invalid monomorphization of `{}` intrinsic: \
 | ||
|                                       expected basic integer type, found `{}`",
 | ||
|                                 name, ty
 | ||
|                             ),
 | ||
|                         );
 | ||
|                         return;
 | ||
|                     }
 | ||
|                 }
 | ||
|             }
 | ||
| 
 | ||
|             sym::raw_eq => {
 | ||
|                 use abi::Abi::*;
 | ||
|                 let tp_ty = substs.type_at(0);
 | ||
|                 let layout = self.layout_of(tp_ty).layout;
 | ||
|                 let use_integer_compare = match layout.abi {
 | ||
|                     Scalar(_) | ScalarPair(_, _) => true,
 | ||
|                     Uninhabited | Vector { .. } => false,
 | ||
|                     Aggregate { .. } => {
 | ||
|                         // For rusty ABIs, small aggregates are actually passed
 | ||
|                         // as `RegKind::Integer` (see `FnAbi::adjust_for_abi`),
 | ||
|                         // so we re-use that same threshold here.
 | ||
|                         layout.size <= self.data_layout().pointer_size * 2
 | ||
|                     }
 | ||
|                 };
 | ||
| 
 | ||
|                 let a = args[0].immediate();
 | ||
|                 let b = args[1].immediate();
 | ||
|                 if layout.size.bytes() == 0 {
 | ||
|                     self.const_bool(true)
 | ||
|                 } else if use_integer_compare {
 | ||
|                     let integer_ty = self.type_ix(layout.size.bits());
 | ||
|                     let ptr_ty = self.type_ptr_to(integer_ty);
 | ||
|                     let a_ptr = self.bitcast(a, ptr_ty);
 | ||
|                     let a_val = self.load(integer_ty, a_ptr, layout.align.abi);
 | ||
|                     let b_ptr = self.bitcast(b, ptr_ty);
 | ||
|                     let b_val = self.load(integer_ty, b_ptr, layout.align.abi);
 | ||
|                     self.icmp(IntPredicate::IntEQ, a_val, b_val)
 | ||
|                 } else {
 | ||
|                     let i8p_ty = self.type_i8p();
 | ||
|                     let a_ptr = self.bitcast(a, i8p_ty);
 | ||
|                     let b_ptr = self.bitcast(b, i8p_ty);
 | ||
|                     let n = self.const_usize(layout.size.bytes());
 | ||
|                     let cmp = self.call_intrinsic("memcmp", &[a_ptr, b_ptr, n]);
 | ||
|                     self.icmp(IntPredicate::IntEQ, cmp, self.const_i32(0))
 | ||
|                 }
 | ||
|             }
 | ||
| 
 | ||
|             sym::black_box => {
 | ||
|                 args[0].val.store(self, result);
 | ||
| 
 | ||
|                 // We need to "use" the argument in some way LLVM can't introspect, and on
 | ||
|                 // targets that support it we can typically leverage inline assembly to do
 | ||
|                 // this. LLVM's interpretation of inline assembly is that it's, well, a black
 | ||
|                 // box. This isn't the greatest implementation since it probably deoptimizes
 | ||
|                 // more than we want, but it's so far good enough.
 | ||
|                 crate::asm::inline_asm_call(
 | ||
|                     self,
 | ||
|                     "",
 | ||
|                     "r,~{memory}",
 | ||
|                     &[result.llval],
 | ||
|                     self.type_void(),
 | ||
|                     true,
 | ||
|                     false,
 | ||
|                     ast::LlvmAsmDialect::Att,
 | ||
|                     &[span],
 | ||
|                 )
 | ||
|                 .unwrap_or_else(|| bug!("failed to generate inline asm call for `black_box`"));
 | ||
| 
 | ||
|                 // We have copied the value to `result` already.
 | ||
|                 return;
 | ||
|             }
 | ||
| 
 | ||
|             _ if name.as_str().starts_with("simd_") => {
 | ||
|                 match generic_simd_intrinsic(self, name, callee_ty, args, ret_ty, llret_ty, span) {
 | ||
|                     Ok(llval) => llval,
 | ||
|                     Err(()) => return,
 | ||
|                 }
 | ||
|             }
 | ||
| 
 | ||
|             _ => bug!("unknown intrinsic '{}'", name),
 | ||
|         };
 | ||
| 
 | ||
|         if !fn_abi.ret.is_ignore() {
 | ||
|             if let PassMode::Cast(ty) = fn_abi.ret.mode {
 | ||
|                 let ptr_llty = self.type_ptr_to(ty.llvm_type(self));
 | ||
|                 let ptr = self.pointercast(result.llval, ptr_llty);
 | ||
|                 self.store(llval, ptr, result.align);
 | ||
|             } else {
 | ||
|                 OperandRef::from_immediate_or_packed_pair(self, llval, result.layout)
 | ||
|                     .val
 | ||
|                     .store(self, result);
 | ||
|             }
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     fn abort(&mut self) {
 | ||
|         self.call_intrinsic("llvm.trap", &[]);
 | ||
|     }
 | ||
| 
 | ||
|     fn assume(&mut self, val: Self::Value) {
 | ||
|         self.call_intrinsic("llvm.assume", &[val]);
 | ||
|     }
 | ||
| 
 | ||
|     fn expect(&mut self, cond: Self::Value, expected: bool) -> Self::Value {
 | ||
|         self.call_intrinsic("llvm.expect.i1", &[cond, self.const_bool(expected)])
 | ||
|     }
 | ||
| 
 | ||
|     fn sideeffect(&mut self) {
 | ||
|         // This kind of check would make a ton of sense in the caller, but currently the only
 | ||
|         // caller of this function is in `rustc_codegen_ssa`, which is agnostic to whether LLVM
 | ||
|         // codegen backend being used, and so is unable to check the LLVM version.
 | ||
|         if unsafe { llvm::LLVMRustVersionMajor() } < 12 {
 | ||
|             self.call_intrinsic("llvm.sideeffect", &[]);
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     fn type_test(&mut self, pointer: Self::Value, typeid: Self::Value) -> Self::Value {
 | ||
|         // Test the called operand using llvm.type.test intrinsic. The LowerTypeTests link-time
 | ||
|         // optimization pass replaces calls to this intrinsic with code to test type membership.
 | ||
|         let i8p_ty = self.type_i8p();
 | ||
|         let bitcast = self.bitcast(pointer, i8p_ty);
 | ||
|         self.call_intrinsic("llvm.type.test", &[bitcast, typeid])
 | ||
|     }
 | ||
| 
 | ||
|     fn va_start(&mut self, va_list: &'ll Value) -> &'ll Value {
 | ||
|         self.call_intrinsic("llvm.va_start", &[va_list])
 | ||
|     }
 | ||
| 
 | ||
|     fn va_end(&mut self, va_list: &'ll Value) -> &'ll Value {
 | ||
|         self.call_intrinsic("llvm.va_end", &[va_list])
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| fn try_intrinsic(
 | ||
|     bx: &mut Builder<'a, 'll, 'tcx>,
 | ||
|     try_func: &'ll Value,
 | ||
|     data: &'ll Value,
 | ||
|     catch_func: &'ll Value,
 | ||
|     dest: &'ll Value,
 | ||
| ) {
 | ||
|     if bx.sess().panic_strategy() == PanicStrategy::Abort {
 | ||
|         let try_func_ty = bx.type_func(&[bx.type_i8p()], bx.type_void());
 | ||
|         bx.call(try_func_ty, try_func, &[data], None);
 | ||
|         // Return 0 unconditionally from the intrinsic call;
 | ||
|         // we can never unwind.
 | ||
|         let ret_align = bx.tcx().data_layout.i32_align.abi;
 | ||
|         bx.store(bx.const_i32(0), dest, ret_align);
 | ||
|     } else if wants_msvc_seh(bx.sess()) {
 | ||
|         codegen_msvc_try(bx, try_func, data, catch_func, dest);
 | ||
|     } else if bx.sess().target.is_like_emscripten {
 | ||
|         codegen_emcc_try(bx, try_func, data, catch_func, dest);
 | ||
|     } else {
 | ||
|         codegen_gnu_try(bx, try_func, data, catch_func, dest);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| // MSVC's definition of the `rust_try` function.
 | ||
| //
 | ||
| // This implementation uses the new exception handling instructions in LLVM
 | ||
| // which have support in LLVM for SEH on MSVC targets. Although these
 | ||
| // instructions are meant to work for all targets, as of the time of this
 | ||
| // writing, however, LLVM does not recommend the usage of these new instructions
 | ||
| // as the old ones are still more optimized.
 | ||
| fn codegen_msvc_try(
 | ||
|     bx: &mut Builder<'a, 'll, 'tcx>,
 | ||
|     try_func: &'ll Value,
 | ||
|     data: &'ll Value,
 | ||
|     catch_func: &'ll Value,
 | ||
|     dest: &'ll Value,
 | ||
| ) {
 | ||
|     let (llty, llfn) = get_rust_try_fn(bx, &mut |mut bx| {
 | ||
|         bx.set_personality_fn(bx.eh_personality());
 | ||
| 
 | ||
|         let mut normal = bx.build_sibling_block("normal");
 | ||
|         let mut catchswitch = bx.build_sibling_block("catchswitch");
 | ||
|         let mut catchpad_rust = bx.build_sibling_block("catchpad_rust");
 | ||
|         let mut catchpad_foreign = bx.build_sibling_block("catchpad_foreign");
 | ||
|         let mut caught = bx.build_sibling_block("caught");
 | ||
| 
 | ||
|         let try_func = llvm::get_param(bx.llfn(), 0);
 | ||
|         let data = llvm::get_param(bx.llfn(), 1);
 | ||
|         let catch_func = llvm::get_param(bx.llfn(), 2);
 | ||
| 
 | ||
|         // We're generating an IR snippet that looks like:
 | ||
|         //
 | ||
|         //   declare i32 @rust_try(%try_func, %data, %catch_func) {
 | ||
|         //      %slot = alloca i8*
 | ||
|         //      invoke %try_func(%data) to label %normal unwind label %catchswitch
 | ||
|         //
 | ||
|         //   normal:
 | ||
|         //      ret i32 0
 | ||
|         //
 | ||
|         //   catchswitch:
 | ||
|         //      %cs = catchswitch within none [%catchpad_rust, %catchpad_foreign] unwind to caller
 | ||
|         //
 | ||
|         //   catchpad_rust:
 | ||
|         //      %tok = catchpad within %cs [%type_descriptor, 8, %slot]
 | ||
|         //      %ptr = load %slot
 | ||
|         //      call %catch_func(%data, %ptr)
 | ||
|         //      catchret from %tok to label %caught
 | ||
|         //
 | ||
|         //   catchpad_foreign:
 | ||
|         //      %tok = catchpad within %cs [null, 64, null]
 | ||
|         //      call %catch_func(%data, null)
 | ||
|         //      catchret from %tok to label %caught
 | ||
|         //
 | ||
|         //   caught:
 | ||
|         //      ret i32 1
 | ||
|         //   }
 | ||
|         //
 | ||
|         // This structure follows the basic usage of throw/try/catch in LLVM.
 | ||
|         // For example, compile this C++ snippet to see what LLVM generates:
 | ||
|         //
 | ||
|         //      struct rust_panic {
 | ||
|         //          rust_panic(const rust_panic&);
 | ||
|         //          ~rust_panic();
 | ||
|         //
 | ||
|         //          void* x[2];
 | ||
|         //      };
 | ||
|         //
 | ||
|         //      int __rust_try(
 | ||
|         //          void (*try_func)(void*),
 | ||
|         //          void *data,
 | ||
|         //          void (*catch_func)(void*, void*) noexcept
 | ||
|         //      ) {
 | ||
|         //          try {
 | ||
|         //              try_func(data);
 | ||
|         //              return 0;
 | ||
|         //          } catch(rust_panic& a) {
 | ||
|         //              catch_func(data, &a);
 | ||
|         //              return 1;
 | ||
|         //          } catch(...) {
 | ||
|         //              catch_func(data, NULL);
 | ||
|         //              return 1;
 | ||
|         //          }
 | ||
|         //      }
 | ||
|         //
 | ||
|         // More information can be found in libstd's seh.rs implementation.
 | ||
|         let ptr_align = bx.tcx().data_layout.pointer_align.abi;
 | ||
|         let slot = bx.alloca(bx.type_i8p(), ptr_align);
 | ||
|         let try_func_ty = bx.type_func(&[bx.type_i8p()], bx.type_void());
 | ||
|         bx.invoke(try_func_ty, try_func, &[data], normal.llbb(), catchswitch.llbb(), None);
 | ||
| 
 | ||
|         normal.ret(bx.const_i32(0));
 | ||
| 
 | ||
|         let cs = catchswitch.catch_switch(None, None, 2);
 | ||
|         catchswitch.add_handler(cs, catchpad_rust.llbb());
 | ||
|         catchswitch.add_handler(cs, catchpad_foreign.llbb());
 | ||
| 
 | ||
|         // We can't use the TypeDescriptor defined in libpanic_unwind because it
 | ||
|         // might be in another DLL and the SEH encoding only supports specifying
 | ||
|         // a TypeDescriptor from the current module.
 | ||
|         //
 | ||
|         // However this isn't an issue since the MSVC runtime uses string
 | ||
|         // comparison on the type name to match TypeDescriptors rather than
 | ||
|         // pointer equality.
 | ||
|         //
 | ||
|         // So instead we generate a new TypeDescriptor in each module that uses
 | ||
|         // `try` and let the linker merge duplicate definitions in the same
 | ||
|         // module.
 | ||
|         //
 | ||
|         // When modifying, make sure that the type_name string exactly matches
 | ||
|         // the one used in src/libpanic_unwind/seh.rs.
 | ||
|         let type_info_vtable = bx.declare_global("??_7type_info@@6B@", bx.type_i8p());
 | ||
|         let type_name = bx.const_bytes(b"rust_panic\0");
 | ||
|         let type_info =
 | ||
|             bx.const_struct(&[type_info_vtable, bx.const_null(bx.type_i8p()), type_name], false);
 | ||
|         let tydesc = bx.declare_global("__rust_panic_type_info", bx.val_ty(type_info));
 | ||
|         unsafe {
 | ||
|             llvm::LLVMRustSetLinkage(tydesc, llvm::Linkage::LinkOnceODRLinkage);
 | ||
|             llvm::SetUniqueComdat(bx.llmod, tydesc);
 | ||
|             llvm::LLVMSetInitializer(tydesc, type_info);
 | ||
|         }
 | ||
| 
 | ||
|         // The flag value of 8 indicates that we are catching the exception by
 | ||
|         // reference instead of by value. We can't use catch by value because
 | ||
|         // that requires copying the exception object, which we don't support
 | ||
|         // since our exception object effectively contains a Box.
 | ||
|         //
 | ||
|         // Source: MicrosoftCXXABI::getAddrOfCXXCatchHandlerType in clang
 | ||
|         let flags = bx.const_i32(8);
 | ||
|         let funclet = catchpad_rust.catch_pad(cs, &[tydesc, flags, slot]);
 | ||
|         let ptr = catchpad_rust.load(bx.type_i8p(), slot, ptr_align);
 | ||
|         let catch_ty = bx.type_func(&[bx.type_i8p(), bx.type_i8p()], bx.type_void());
 | ||
|         catchpad_rust.call(catch_ty, catch_func, &[data, ptr], Some(&funclet));
 | ||
|         catchpad_rust.catch_ret(&funclet, caught.llbb());
 | ||
| 
 | ||
|         // The flag value of 64 indicates a "catch-all".
 | ||
|         let flags = bx.const_i32(64);
 | ||
|         let null = bx.const_null(bx.type_i8p());
 | ||
|         let funclet = catchpad_foreign.catch_pad(cs, &[null, flags, null]);
 | ||
|         catchpad_foreign.call(catch_ty, catch_func, &[data, null], Some(&funclet));
 | ||
|         catchpad_foreign.catch_ret(&funclet, caught.llbb());
 | ||
| 
 | ||
|         caught.ret(bx.const_i32(1));
 | ||
|     });
 | ||
| 
 | ||
|     // Note that no invoke is used here because by definition this function
 | ||
|     // can't panic (that's what it's catching).
 | ||
|     let ret = bx.call(llty, llfn, &[try_func, data, catch_func], None);
 | ||
|     let i32_align = bx.tcx().data_layout.i32_align.abi;
 | ||
|     bx.store(ret, dest, i32_align);
 | ||
| }
 | ||
| 
 | ||
| // Definition of the standard `try` function for Rust using the GNU-like model
 | ||
| // of exceptions (e.g., the normal semantics of LLVM's `landingpad` and `invoke`
 | ||
| // instructions).
 | ||
| //
 | ||
| // This codegen is a little surprising because we always call a shim
 | ||
| // function instead of inlining the call to `invoke` manually here. This is done
 | ||
| // because in LLVM we're only allowed to have one personality per function
 | ||
| // definition. The call to the `try` intrinsic is being inlined into the
 | ||
| // function calling it, and that function may already have other personality
 | ||
| // functions in play. By calling a shim we're guaranteed that our shim will have
 | ||
| // the right personality function.
 | ||
| fn codegen_gnu_try(
 | ||
|     bx: &mut Builder<'a, 'll, 'tcx>,
 | ||
|     try_func: &'ll Value,
 | ||
|     data: &'ll Value,
 | ||
|     catch_func: &'ll Value,
 | ||
|     dest: &'ll Value,
 | ||
| ) {
 | ||
|     let (llty, llfn) = get_rust_try_fn(bx, &mut |mut bx| {
 | ||
|         // Codegens the shims described above:
 | ||
|         //
 | ||
|         //   bx:
 | ||
|         //      invoke %try_func(%data) normal %normal unwind %catch
 | ||
|         //
 | ||
|         //   normal:
 | ||
|         //      ret 0
 | ||
|         //
 | ||
|         //   catch:
 | ||
|         //      (%ptr, _) = landingpad
 | ||
|         //      call %catch_func(%data, %ptr)
 | ||
|         //      ret 1
 | ||
|         let mut then = bx.build_sibling_block("then");
 | ||
|         let mut catch = bx.build_sibling_block("catch");
 | ||
| 
 | ||
|         let try_func = llvm::get_param(bx.llfn(), 0);
 | ||
|         let data = llvm::get_param(bx.llfn(), 1);
 | ||
|         let catch_func = llvm::get_param(bx.llfn(), 2);
 | ||
|         let try_func_ty = bx.type_func(&[bx.type_i8p()], bx.type_void());
 | ||
|         bx.invoke(try_func_ty, try_func, &[data], then.llbb(), catch.llbb(), None);
 | ||
|         then.ret(bx.const_i32(0));
 | ||
| 
 | ||
|         // Type indicator for the exception being thrown.
 | ||
|         //
 | ||
|         // The first value in this tuple is a pointer to the exception object
 | ||
|         // being thrown.  The second value is a "selector" indicating which of
 | ||
|         // the landing pad clauses the exception's type had been matched to.
 | ||
|         // rust_try ignores the selector.
 | ||
|         let lpad_ty = bx.type_struct(&[bx.type_i8p(), bx.type_i32()], false);
 | ||
|         let vals = catch.landing_pad(lpad_ty, bx.eh_personality(), 1);
 | ||
|         let tydesc = bx.const_null(bx.type_i8p());
 | ||
|         catch.add_clause(vals, tydesc);
 | ||
|         let ptr = catch.extract_value(vals, 0);
 | ||
|         let catch_ty = bx.type_func(&[bx.type_i8p(), bx.type_i8p()], bx.type_void());
 | ||
|         catch.call(catch_ty, catch_func, &[data, ptr], None);
 | ||
|         catch.ret(bx.const_i32(1));
 | ||
|     });
 | ||
| 
 | ||
|     // Note that no invoke is used here because by definition this function
 | ||
|     // can't panic (that's what it's catching).
 | ||
|     let ret = bx.call(llty, llfn, &[try_func, data, catch_func], None);
 | ||
|     let i32_align = bx.tcx().data_layout.i32_align.abi;
 | ||
|     bx.store(ret, dest, i32_align);
 | ||
| }
 | ||
| 
 | ||
| // Variant of codegen_gnu_try used for emscripten where Rust panics are
 | ||
| // implemented using C++ exceptions. Here we use exceptions of a specific type
 | ||
| // (`struct rust_panic`) to represent Rust panics.
 | ||
| fn codegen_emcc_try(
 | ||
|     bx: &mut Builder<'a, 'll, 'tcx>,
 | ||
|     try_func: &'ll Value,
 | ||
|     data: &'ll Value,
 | ||
|     catch_func: &'ll Value,
 | ||
|     dest: &'ll Value,
 | ||
| ) {
 | ||
|     let (llty, llfn) = get_rust_try_fn(bx, &mut |mut bx| {
 | ||
|         // Codegens the shims described above:
 | ||
|         //
 | ||
|         //   bx:
 | ||
|         //      invoke %try_func(%data) normal %normal unwind %catch
 | ||
|         //
 | ||
|         //   normal:
 | ||
|         //      ret 0
 | ||
|         //
 | ||
|         //   catch:
 | ||
|         //      (%ptr, %selector) = landingpad
 | ||
|         //      %rust_typeid = @llvm.eh.typeid.for(@_ZTI10rust_panic)
 | ||
|         //      %is_rust_panic = %selector == %rust_typeid
 | ||
|         //      %catch_data = alloca { i8*, i8 }
 | ||
|         //      %catch_data[0] = %ptr
 | ||
|         //      %catch_data[1] = %is_rust_panic
 | ||
|         //      call %catch_func(%data, %catch_data)
 | ||
|         //      ret 1
 | ||
|         let mut then = bx.build_sibling_block("then");
 | ||
|         let mut catch = bx.build_sibling_block("catch");
 | ||
| 
 | ||
|         let try_func = llvm::get_param(bx.llfn(), 0);
 | ||
|         let data = llvm::get_param(bx.llfn(), 1);
 | ||
|         let catch_func = llvm::get_param(bx.llfn(), 2);
 | ||
|         let try_func_ty = bx.type_func(&[bx.type_i8p()], bx.type_void());
 | ||
|         bx.invoke(try_func_ty, try_func, &[data], then.llbb(), catch.llbb(), None);
 | ||
|         then.ret(bx.const_i32(0));
 | ||
| 
 | ||
|         // Type indicator for the exception being thrown.
 | ||
|         //
 | ||
|         // The first value in this tuple is a pointer to the exception object
 | ||
|         // being thrown.  The second value is a "selector" indicating which of
 | ||
|         // the landing pad clauses the exception's type had been matched to.
 | ||
|         let tydesc = bx.eh_catch_typeinfo();
 | ||
|         let lpad_ty = bx.type_struct(&[bx.type_i8p(), bx.type_i32()], false);
 | ||
|         let vals = catch.landing_pad(lpad_ty, bx.eh_personality(), 2);
 | ||
|         catch.add_clause(vals, tydesc);
 | ||
|         catch.add_clause(vals, bx.const_null(bx.type_i8p()));
 | ||
|         let ptr = catch.extract_value(vals, 0);
 | ||
|         let selector = catch.extract_value(vals, 1);
 | ||
| 
 | ||
|         // Check if the typeid we got is the one for a Rust panic.
 | ||
|         let rust_typeid = catch.call_intrinsic("llvm.eh.typeid.for", &[tydesc]);
 | ||
|         let is_rust_panic = catch.icmp(IntPredicate::IntEQ, selector, rust_typeid);
 | ||
|         let is_rust_panic = catch.zext(is_rust_panic, bx.type_bool());
 | ||
| 
 | ||
|         // We need to pass two values to catch_func (ptr and is_rust_panic), so
 | ||
|         // create an alloca and pass a pointer to that.
 | ||
|         let ptr_align = bx.tcx().data_layout.pointer_align.abi;
 | ||
|         let i8_align = bx.tcx().data_layout.i8_align.abi;
 | ||
|         let catch_data_type = bx.type_struct(&[bx.type_i8p(), bx.type_bool()], false);
 | ||
|         let catch_data = catch.alloca(catch_data_type, ptr_align);
 | ||
|         let catch_data_0 = catch.inbounds_gep(
 | ||
|             catch_data_type,
 | ||
|             catch_data,
 | ||
|             &[bx.const_usize(0), bx.const_usize(0)],
 | ||
|         );
 | ||
|         catch.store(ptr, catch_data_0, ptr_align);
 | ||
|         let catch_data_1 = catch.inbounds_gep(
 | ||
|             catch_data_type,
 | ||
|             catch_data,
 | ||
|             &[bx.const_usize(0), bx.const_usize(1)],
 | ||
|         );
 | ||
|         catch.store(is_rust_panic, catch_data_1, i8_align);
 | ||
|         let catch_data = catch.bitcast(catch_data, bx.type_i8p());
 | ||
| 
 | ||
|         let catch_ty = bx.type_func(&[bx.type_i8p(), bx.type_i8p()], bx.type_void());
 | ||
|         catch.call(catch_ty, catch_func, &[data, catch_data], None);
 | ||
|         catch.ret(bx.const_i32(1));
 | ||
|     });
 | ||
| 
 | ||
|     // Note that no invoke is used here because by definition this function
 | ||
|     // can't panic (that's what it's catching).
 | ||
|     let ret = bx.call(llty, llfn, &[try_func, data, catch_func], None);
 | ||
|     let i32_align = bx.tcx().data_layout.i32_align.abi;
 | ||
|     bx.store(ret, dest, i32_align);
 | ||
| }
 | ||
| 
 | ||
| // Helper function to give a Block to a closure to codegen a shim function.
 | ||
| // This is currently primarily used for the `try` intrinsic functions above.
 | ||
| fn gen_fn<'ll, 'tcx>(
 | ||
|     cx: &CodegenCx<'ll, 'tcx>,
 | ||
|     name: &str,
 | ||
|     rust_fn_sig: ty::PolyFnSig<'tcx>,
 | ||
|     codegen: &mut dyn FnMut(Builder<'_, 'll, 'tcx>),
 | ||
| ) -> (&'ll Type, &'ll Value) {
 | ||
|     let fn_abi = cx.fn_abi_of_fn_ptr(rust_fn_sig, ty::List::empty());
 | ||
|     let llty = fn_abi.llvm_type(cx);
 | ||
|     let llfn = cx.declare_fn(name, fn_abi);
 | ||
|     cx.set_frame_pointer_type(llfn);
 | ||
|     cx.apply_target_cpu_attr(llfn);
 | ||
|     // FIXME(eddyb) find a nicer way to do this.
 | ||
|     unsafe { llvm::LLVMRustSetLinkage(llfn, llvm::Linkage::InternalLinkage) };
 | ||
|     let llbb = Builder::append_block(cx, llfn, "entry-block");
 | ||
|     let bx = Builder::build(cx, llbb);
 | ||
|     codegen(bx);
 | ||
|     (llty, llfn)
 | ||
| }
 | ||
| 
 | ||
| // Helper function used to get a handle to the `__rust_try` function used to
 | ||
| // catch exceptions.
 | ||
| //
 | ||
| // This function is only generated once and is then cached.
 | ||
| fn get_rust_try_fn<'ll, 'tcx>(
 | ||
|     cx: &CodegenCx<'ll, 'tcx>,
 | ||
|     codegen: &mut dyn FnMut(Builder<'_, 'll, 'tcx>),
 | ||
| ) -> (&'ll Type, &'ll Value) {
 | ||
|     if let Some(llfn) = cx.rust_try_fn.get() {
 | ||
|         return llfn;
 | ||
|     }
 | ||
| 
 | ||
|     // Define the type up front for the signature of the rust_try function.
 | ||
|     let tcx = cx.tcx;
 | ||
|     let i8p = tcx.mk_mut_ptr(tcx.types.i8);
 | ||
|     // `unsafe fn(*mut i8) -> ()`
 | ||
|     let try_fn_ty = tcx.mk_fn_ptr(ty::Binder::dummy(tcx.mk_fn_sig(
 | ||
|         iter::once(i8p),
 | ||
|         tcx.mk_unit(),
 | ||
|         false,
 | ||
|         hir::Unsafety::Unsafe,
 | ||
|         Abi::Rust,
 | ||
|     )));
 | ||
|     // `unsafe fn(*mut i8, *mut i8) -> ()`
 | ||
|     let catch_fn_ty = tcx.mk_fn_ptr(ty::Binder::dummy(tcx.mk_fn_sig(
 | ||
|         [i8p, i8p].iter().cloned(),
 | ||
|         tcx.mk_unit(),
 | ||
|         false,
 | ||
|         hir::Unsafety::Unsafe,
 | ||
|         Abi::Rust,
 | ||
|     )));
 | ||
|     // `unsafe fn(unsafe fn(*mut i8) -> (), *mut i8, unsafe fn(*mut i8, *mut i8) -> ()) -> i32`
 | ||
|     let rust_fn_sig = ty::Binder::dummy(cx.tcx.mk_fn_sig(
 | ||
|         vec![try_fn_ty, i8p, catch_fn_ty].into_iter(),
 | ||
|         tcx.types.i32,
 | ||
|         false,
 | ||
|         hir::Unsafety::Unsafe,
 | ||
|         Abi::Rust,
 | ||
|     ));
 | ||
|     let rust_try = gen_fn(cx, "__rust_try", rust_fn_sig, codegen);
 | ||
|     cx.rust_try_fn.set(Some(rust_try));
 | ||
|     rust_try
 | ||
| }
 | ||
| 
 | ||
| fn generic_simd_intrinsic(
 | ||
|     bx: &mut Builder<'a, 'll, 'tcx>,
 | ||
|     name: Symbol,
 | ||
|     callee_ty: Ty<'tcx>,
 | ||
|     args: &[OperandRef<'tcx, &'ll Value>],
 | ||
|     ret_ty: Ty<'tcx>,
 | ||
|     llret_ty: &'ll Type,
 | ||
|     span: Span,
 | ||
| ) -> Result<&'ll Value, ()> {
 | ||
|     // macros for error handling:
 | ||
|     macro_rules! emit_error {
 | ||
|         ($msg: tt) => {
 | ||
|             emit_error!($msg, )
 | ||
|         };
 | ||
|         ($msg: tt, $($fmt: tt)*) => {
 | ||
|             span_invalid_monomorphization_error(
 | ||
|                 bx.sess(), span,
 | ||
|                 &format!(concat!("invalid monomorphization of `{}` intrinsic: ", $msg),
 | ||
|                          name, $($fmt)*));
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     macro_rules! return_error {
 | ||
|         ($($fmt: tt)*) => {
 | ||
|             {
 | ||
|                 emit_error!($($fmt)*);
 | ||
|                 return Err(());
 | ||
|             }
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     macro_rules! require {
 | ||
|         ($cond: expr, $($fmt: tt)*) => {
 | ||
|             if !$cond {
 | ||
|                 return_error!($($fmt)*);
 | ||
|             }
 | ||
|         };
 | ||
|     }
 | ||
| 
 | ||
|     macro_rules! require_simd {
 | ||
|         ($ty: expr, $position: expr) => {
 | ||
|             require!($ty.is_simd(), "expected SIMD {} type, found non-SIMD `{}`", $position, $ty)
 | ||
|         };
 | ||
|     }
 | ||
| 
 | ||
|     let tcx = bx.tcx();
 | ||
|     let sig =
 | ||
|         tcx.normalize_erasing_late_bound_regions(ty::ParamEnv::reveal_all(), callee_ty.fn_sig(tcx));
 | ||
|     let arg_tys = sig.inputs();
 | ||
| 
 | ||
|     if name == sym::simd_select_bitmask {
 | ||
|         require_simd!(arg_tys[1], "argument");
 | ||
|         let (len, _) = arg_tys[1].simd_size_and_type(bx.tcx());
 | ||
| 
 | ||
|         let expected_int_bits = (len.max(8) - 1).next_power_of_two();
 | ||
|         let expected_bytes = len / 8 + ((len % 8 > 0) as u64);
 | ||
| 
 | ||
|         let mask_ty = arg_tys[0];
 | ||
|         let mask = match mask_ty.kind() {
 | ||
|             ty::Int(i) if i.bit_width() == Some(expected_int_bits) => args[0].immediate(),
 | ||
|             ty::Uint(i) if i.bit_width() == Some(expected_int_bits) => args[0].immediate(),
 | ||
|             ty::Array(elem, len)
 | ||
|                 if matches!(elem.kind(), ty::Uint(ty::UintTy::U8))
 | ||
|                     && len.try_eval_usize(bx.tcx, ty::ParamEnv::reveal_all())
 | ||
|                         == Some(expected_bytes) =>
 | ||
|             {
 | ||
|                 let place = PlaceRef::alloca(bx, args[0].layout);
 | ||
|                 args[0].val.store(bx, place);
 | ||
|                 let int_ty = bx.type_ix(expected_bytes * 8);
 | ||
|                 let ptr = bx.pointercast(place.llval, bx.cx.type_ptr_to(int_ty));
 | ||
|                 bx.load(int_ty, ptr, Align::ONE)
 | ||
|             }
 | ||
|             _ => return_error!(
 | ||
|                 "invalid bitmask `{}`, expected `u{}` or `[u8; {}]`",
 | ||
|                 mask_ty,
 | ||
|                 expected_int_bits,
 | ||
|                 expected_bytes
 | ||
|             ),
 | ||
|         };
 | ||
| 
 | ||
|         let i1 = bx.type_i1();
 | ||
|         let im = bx.type_ix(len);
 | ||
|         let i1xn = bx.type_vector(i1, len);
 | ||
|         let m_im = bx.trunc(mask, im);
 | ||
|         let m_i1s = bx.bitcast(m_im, i1xn);
 | ||
|         return Ok(bx.select(m_i1s, args[1].immediate(), args[2].immediate()));
 | ||
|     }
 | ||
| 
 | ||
|     // every intrinsic below takes a SIMD vector as its first argument
 | ||
|     require_simd!(arg_tys[0], "input");
 | ||
|     let in_ty = arg_tys[0];
 | ||
| 
 | ||
|     let comparison = match name {
 | ||
|         sym::simd_eq => Some(hir::BinOpKind::Eq),
 | ||
|         sym::simd_ne => Some(hir::BinOpKind::Ne),
 | ||
|         sym::simd_lt => Some(hir::BinOpKind::Lt),
 | ||
|         sym::simd_le => Some(hir::BinOpKind::Le),
 | ||
|         sym::simd_gt => Some(hir::BinOpKind::Gt),
 | ||
|         sym::simd_ge => Some(hir::BinOpKind::Ge),
 | ||
|         _ => None,
 | ||
|     };
 | ||
| 
 | ||
|     let (in_len, in_elem) = arg_tys[0].simd_size_and_type(bx.tcx());
 | ||
|     if let Some(cmp_op) = comparison {
 | ||
|         require_simd!(ret_ty, "return");
 | ||
| 
 | ||
|         let (out_len, out_ty) = ret_ty.simd_size_and_type(bx.tcx());
 | ||
|         require!(
 | ||
|             in_len == out_len,
 | ||
|             "expected return type with length {} (same as input type `{}`), \
 | ||
|              found `{}` with length {}",
 | ||
|             in_len,
 | ||
|             in_ty,
 | ||
|             ret_ty,
 | ||
|             out_len
 | ||
|         );
 | ||
|         require!(
 | ||
|             bx.type_kind(bx.element_type(llret_ty)) == TypeKind::Integer,
 | ||
|             "expected return type with integer elements, found `{}` with non-integer `{}`",
 | ||
|             ret_ty,
 | ||
|             out_ty
 | ||
|         );
 | ||
| 
 | ||
|         return Ok(compare_simd_types(
 | ||
|             bx,
 | ||
|             args[0].immediate(),
 | ||
|             args[1].immediate(),
 | ||
|             in_elem,
 | ||
|             llret_ty,
 | ||
|             cmp_op,
 | ||
|         ));
 | ||
|     }
 | ||
| 
 | ||
|     if let Some(stripped) = name.as_str().strip_prefix("simd_shuffle") {
 | ||
|         // If this intrinsic is the older "simd_shuffleN" form, simply parse the integer.
 | ||
|         // If there is no suffix, use the index array length.
 | ||
|         let n: u64 = if stripped.is_empty() {
 | ||
|             // Make sure this is actually an array, since typeck only checks the length-suffixed
 | ||
|             // version of this intrinsic.
 | ||
|             match args[2].layout.ty.kind() {
 | ||
|                 ty::Array(ty, len) if matches!(ty.kind(), ty::Uint(ty::UintTy::U32)) => {
 | ||
|                     len.try_eval_usize(bx.cx.tcx, ty::ParamEnv::reveal_all()).unwrap_or_else(|| {
 | ||
|                         span_bug!(span, "could not evaluate shuffle index array length")
 | ||
|                     })
 | ||
|                 }
 | ||
|                 _ => return_error!(
 | ||
|                     "simd_shuffle index must be an array of `u32`, got `{}`",
 | ||
|                     args[2].layout.ty
 | ||
|                 ),
 | ||
|             }
 | ||
|         } else {
 | ||
|             stripped.parse().unwrap_or_else(|_| {
 | ||
|                 span_bug!(span, "bad `simd_shuffle` instruction only caught in codegen?")
 | ||
|             })
 | ||
|         };
 | ||
| 
 | ||
|         require_simd!(ret_ty, "return");
 | ||
|         let (out_len, out_ty) = ret_ty.simd_size_and_type(bx.tcx());
 | ||
|         require!(
 | ||
|             out_len == n,
 | ||
|             "expected return type of length {}, found `{}` with length {}",
 | ||
|             n,
 | ||
|             ret_ty,
 | ||
|             out_len
 | ||
|         );
 | ||
|         require!(
 | ||
|             in_elem == out_ty,
 | ||
|             "expected return element type `{}` (element of input `{}`), \
 | ||
|              found `{}` with element type `{}`",
 | ||
|             in_elem,
 | ||
|             in_ty,
 | ||
|             ret_ty,
 | ||
|             out_ty
 | ||
|         );
 | ||
| 
 | ||
|         let total_len = u128::from(in_len) * 2;
 | ||
| 
 | ||
|         let vector = args[2].immediate();
 | ||
| 
 | ||
|         let indices: Option<Vec<_>> = (0..n)
 | ||
|             .map(|i| {
 | ||
|                 let arg_idx = i;
 | ||
|                 let val = bx.const_get_elt(vector, i as u64);
 | ||
|                 match bx.const_to_opt_u128(val, true) {
 | ||
|                     None => {
 | ||
|                         emit_error!("shuffle index #{} is not a constant", arg_idx);
 | ||
|                         None
 | ||
|                     }
 | ||
|                     Some(idx) if idx >= total_len => {
 | ||
|                         emit_error!(
 | ||
|                             "shuffle index #{} is out of bounds (limit {})",
 | ||
|                             arg_idx,
 | ||
|                             total_len
 | ||
|                         );
 | ||
|                         None
 | ||
|                     }
 | ||
|                     Some(idx) => Some(bx.const_i32(idx as i32)),
 | ||
|                 }
 | ||
|             })
 | ||
|             .collect();
 | ||
|         let indices = match indices {
 | ||
|             Some(i) => i,
 | ||
|             None => return Ok(bx.const_null(llret_ty)),
 | ||
|         };
 | ||
| 
 | ||
|         return Ok(bx.shuffle_vector(
 | ||
|             args[0].immediate(),
 | ||
|             args[1].immediate(),
 | ||
|             bx.const_vector(&indices),
 | ||
|         ));
 | ||
|     }
 | ||
| 
 | ||
|     if name == sym::simd_insert {
 | ||
|         require!(
 | ||
|             in_elem == arg_tys[2],
 | ||
|             "expected inserted type `{}` (element of input `{}`), found `{}`",
 | ||
|             in_elem,
 | ||
|             in_ty,
 | ||
|             arg_tys[2]
 | ||
|         );
 | ||
|         return Ok(bx.insert_element(
 | ||
|             args[0].immediate(),
 | ||
|             args[2].immediate(),
 | ||
|             args[1].immediate(),
 | ||
|         ));
 | ||
|     }
 | ||
|     if name == sym::simd_extract {
 | ||
|         require!(
 | ||
|             ret_ty == in_elem,
 | ||
|             "expected return type `{}` (element of input `{}`), found `{}`",
 | ||
|             in_elem,
 | ||
|             in_ty,
 | ||
|             ret_ty
 | ||
|         );
 | ||
|         return Ok(bx.extract_element(args[0].immediate(), args[1].immediate()));
 | ||
|     }
 | ||
| 
 | ||
|     if name == sym::simd_select {
 | ||
|         let m_elem_ty = in_elem;
 | ||
|         let m_len = in_len;
 | ||
|         require_simd!(arg_tys[1], "argument");
 | ||
|         let (v_len, _) = arg_tys[1].simd_size_and_type(bx.tcx());
 | ||
|         require!(
 | ||
|             m_len == v_len,
 | ||
|             "mismatched lengths: mask length `{}` != other vector length `{}`",
 | ||
|             m_len,
 | ||
|             v_len
 | ||
|         );
 | ||
|         match m_elem_ty.kind() {
 | ||
|             ty::Int(_) => {}
 | ||
|             _ => return_error!("mask element type is `{}`, expected `i_`", m_elem_ty),
 | ||
|         }
 | ||
|         // truncate the mask to a vector of i1s
 | ||
|         let i1 = bx.type_i1();
 | ||
|         let i1xn = bx.type_vector(i1, m_len as u64);
 | ||
|         let m_i1s = bx.trunc(args[0].immediate(), i1xn);
 | ||
|         return Ok(bx.select(m_i1s, args[1].immediate(), args[2].immediate()));
 | ||
|     }
 | ||
| 
 | ||
|     if name == sym::simd_bitmask {
 | ||
|         // The `fn simd_bitmask(vector) -> unsigned integer` intrinsic takes a
 | ||
|         // vector mask and returns the most significant bit (MSB) of each lane in the form
 | ||
|         // of either:
 | ||
|         // * an unsigned integer
 | ||
|         // * an array of `u8`
 | ||
|         // If the vector has less than 8 lanes, a u8 is returned with zeroed trailing bits.
 | ||
|         //
 | ||
|         // The bit order of the result depends on the byte endianness, LSB-first for little
 | ||
|         // endian and MSB-first for big endian.
 | ||
|         let expected_int_bits = in_len.max(8);
 | ||
|         let expected_bytes = expected_int_bits / 8 + ((expected_int_bits % 8 > 0) as u64);
 | ||
| 
 | ||
|         // Integer vector <i{in_bitwidth} x in_len>:
 | ||
|         let (i_xn, in_elem_bitwidth) = match in_elem.kind() {
 | ||
|             ty::Int(i) => (
 | ||
|                 args[0].immediate(),
 | ||
|                 i.bit_width().unwrap_or_else(|| bx.data_layout().pointer_size.bits()),
 | ||
|             ),
 | ||
|             ty::Uint(i) => (
 | ||
|                 args[0].immediate(),
 | ||
|                 i.bit_width().unwrap_or_else(|| bx.data_layout().pointer_size.bits()),
 | ||
|             ),
 | ||
|             _ => return_error!(
 | ||
|                 "vector argument `{}`'s element type `{}`, expected integer element type",
 | ||
|                 in_ty,
 | ||
|                 in_elem
 | ||
|             ),
 | ||
|         };
 | ||
| 
 | ||
|         // Shift the MSB to the right by "in_elem_bitwidth - 1" into the first bit position.
 | ||
|         let shift_indices =
 | ||
|             vec![
 | ||
|                 bx.cx.const_int(bx.type_ix(in_elem_bitwidth), (in_elem_bitwidth - 1) as _);
 | ||
|                 in_len as _
 | ||
|             ];
 | ||
|         let i_xn_msb = bx.lshr(i_xn, bx.const_vector(shift_indices.as_slice()));
 | ||
|         // Truncate vector to an <i1 x N>
 | ||
|         let i1xn = bx.trunc(i_xn_msb, bx.type_vector(bx.type_i1(), in_len));
 | ||
|         // Bitcast <i1 x N> to iN:
 | ||
|         let i_ = bx.bitcast(i1xn, bx.type_ix(in_len));
 | ||
| 
 | ||
|         match ret_ty.kind() {
 | ||
|             ty::Uint(i) if i.bit_width() == Some(expected_int_bits) => {
 | ||
|                 // Zero-extend iN to the bitmask type:
 | ||
|                 return Ok(bx.zext(i_, bx.type_ix(expected_int_bits)));
 | ||
|             }
 | ||
|             ty::Array(elem, len)
 | ||
|                 if matches!(elem.kind(), ty::Uint(ty::UintTy::U8))
 | ||
|                     && len.try_eval_usize(bx.tcx, ty::ParamEnv::reveal_all())
 | ||
|                         == Some(expected_bytes) =>
 | ||
|             {
 | ||
|                 // Zero-extend iN to the array lengh:
 | ||
|                 let ze = bx.zext(i_, bx.type_ix(expected_bytes * 8));
 | ||
| 
 | ||
|                 // Convert the integer to a byte array
 | ||
|                 let ptr = bx.alloca(bx.type_ix(expected_bytes * 8), Align::ONE);
 | ||
|                 bx.store(ze, ptr, Align::ONE);
 | ||
|                 let array_ty = bx.type_array(bx.type_i8(), expected_bytes);
 | ||
|                 let ptr = bx.pointercast(ptr, bx.cx.type_ptr_to(array_ty));
 | ||
|                 return Ok(bx.load(array_ty, ptr, Align::ONE));
 | ||
|             }
 | ||
|             _ => return_error!(
 | ||
|                 "cannot return `{}`, expected `u{}` or `[u8; {}]`",
 | ||
|                 ret_ty,
 | ||
|                 expected_int_bits,
 | ||
|                 expected_bytes
 | ||
|             ),
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     fn simd_simple_float_intrinsic(
 | ||
|         name: Symbol,
 | ||
|         in_elem: &::rustc_middle::ty::TyS<'_>,
 | ||
|         in_ty: &::rustc_middle::ty::TyS<'_>,
 | ||
|         in_len: u64,
 | ||
|         bx: &mut Builder<'a, 'll, 'tcx>,
 | ||
|         span: Span,
 | ||
|         args: &[OperandRef<'tcx, &'ll Value>],
 | ||
|     ) -> Result<&'ll Value, ()> {
 | ||
|         macro_rules! emit_error {
 | ||
|             ($msg: tt) => {
 | ||
|                 emit_error!($msg, )
 | ||
|             };
 | ||
|             ($msg: tt, $($fmt: tt)*) => {
 | ||
|                 span_invalid_monomorphization_error(
 | ||
|                     bx.sess(), span,
 | ||
|                     &format!(concat!("invalid monomorphization of `{}` intrinsic: ", $msg),
 | ||
|                              name, $($fmt)*));
 | ||
|             }
 | ||
|         }
 | ||
|         macro_rules! return_error {
 | ||
|             ($($fmt: tt)*) => {
 | ||
|                 {
 | ||
|                     emit_error!($($fmt)*);
 | ||
|                     return Err(());
 | ||
|                 }
 | ||
|             }
 | ||
|         }
 | ||
| 
 | ||
|         let (elem_ty_str, elem_ty) = if let ty::Float(f) = in_elem.kind() {
 | ||
|             let elem_ty = bx.cx.type_float_from_ty(*f);
 | ||
|             match f.bit_width() {
 | ||
|                 32 => ("f32", elem_ty),
 | ||
|                 64 => ("f64", elem_ty),
 | ||
|                 _ => {
 | ||
|                     return_error!(
 | ||
|                         "unsupported element type `{}` of floating-point vector `{}`",
 | ||
|                         f.name_str(),
 | ||
|                         in_ty
 | ||
|                     );
 | ||
|                 }
 | ||
|             }
 | ||
|         } else {
 | ||
|             return_error!("`{}` is not a floating-point type", in_ty);
 | ||
|         };
 | ||
| 
 | ||
|         let vec_ty = bx.type_vector(elem_ty, in_len);
 | ||
| 
 | ||
|         let (intr_name, fn_ty) = match name {
 | ||
|             sym::simd_ceil => ("ceil", bx.type_func(&[vec_ty], vec_ty)),
 | ||
|             sym::simd_fabs => ("fabs", bx.type_func(&[vec_ty], vec_ty)),
 | ||
|             sym::simd_fcos => ("cos", bx.type_func(&[vec_ty], vec_ty)),
 | ||
|             sym::simd_fexp2 => ("exp2", bx.type_func(&[vec_ty], vec_ty)),
 | ||
|             sym::simd_fexp => ("exp", bx.type_func(&[vec_ty], vec_ty)),
 | ||
|             sym::simd_flog10 => ("log10", bx.type_func(&[vec_ty], vec_ty)),
 | ||
|             sym::simd_flog2 => ("log2", bx.type_func(&[vec_ty], vec_ty)),
 | ||
|             sym::simd_flog => ("log", bx.type_func(&[vec_ty], vec_ty)),
 | ||
|             sym::simd_floor => ("floor", bx.type_func(&[vec_ty], vec_ty)),
 | ||
|             sym::simd_fma => ("fma", bx.type_func(&[vec_ty, vec_ty, vec_ty], vec_ty)),
 | ||
|             sym::simd_fpowi => ("powi", bx.type_func(&[vec_ty, bx.type_i32()], vec_ty)),
 | ||
|             sym::simd_fpow => ("pow", bx.type_func(&[vec_ty, vec_ty], vec_ty)),
 | ||
|             sym::simd_fsin => ("sin", bx.type_func(&[vec_ty], vec_ty)),
 | ||
|             sym::simd_fsqrt => ("sqrt", bx.type_func(&[vec_ty], vec_ty)),
 | ||
|             sym::simd_round => ("round", bx.type_func(&[vec_ty], vec_ty)),
 | ||
|             sym::simd_trunc => ("trunc", bx.type_func(&[vec_ty], vec_ty)),
 | ||
|             _ => return_error!("unrecognized intrinsic `{}`", name),
 | ||
|         };
 | ||
|         let llvm_name = &format!("llvm.{0}.v{1}{2}", intr_name, in_len, elem_ty_str);
 | ||
|         let f = bx.declare_cfn(llvm_name, llvm::UnnamedAddr::No, fn_ty);
 | ||
|         let c =
 | ||
|             bx.call(fn_ty, f, &args.iter().map(|arg| arg.immediate()).collect::<Vec<_>>(), None);
 | ||
|         Ok(c)
 | ||
|     }
 | ||
| 
 | ||
|     if std::matches!(
 | ||
|         name,
 | ||
|         sym::simd_ceil
 | ||
|             | sym::simd_fabs
 | ||
|             | sym::simd_fcos
 | ||
|             | sym::simd_fexp2
 | ||
|             | sym::simd_fexp
 | ||
|             | sym::simd_flog10
 | ||
|             | sym::simd_flog2
 | ||
|             | sym::simd_flog
 | ||
|             | sym::simd_floor
 | ||
|             | sym::simd_fma
 | ||
|             | sym::simd_fpow
 | ||
|             | sym::simd_fpowi
 | ||
|             | sym::simd_fsin
 | ||
|             | sym::simd_fsqrt
 | ||
|             | sym::simd_round
 | ||
|             | sym::simd_trunc
 | ||
|     ) {
 | ||
|         return simd_simple_float_intrinsic(name, in_elem, in_ty, in_len, bx, span, args);
 | ||
|     }
 | ||
| 
 | ||
|     // FIXME: use:
 | ||
|     //  https://github.com/llvm-mirror/llvm/blob/master/include/llvm/IR/Function.h#L182
 | ||
|     //  https://github.com/llvm-mirror/llvm/blob/master/include/llvm/IR/Intrinsics.h#L81
 | ||
|     fn llvm_vector_str(
 | ||
|         elem_ty: Ty<'_>,
 | ||
|         vec_len: u64,
 | ||
|         no_pointers: usize,
 | ||
|         bx: &Builder<'a, 'll, 'tcx>,
 | ||
|     ) -> String {
 | ||
|         let p0s: String = "p0".repeat(no_pointers);
 | ||
|         match *elem_ty.kind() {
 | ||
|             ty::Int(v) => format!(
 | ||
|                 "v{}{}i{}",
 | ||
|                 vec_len,
 | ||
|                 p0s,
 | ||
|                 // Normalize to prevent crash if v: IntTy::Isize
 | ||
|                 v.normalize(bx.target_spec().pointer_width).bit_width().unwrap()
 | ||
|             ),
 | ||
|             ty::Uint(v) => format!(
 | ||
|                 "v{}{}i{}",
 | ||
|                 vec_len,
 | ||
|                 p0s,
 | ||
|                 // Normalize to prevent crash if v: UIntTy::Usize
 | ||
|                 v.normalize(bx.target_spec().pointer_width).bit_width().unwrap()
 | ||
|             ),
 | ||
|             ty::Float(v) => format!("v{}{}f{}", vec_len, p0s, v.bit_width()),
 | ||
|             _ => unreachable!(),
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     fn llvm_vector_ty(
 | ||
|         cx: &CodegenCx<'ll, '_>,
 | ||
|         elem_ty: Ty<'_>,
 | ||
|         vec_len: u64,
 | ||
|         mut no_pointers: usize,
 | ||
|     ) -> &'ll Type {
 | ||
|         // FIXME: use cx.layout_of(ty).llvm_type() ?
 | ||
|         let mut elem_ty = match *elem_ty.kind() {
 | ||
|             ty::Int(v) => cx.type_int_from_ty(v),
 | ||
|             ty::Uint(v) => cx.type_uint_from_ty(v),
 | ||
|             ty::Float(v) => cx.type_float_from_ty(v),
 | ||
|             _ => unreachable!(),
 | ||
|         };
 | ||
|         while no_pointers > 0 {
 | ||
|             elem_ty = cx.type_ptr_to(elem_ty);
 | ||
|             no_pointers -= 1;
 | ||
|         }
 | ||
|         cx.type_vector(elem_ty, vec_len)
 | ||
|     }
 | ||
| 
 | ||
|     if name == sym::simd_gather {
 | ||
|         // simd_gather(values: <N x T>, pointers: <N x *_ T>,
 | ||
|         //             mask: <N x i{M}>) -> <N x T>
 | ||
|         // * N: number of elements in the input vectors
 | ||
|         // * T: type of the element to load
 | ||
|         // * M: any integer width is supported, will be truncated to i1
 | ||
| 
 | ||
|         // All types must be simd vector types
 | ||
|         require_simd!(in_ty, "first");
 | ||
|         require_simd!(arg_tys[1], "second");
 | ||
|         require_simd!(arg_tys[2], "third");
 | ||
|         require_simd!(ret_ty, "return");
 | ||
| 
 | ||
|         // Of the same length:
 | ||
|         let (out_len, _) = arg_tys[1].simd_size_and_type(bx.tcx());
 | ||
|         let (out_len2, _) = arg_tys[2].simd_size_and_type(bx.tcx());
 | ||
|         require!(
 | ||
|             in_len == out_len,
 | ||
|             "expected {} argument with length {} (same as input type `{}`), \
 | ||
|              found `{}` with length {}",
 | ||
|             "second",
 | ||
|             in_len,
 | ||
|             in_ty,
 | ||
|             arg_tys[1],
 | ||
|             out_len
 | ||
|         );
 | ||
|         require!(
 | ||
|             in_len == out_len2,
 | ||
|             "expected {} argument with length {} (same as input type `{}`), \
 | ||
|              found `{}` with length {}",
 | ||
|             "third",
 | ||
|             in_len,
 | ||
|             in_ty,
 | ||
|             arg_tys[2],
 | ||
|             out_len2
 | ||
|         );
 | ||
| 
 | ||
|         // The return type must match the first argument type
 | ||
|         require!(ret_ty == in_ty, "expected return type `{}`, found `{}`", in_ty, ret_ty);
 | ||
| 
 | ||
|         // This counts how many pointers
 | ||
|         fn ptr_count(t: Ty<'_>) -> usize {
 | ||
|             match t.kind() {
 | ||
|                 ty::RawPtr(p) => 1 + ptr_count(p.ty),
 | ||
|                 _ => 0,
 | ||
|             }
 | ||
|         }
 | ||
| 
 | ||
|         // Non-ptr type
 | ||
|         fn non_ptr(t: Ty<'_>) -> Ty<'_> {
 | ||
|             match t.kind() {
 | ||
|                 ty::RawPtr(p) => non_ptr(p.ty),
 | ||
|                 _ => t,
 | ||
|             }
 | ||
|         }
 | ||
| 
 | ||
|         // The second argument must be a simd vector with an element type that's a pointer
 | ||
|         // to the element type of the first argument
 | ||
|         let (_, element_ty0) = arg_tys[0].simd_size_and_type(bx.tcx());
 | ||
|         let (_, element_ty1) = arg_tys[1].simd_size_and_type(bx.tcx());
 | ||
|         let (pointer_count, underlying_ty) = match element_ty1.kind() {
 | ||
|             ty::RawPtr(p) if p.ty == in_elem => (ptr_count(element_ty1), non_ptr(element_ty1)),
 | ||
|             _ => {
 | ||
|                 require!(
 | ||
|                     false,
 | ||
|                     "expected element type `{}` of second argument `{}` \
 | ||
|                         to be a pointer to the element type `{}` of the first \
 | ||
|                         argument `{}`, found `{}` != `*_ {}`",
 | ||
|                     element_ty1,
 | ||
|                     arg_tys[1],
 | ||
|                     in_elem,
 | ||
|                     in_ty,
 | ||
|                     element_ty1,
 | ||
|                     in_elem
 | ||
|                 );
 | ||
|                 unreachable!();
 | ||
|             }
 | ||
|         };
 | ||
|         assert!(pointer_count > 0);
 | ||
|         assert_eq!(pointer_count - 1, ptr_count(element_ty0));
 | ||
|         assert_eq!(underlying_ty, non_ptr(element_ty0));
 | ||
| 
 | ||
|         // The element type of the third argument must be a signed integer type of any width:
 | ||
|         let (_, element_ty2) = arg_tys[2].simd_size_and_type(bx.tcx());
 | ||
|         match element_ty2.kind() {
 | ||
|             ty::Int(_) => (),
 | ||
|             _ => {
 | ||
|                 require!(
 | ||
|                     false,
 | ||
|                     "expected element type `{}` of third argument `{}` \
 | ||
|                                  to be a signed integer type",
 | ||
|                     element_ty2,
 | ||
|                     arg_tys[2]
 | ||
|                 );
 | ||
|             }
 | ||
|         }
 | ||
| 
 | ||
|         // Alignment of T, must be a constant integer value:
 | ||
|         let alignment_ty = bx.type_i32();
 | ||
|         let alignment = bx.const_i32(bx.align_of(in_elem).bytes() as i32);
 | ||
| 
 | ||
|         // Truncate the mask vector to a vector of i1s:
 | ||
|         let (mask, mask_ty) = {
 | ||
|             let i1 = bx.type_i1();
 | ||
|             let i1xn = bx.type_vector(i1, in_len);
 | ||
|             (bx.trunc(args[2].immediate(), i1xn), i1xn)
 | ||
|         };
 | ||
| 
 | ||
|         // Type of the vector of pointers:
 | ||
|         let llvm_pointer_vec_ty = llvm_vector_ty(bx, underlying_ty, in_len, pointer_count);
 | ||
|         let llvm_pointer_vec_str = llvm_vector_str(underlying_ty, in_len, pointer_count, bx);
 | ||
| 
 | ||
|         // Type of the vector of elements:
 | ||
|         let llvm_elem_vec_ty = llvm_vector_ty(bx, underlying_ty, in_len, pointer_count - 1);
 | ||
|         let llvm_elem_vec_str = llvm_vector_str(underlying_ty, in_len, pointer_count - 1, bx);
 | ||
| 
 | ||
|         let llvm_intrinsic =
 | ||
|             format!("llvm.masked.gather.{}.{}", llvm_elem_vec_str, llvm_pointer_vec_str);
 | ||
|         let fn_ty = bx.type_func(
 | ||
|             &[llvm_pointer_vec_ty, alignment_ty, mask_ty, llvm_elem_vec_ty],
 | ||
|             llvm_elem_vec_ty,
 | ||
|         );
 | ||
|         let f = bx.declare_cfn(&llvm_intrinsic, llvm::UnnamedAddr::No, fn_ty);
 | ||
|         let v =
 | ||
|             bx.call(fn_ty, f, &[args[1].immediate(), alignment, mask, args[0].immediate()], None);
 | ||
|         return Ok(v);
 | ||
|     }
 | ||
| 
 | ||
|     if name == sym::simd_scatter {
 | ||
|         // simd_scatter(values: <N x T>, pointers: <N x *mut T>,
 | ||
|         //             mask: <N x i{M}>) -> ()
 | ||
|         // * N: number of elements in the input vectors
 | ||
|         // * T: type of the element to load
 | ||
|         // * M: any integer width is supported, will be truncated to i1
 | ||
| 
 | ||
|         // All types must be simd vector types
 | ||
|         require_simd!(in_ty, "first");
 | ||
|         require_simd!(arg_tys[1], "second");
 | ||
|         require_simd!(arg_tys[2], "third");
 | ||
| 
 | ||
|         // Of the same length:
 | ||
|         let (element_len1, _) = arg_tys[1].simd_size_and_type(bx.tcx());
 | ||
|         let (element_len2, _) = arg_tys[2].simd_size_and_type(bx.tcx());
 | ||
|         require!(
 | ||
|             in_len == element_len1,
 | ||
|             "expected {} argument with length {} (same as input type `{}`), \
 | ||
|             found `{}` with length {}",
 | ||
|             "second",
 | ||
|             in_len,
 | ||
|             in_ty,
 | ||
|             arg_tys[1],
 | ||
|             element_len1
 | ||
|         );
 | ||
|         require!(
 | ||
|             in_len == element_len2,
 | ||
|             "expected {} argument with length {} (same as input type `{}`), \
 | ||
|             found `{}` with length {}",
 | ||
|             "third",
 | ||
|             in_len,
 | ||
|             in_ty,
 | ||
|             arg_tys[2],
 | ||
|             element_len2
 | ||
|         );
 | ||
| 
 | ||
|         // This counts how many pointers
 | ||
|         fn ptr_count(t: Ty<'_>) -> usize {
 | ||
|             match t.kind() {
 | ||
|                 ty::RawPtr(p) => 1 + ptr_count(p.ty),
 | ||
|                 _ => 0,
 | ||
|             }
 | ||
|         }
 | ||
| 
 | ||
|         // Non-ptr type
 | ||
|         fn non_ptr(t: Ty<'_>) -> Ty<'_> {
 | ||
|             match t.kind() {
 | ||
|                 ty::RawPtr(p) => non_ptr(p.ty),
 | ||
|                 _ => t,
 | ||
|             }
 | ||
|         }
 | ||
| 
 | ||
|         // The second argument must be a simd vector with an element type that's a pointer
 | ||
|         // to the element type of the first argument
 | ||
|         let (_, element_ty0) = arg_tys[0].simd_size_and_type(bx.tcx());
 | ||
|         let (_, element_ty1) = arg_tys[1].simd_size_and_type(bx.tcx());
 | ||
|         let (_, element_ty2) = arg_tys[2].simd_size_and_type(bx.tcx());
 | ||
|         let (pointer_count, underlying_ty) = match element_ty1.kind() {
 | ||
|             ty::RawPtr(p) if p.ty == in_elem && p.mutbl == hir::Mutability::Mut => {
 | ||
|                 (ptr_count(element_ty1), non_ptr(element_ty1))
 | ||
|             }
 | ||
|             _ => {
 | ||
|                 require!(
 | ||
|                     false,
 | ||
|                     "expected element type `{}` of second argument `{}` \
 | ||
|                         to be a pointer to the element type `{}` of the first \
 | ||
|                         argument `{}`, found `{}` != `*mut {}`",
 | ||
|                     element_ty1,
 | ||
|                     arg_tys[1],
 | ||
|                     in_elem,
 | ||
|                     in_ty,
 | ||
|                     element_ty1,
 | ||
|                     in_elem
 | ||
|                 );
 | ||
|                 unreachable!();
 | ||
|             }
 | ||
|         };
 | ||
|         assert!(pointer_count > 0);
 | ||
|         assert_eq!(pointer_count - 1, ptr_count(element_ty0));
 | ||
|         assert_eq!(underlying_ty, non_ptr(element_ty0));
 | ||
| 
 | ||
|         // The element type of the third argument must be a signed integer type of any width:
 | ||
|         match element_ty2.kind() {
 | ||
|             ty::Int(_) => (),
 | ||
|             _ => {
 | ||
|                 require!(
 | ||
|                     false,
 | ||
|                     "expected element type `{}` of third argument `{}` \
 | ||
|                          be a signed integer type",
 | ||
|                     element_ty2,
 | ||
|                     arg_tys[2]
 | ||
|                 );
 | ||
|             }
 | ||
|         }
 | ||
| 
 | ||
|         // Alignment of T, must be a constant integer value:
 | ||
|         let alignment_ty = bx.type_i32();
 | ||
|         let alignment = bx.const_i32(bx.align_of(in_elem).bytes() as i32);
 | ||
| 
 | ||
|         // Truncate the mask vector to a vector of i1s:
 | ||
|         let (mask, mask_ty) = {
 | ||
|             let i1 = bx.type_i1();
 | ||
|             let i1xn = bx.type_vector(i1, in_len);
 | ||
|             (bx.trunc(args[2].immediate(), i1xn), i1xn)
 | ||
|         };
 | ||
| 
 | ||
|         let ret_t = bx.type_void();
 | ||
| 
 | ||
|         // Type of the vector of pointers:
 | ||
|         let llvm_pointer_vec_ty = llvm_vector_ty(bx, underlying_ty, in_len, pointer_count);
 | ||
|         let llvm_pointer_vec_str = llvm_vector_str(underlying_ty, in_len, pointer_count, bx);
 | ||
| 
 | ||
|         // Type of the vector of elements:
 | ||
|         let llvm_elem_vec_ty = llvm_vector_ty(bx, underlying_ty, in_len, pointer_count - 1);
 | ||
|         let llvm_elem_vec_str = llvm_vector_str(underlying_ty, in_len, pointer_count - 1, bx);
 | ||
| 
 | ||
|         let llvm_intrinsic =
 | ||
|             format!("llvm.masked.scatter.{}.{}", llvm_elem_vec_str, llvm_pointer_vec_str);
 | ||
|         let fn_ty =
 | ||
|             bx.type_func(&[llvm_elem_vec_ty, llvm_pointer_vec_ty, alignment_ty, mask_ty], ret_t);
 | ||
|         let f = bx.declare_cfn(&llvm_intrinsic, llvm::UnnamedAddr::No, fn_ty);
 | ||
|         let v =
 | ||
|             bx.call(fn_ty, f, &[args[0].immediate(), args[1].immediate(), alignment, mask], None);
 | ||
|         return Ok(v);
 | ||
|     }
 | ||
| 
 | ||
|     macro_rules! arith_red {
 | ||
|         ($name:ident : $integer_reduce:ident, $float_reduce:ident, $ordered:expr, $op:ident,
 | ||
|          $identity:expr) => {
 | ||
|             if name == sym::$name {
 | ||
|                 require!(
 | ||
|                     ret_ty == in_elem,
 | ||
|                     "expected return type `{}` (element of input `{}`), found `{}`",
 | ||
|                     in_elem,
 | ||
|                     in_ty,
 | ||
|                     ret_ty
 | ||
|                 );
 | ||
|                 return match in_elem.kind() {
 | ||
|                     ty::Int(_) | ty::Uint(_) => {
 | ||
|                         let r = bx.$integer_reduce(args[0].immediate());
 | ||
|                         if $ordered {
 | ||
|                             // if overflow occurs, the result is the
 | ||
|                             // mathematical result modulo 2^n:
 | ||
|                             Ok(bx.$op(args[1].immediate(), r))
 | ||
|                         } else {
 | ||
|                             Ok(bx.$integer_reduce(args[0].immediate()))
 | ||
|                         }
 | ||
|                     }
 | ||
|                     ty::Float(f) => {
 | ||
|                         let acc = if $ordered {
 | ||
|                             // ordered arithmetic reductions take an accumulator
 | ||
|                             args[1].immediate()
 | ||
|                         } else {
 | ||
|                             // unordered arithmetic reductions use the identity accumulator
 | ||
|                             match f.bit_width() {
 | ||
|                                 32 => bx.const_real(bx.type_f32(), $identity),
 | ||
|                                 64 => bx.const_real(bx.type_f64(), $identity),
 | ||
|                                 v => return_error!(
 | ||
|                                     r#"
 | ||
| unsupported {} from `{}` with element `{}` of size `{}` to `{}`"#,
 | ||
|                                     sym::$name,
 | ||
|                                     in_ty,
 | ||
|                                     in_elem,
 | ||
|                                     v,
 | ||
|                                     ret_ty
 | ||
|                                 ),
 | ||
|                             }
 | ||
|                         };
 | ||
|                         Ok(bx.$float_reduce(acc, args[0].immediate()))
 | ||
|                     }
 | ||
|                     _ => return_error!(
 | ||
|                         "unsupported {} from `{}` with element `{}` to `{}`",
 | ||
|                         sym::$name,
 | ||
|                         in_ty,
 | ||
|                         in_elem,
 | ||
|                         ret_ty
 | ||
|                     ),
 | ||
|                 };
 | ||
|             }
 | ||
|         };
 | ||
|     }
 | ||
| 
 | ||
|     arith_red!(simd_reduce_add_ordered: vector_reduce_add, vector_reduce_fadd, true, add, 0.0);
 | ||
|     arith_red!(simd_reduce_mul_ordered: vector_reduce_mul, vector_reduce_fmul, true, mul, 1.0);
 | ||
|     arith_red!(
 | ||
|         simd_reduce_add_unordered: vector_reduce_add,
 | ||
|         vector_reduce_fadd_fast,
 | ||
|         false,
 | ||
|         add,
 | ||
|         0.0
 | ||
|     );
 | ||
|     arith_red!(
 | ||
|         simd_reduce_mul_unordered: vector_reduce_mul,
 | ||
|         vector_reduce_fmul_fast,
 | ||
|         false,
 | ||
|         mul,
 | ||
|         1.0
 | ||
|     );
 | ||
| 
 | ||
|     macro_rules! minmax_red {
 | ||
|         ($name:ident: $int_red:ident, $float_red:ident) => {
 | ||
|             if name == sym::$name {
 | ||
|                 require!(
 | ||
|                     ret_ty == in_elem,
 | ||
|                     "expected return type `{}` (element of input `{}`), found `{}`",
 | ||
|                     in_elem,
 | ||
|                     in_ty,
 | ||
|                     ret_ty
 | ||
|                 );
 | ||
|                 return match in_elem.kind() {
 | ||
|                     ty::Int(_i) => Ok(bx.$int_red(args[0].immediate(), true)),
 | ||
|                     ty::Uint(_u) => Ok(bx.$int_red(args[0].immediate(), false)),
 | ||
|                     ty::Float(_f) => Ok(bx.$float_red(args[0].immediate())),
 | ||
|                     _ => return_error!(
 | ||
|                         "unsupported {} from `{}` with element `{}` to `{}`",
 | ||
|                         sym::$name,
 | ||
|                         in_ty,
 | ||
|                         in_elem,
 | ||
|                         ret_ty
 | ||
|                     ),
 | ||
|                 };
 | ||
|             }
 | ||
|         };
 | ||
|     }
 | ||
| 
 | ||
|     minmax_red!(simd_reduce_min: vector_reduce_min, vector_reduce_fmin);
 | ||
|     minmax_red!(simd_reduce_max: vector_reduce_max, vector_reduce_fmax);
 | ||
| 
 | ||
|     minmax_red!(simd_reduce_min_nanless: vector_reduce_min, vector_reduce_fmin_fast);
 | ||
|     minmax_red!(simd_reduce_max_nanless: vector_reduce_max, vector_reduce_fmax_fast);
 | ||
| 
 | ||
|     macro_rules! bitwise_red {
 | ||
|         ($name:ident : $red:ident, $boolean:expr) => {
 | ||
|             if name == sym::$name {
 | ||
|                 let input = if !$boolean {
 | ||
|                     require!(
 | ||
|                         ret_ty == in_elem,
 | ||
|                         "expected return type `{}` (element of input `{}`), found `{}`",
 | ||
|                         in_elem,
 | ||
|                         in_ty,
 | ||
|                         ret_ty
 | ||
|                     );
 | ||
|                     args[0].immediate()
 | ||
|                 } else {
 | ||
|                     match in_elem.kind() {
 | ||
|                         ty::Int(_) | ty::Uint(_) => {}
 | ||
|                         _ => return_error!(
 | ||
|                             "unsupported {} from `{}` with element `{}` to `{}`",
 | ||
|                             sym::$name,
 | ||
|                             in_ty,
 | ||
|                             in_elem,
 | ||
|                             ret_ty
 | ||
|                         ),
 | ||
|                     }
 | ||
| 
 | ||
|                     // boolean reductions operate on vectors of i1s:
 | ||
|                     let i1 = bx.type_i1();
 | ||
|                     let i1xn = bx.type_vector(i1, in_len as u64);
 | ||
|                     bx.trunc(args[0].immediate(), i1xn)
 | ||
|                 };
 | ||
|                 return match in_elem.kind() {
 | ||
|                     ty::Int(_) | ty::Uint(_) => {
 | ||
|                         let r = bx.$red(input);
 | ||
|                         Ok(if !$boolean { r } else { bx.zext(r, bx.type_bool()) })
 | ||
|                     }
 | ||
|                     _ => return_error!(
 | ||
|                         "unsupported {} from `{}` with element `{}` to `{}`",
 | ||
|                         sym::$name,
 | ||
|                         in_ty,
 | ||
|                         in_elem,
 | ||
|                         ret_ty
 | ||
|                     ),
 | ||
|                 };
 | ||
|             }
 | ||
|         };
 | ||
|     }
 | ||
| 
 | ||
|     bitwise_red!(simd_reduce_and: vector_reduce_and, false);
 | ||
|     bitwise_red!(simd_reduce_or: vector_reduce_or, false);
 | ||
|     bitwise_red!(simd_reduce_xor: vector_reduce_xor, false);
 | ||
|     bitwise_red!(simd_reduce_all: vector_reduce_and, true);
 | ||
|     bitwise_red!(simd_reduce_any: vector_reduce_or, true);
 | ||
| 
 | ||
|     if name == sym::simd_cast {
 | ||
|         require_simd!(ret_ty, "return");
 | ||
|         let (out_len, out_elem) = ret_ty.simd_size_and_type(bx.tcx());
 | ||
|         require!(
 | ||
|             in_len == out_len,
 | ||
|             "expected return type with length {} (same as input type `{}`), \
 | ||
|                   found `{}` with length {}",
 | ||
|             in_len,
 | ||
|             in_ty,
 | ||
|             ret_ty,
 | ||
|             out_len
 | ||
|         );
 | ||
|         // casting cares about nominal type, not just structural type
 | ||
|         if in_elem == out_elem {
 | ||
|             return Ok(args[0].immediate());
 | ||
|         }
 | ||
| 
 | ||
|         enum Style {
 | ||
|             Float,
 | ||
|             Int(/* is signed? */ bool),
 | ||
|             Unsupported,
 | ||
|         }
 | ||
| 
 | ||
|         let (in_style, in_width) = match in_elem.kind() {
 | ||
|             // vectors of pointer-sized integers should've been
 | ||
|             // disallowed before here, so this unwrap is safe.
 | ||
|             ty::Int(i) => (Style::Int(true), i.bit_width().unwrap()),
 | ||
|             ty::Uint(u) => (Style::Int(false), u.bit_width().unwrap()),
 | ||
|             ty::Float(f) => (Style::Float, f.bit_width()),
 | ||
|             _ => (Style::Unsupported, 0),
 | ||
|         };
 | ||
|         let (out_style, out_width) = match out_elem.kind() {
 | ||
|             ty::Int(i) => (Style::Int(true), i.bit_width().unwrap()),
 | ||
|             ty::Uint(u) => (Style::Int(false), u.bit_width().unwrap()),
 | ||
|             ty::Float(f) => (Style::Float, f.bit_width()),
 | ||
|             _ => (Style::Unsupported, 0),
 | ||
|         };
 | ||
| 
 | ||
|         match (in_style, out_style) {
 | ||
|             (Style::Int(in_is_signed), Style::Int(_)) => {
 | ||
|                 return Ok(match in_width.cmp(&out_width) {
 | ||
|                     Ordering::Greater => bx.trunc(args[0].immediate(), llret_ty),
 | ||
|                     Ordering::Equal => args[0].immediate(),
 | ||
|                     Ordering::Less => {
 | ||
|                         if in_is_signed {
 | ||
|                             bx.sext(args[0].immediate(), llret_ty)
 | ||
|                         } else {
 | ||
|                             bx.zext(args[0].immediate(), llret_ty)
 | ||
|                         }
 | ||
|                     }
 | ||
|                 });
 | ||
|             }
 | ||
|             (Style::Int(in_is_signed), Style::Float) => {
 | ||
|                 return Ok(if in_is_signed {
 | ||
|                     bx.sitofp(args[0].immediate(), llret_ty)
 | ||
|                 } else {
 | ||
|                     bx.uitofp(args[0].immediate(), llret_ty)
 | ||
|                 });
 | ||
|             }
 | ||
|             (Style::Float, Style::Int(out_is_signed)) => {
 | ||
|                 return Ok(if out_is_signed {
 | ||
|                     bx.fptosi(args[0].immediate(), llret_ty)
 | ||
|                 } else {
 | ||
|                     bx.fptoui(args[0].immediate(), llret_ty)
 | ||
|                 });
 | ||
|             }
 | ||
|             (Style::Float, Style::Float) => {
 | ||
|                 return Ok(match in_width.cmp(&out_width) {
 | ||
|                     Ordering::Greater => bx.fptrunc(args[0].immediate(), llret_ty),
 | ||
|                     Ordering::Equal => args[0].immediate(),
 | ||
|                     Ordering::Less => bx.fpext(args[0].immediate(), llret_ty),
 | ||
|                 });
 | ||
|             }
 | ||
|             _ => { /* Unsupported. Fallthrough. */ }
 | ||
|         }
 | ||
|         require!(
 | ||
|             false,
 | ||
|             "unsupported cast from `{}` with element `{}` to `{}` with element `{}`",
 | ||
|             in_ty,
 | ||
|             in_elem,
 | ||
|             ret_ty,
 | ||
|             out_elem
 | ||
|         );
 | ||
|     }
 | ||
|     macro_rules! arith_binary {
 | ||
|         ($($name: ident: $($($p: ident),* => $call: ident),*;)*) => {
 | ||
|             $(if name == sym::$name {
 | ||
|                 match in_elem.kind() {
 | ||
|                     $($(ty::$p(_))|* => {
 | ||
|                         return Ok(bx.$call(args[0].immediate(), args[1].immediate()))
 | ||
|                     })*
 | ||
|                     _ => {},
 | ||
|                 }
 | ||
|                 require!(false,
 | ||
|                          "unsupported operation on `{}` with element `{}`",
 | ||
|                          in_ty,
 | ||
|                          in_elem)
 | ||
|             })*
 | ||
|         }
 | ||
|     }
 | ||
|     arith_binary! {
 | ||
|         simd_add: Uint, Int => add, Float => fadd;
 | ||
|         simd_sub: Uint, Int => sub, Float => fsub;
 | ||
|         simd_mul: Uint, Int => mul, Float => fmul;
 | ||
|         simd_div: Uint => udiv, Int => sdiv, Float => fdiv;
 | ||
|         simd_rem: Uint => urem, Int => srem, Float => frem;
 | ||
|         simd_shl: Uint, Int => shl;
 | ||
|         simd_shr: Uint => lshr, Int => ashr;
 | ||
|         simd_and: Uint, Int => and;
 | ||
|         simd_or: Uint, Int => or;
 | ||
|         simd_xor: Uint, Int => xor;
 | ||
|         simd_fmax: Float => maxnum;
 | ||
|         simd_fmin: Float => minnum;
 | ||
| 
 | ||
|     }
 | ||
|     macro_rules! arith_unary {
 | ||
|         ($($name: ident: $($($p: ident),* => $call: ident),*;)*) => {
 | ||
|             $(if name == sym::$name {
 | ||
|                 match in_elem.kind() {
 | ||
|                     $($(ty::$p(_))|* => {
 | ||
|                         return Ok(bx.$call(args[0].immediate()))
 | ||
|                     })*
 | ||
|                     _ => {},
 | ||
|                 }
 | ||
|                 require!(false,
 | ||
|                          "unsupported operation on `{}` with element `{}`",
 | ||
|                          in_ty,
 | ||
|                          in_elem)
 | ||
|             })*
 | ||
|         }
 | ||
|     }
 | ||
|     arith_unary! {
 | ||
|         simd_neg: Int => neg, Float => fneg;
 | ||
|     }
 | ||
| 
 | ||
|     if name == sym::simd_saturating_add || name == sym::simd_saturating_sub {
 | ||
|         let lhs = args[0].immediate();
 | ||
|         let rhs = args[1].immediate();
 | ||
|         let is_add = name == sym::simd_saturating_add;
 | ||
|         let ptr_bits = bx.tcx().data_layout.pointer_size.bits() as _;
 | ||
|         let (signed, elem_width, elem_ty) = match *in_elem.kind() {
 | ||
|             ty::Int(i) => (true, i.bit_width().unwrap_or(ptr_bits), bx.cx.type_int_from_ty(i)),
 | ||
|             ty::Uint(i) => (false, i.bit_width().unwrap_or(ptr_bits), bx.cx.type_uint_from_ty(i)),
 | ||
|             _ => {
 | ||
|                 return_error!(
 | ||
|                     "expected element type `{}` of vector type `{}` \
 | ||
|                      to be a signed or unsigned integer type",
 | ||
|                     arg_tys[0].simd_size_and_type(bx.tcx()).1,
 | ||
|                     arg_tys[0]
 | ||
|                 );
 | ||
|             }
 | ||
|         };
 | ||
|         let llvm_intrinsic = &format!(
 | ||
|             "llvm.{}{}.sat.v{}i{}",
 | ||
|             if signed { 's' } else { 'u' },
 | ||
|             if is_add { "add" } else { "sub" },
 | ||
|             in_len,
 | ||
|             elem_width
 | ||
|         );
 | ||
|         let vec_ty = bx.cx.type_vector(elem_ty, in_len as u64);
 | ||
| 
 | ||
|         let fn_ty = bx.type_func(&[vec_ty, vec_ty], vec_ty);
 | ||
|         let f = bx.declare_cfn(llvm_intrinsic, llvm::UnnamedAddr::No, fn_ty);
 | ||
|         let v = bx.call(fn_ty, f, &[lhs, rhs], None);
 | ||
|         return Ok(v);
 | ||
|     }
 | ||
| 
 | ||
|     span_bug!(span, "unknown SIMD intrinsic");
 | ||
| }
 | ||
| 
 | ||
| // Returns the width of an int Ty, and if it's signed or not
 | ||
| // Returns None if the type is not an integer
 | ||
| // FIXME: there’s multiple of this functions, investigate using some of the already existing
 | ||
| // stuffs.
 | ||
| fn int_type_width_signed(ty: Ty<'_>, cx: &CodegenCx<'_, '_>) -> Option<(u64, bool)> {
 | ||
|     match ty.kind() {
 | ||
|         ty::Int(t) => {
 | ||
|             Some((t.bit_width().unwrap_or(u64::from(cx.tcx.sess.target.pointer_width)), true))
 | ||
|         }
 | ||
|         ty::Uint(t) => {
 | ||
|             Some((t.bit_width().unwrap_or(u64::from(cx.tcx.sess.target.pointer_width)), false))
 | ||
|         }
 | ||
|         _ => None,
 | ||
|     }
 | ||
| }
 | 
