mirror of
				https://github.com/rust-lang/rust.git
				synced 2025-10-31 04:57:19 +00:00 
			
		
		
		
	 c4d9c0f248
			
		
	
	
		c4d9c0f248
		
	
	
	
	
		
			
			`conv-bits-runtime-const` gates `f16` and `f128` tests behind `x86_64`,
but this isn't always accurate. In particular, x86 `MinGW` has an ABI
bug [1] which means things work when linked to our Rust math libraries
but don't work with host libraries. RUST-143405 slightly adjusts which
targets we provide `f16` and `f128` symbols for and effectively removes
MinGW from that list, meaning host libraries start getting linked,
meaning `f16` and `f128` tests start to fail.
Account for this by changing the gates in one such test to
`cfg(target_has_reliable_{f16,f128})` which is the way we should be
gating all behavior related to the types going forward.
`rustfmt` also seems to have formatted the macros which is fine.
[1]: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=115054
		
	
			
		
			
				
	
	
		
			163 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			163 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
| //@ compile-flags: -Zmir-opt-level=0
 | |
| //@ run-pass
 | |
| 
 | |
| // This tests the float classification functions, for regular runtime code and for const evaluation.
 | |
| 
 | |
| #![feature(f16)]
 | |
| #![feature(f128)]
 | |
| #![feature(cfg_target_has_reliable_f16_f128)]
 | |
| #![allow(unused_macro_rules)]
 | |
| // expect the unexpected (`target_has_reliable_*` are not "known" configs since they are unstable)
 | |
| #![expect(unexpected_cfgs)]
 | |
| 
 | |
| use std::hint::black_box;
 | |
| 
 | |
| macro_rules! both_assert {
 | |
|     ($a:expr) => {{
 | |
|         const _: () = assert!($a);
 | |
|         // `black_box` prevents promotion, and MIR opts are disabled above, so this is truly
 | |
|         // going through LLVM.
 | |
|         assert!(black_box($a));
 | |
|     }};
 | |
|     ($a:expr, $b:expr) => {{
 | |
|         const _: () = assert!($a == $b);
 | |
|         assert_eq!(black_box($a), black_box($b));
 | |
|     }};
 | |
| }
 | |
| 
 | |
| fn has_broken_floats() -> bool {
 | |
|     // i586 targets are broken due to <https://github.com/rust-lang/rust/issues/114479>.
 | |
|     cfg!(all(target_arch = "x86", not(target_feature = "sse2")))
 | |
| }
 | |
| 
 | |
| #[cfg(target_has_reliable_f16)]
 | |
| fn f16() {
 | |
|     both_assert!((1f16).to_bits(), 0x3c00);
 | |
|     both_assert!(u16::from_be_bytes(1f16.to_be_bytes()), 0x3c00);
 | |
|     both_assert!((12.5f16).to_bits(), 0x4a40);
 | |
|     both_assert!(u16::from_le_bytes(12.5f16.to_le_bytes()), 0x4a40);
 | |
|     both_assert!((1337f16).to_bits(), 0x6539);
 | |
|     both_assert!(u16::from_ne_bytes(1337f16.to_ne_bytes()), 0x6539);
 | |
|     both_assert!((-14.25f16).to_bits(), 0xcb20);
 | |
|     both_assert!(f16::from_bits(0x3c00), 1.0);
 | |
|     both_assert!(f16::from_be_bytes(0x3c00u16.to_be_bytes()), 1.0);
 | |
|     both_assert!(f16::from_bits(0x4a40), 12.5);
 | |
|     both_assert!(f16::from_le_bytes(0x4a40u16.to_le_bytes()), 12.5);
 | |
|     both_assert!(f16::from_bits(0x5be0), 252.0);
 | |
|     both_assert!(f16::from_ne_bytes(0x5be0u16.to_ne_bytes()), 252.0);
 | |
|     both_assert!(f16::from_bits(0xcb20), -14.25);
 | |
| 
 | |
|     // Check that NaNs roundtrip their bits regardless of signalingness
 | |
|     // 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits
 | |
|     // NOTE: These names assume `f{BITS}::NAN` is a quiet NAN and IEEE754-2008's NaN rules apply!
 | |
|     const QUIET_NAN: u16 = f16::NAN.to_bits() ^ 0x0155;
 | |
|     const SIGNALING_NAN: u16 = f16::NAN.to_bits() ^ 0x02AA;
 | |
| 
 | |
|     both_assert!(f16::from_bits(QUIET_NAN).is_nan());
 | |
|     both_assert!(f16::from_bits(SIGNALING_NAN).is_nan());
 | |
|     both_assert!(f16::from_bits(QUIET_NAN).to_bits(), QUIET_NAN);
 | |
|     if !has_broken_floats() {
 | |
|         both_assert!(f16::from_bits(SIGNALING_NAN).to_bits(), SIGNALING_NAN);
 | |
|     }
 | |
| }
 | |
| 
 | |
| fn f32() {
 | |
|     both_assert!((1f32).to_bits(), 0x3f800000);
 | |
|     both_assert!(u32::from_be_bytes(1f32.to_be_bytes()), 0x3f800000);
 | |
|     both_assert!((12.5f32).to_bits(), 0x41480000);
 | |
|     both_assert!(u32::from_le_bytes(12.5f32.to_le_bytes()), 0x41480000);
 | |
|     both_assert!((1337f32).to_bits(), 0x44a72000);
 | |
|     both_assert!(u32::from_ne_bytes(1337f32.to_ne_bytes()), 0x44a72000);
 | |
|     both_assert!((-14.25f32).to_bits(), 0xc1640000);
 | |
|     both_assert!(f32::from_bits(0x3f800000), 1.0);
 | |
|     both_assert!(f32::from_be_bytes(0x3f800000u32.to_be_bytes()), 1.0);
 | |
|     both_assert!(f32::from_bits(0x41480000), 12.5);
 | |
|     both_assert!(f32::from_le_bytes(0x41480000u32.to_le_bytes()), 12.5);
 | |
|     both_assert!(f32::from_bits(0x44a72000), 1337.0);
 | |
|     both_assert!(f32::from_ne_bytes(0x44a72000u32.to_ne_bytes()), 1337.0);
 | |
|     both_assert!(f32::from_bits(0xc1640000), -14.25);
 | |
| 
 | |
|     // Check that NaNs roundtrip their bits regardless of signalingness
 | |
|     // 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits
 | |
|     // NOTE: These names assume `f{BITS}::NAN` is a quiet NAN and IEEE754-2008's NaN rules apply!
 | |
|     const QUIET_NAN: u32 = f32::NAN.to_bits() ^ 0x002A_AAAA;
 | |
|     const SIGNALING_NAN: u32 = f32::NAN.to_bits() ^ 0x0055_5555;
 | |
| 
 | |
|     both_assert!(f32::from_bits(QUIET_NAN).is_nan());
 | |
|     both_assert!(f32::from_bits(SIGNALING_NAN).is_nan());
 | |
|     both_assert!(f32::from_bits(QUIET_NAN).to_bits(), QUIET_NAN);
 | |
|     if !has_broken_floats() {
 | |
|         both_assert!(f32::from_bits(SIGNALING_NAN).to_bits(), SIGNALING_NAN);
 | |
|     }
 | |
| }
 | |
| 
 | |
| fn f64() {
 | |
|     both_assert!((1f64).to_bits(), 0x3ff0000000000000);
 | |
|     both_assert!(u64::from_be_bytes(1f64.to_be_bytes()), 0x3ff0000000000000);
 | |
|     both_assert!((12.5f64).to_bits(), 0x4029000000000000);
 | |
|     both_assert!(u64::from_le_bytes(12.5f64.to_le_bytes()), 0x4029000000000000);
 | |
|     both_assert!((1337f64).to_bits(), 0x4094e40000000000);
 | |
|     both_assert!(u64::from_ne_bytes(1337f64.to_ne_bytes()), 0x4094e40000000000);
 | |
|     both_assert!((-14.25f64).to_bits(), 0xc02c800000000000);
 | |
|     both_assert!(f64::from_bits(0x3ff0000000000000), 1.0);
 | |
|     both_assert!(f64::from_be_bytes(0x3ff0000000000000u64.to_be_bytes()), 1.0);
 | |
|     both_assert!(f64::from_bits(0x4029000000000000), 12.5);
 | |
|     both_assert!(f64::from_le_bytes(0x4029000000000000u64.to_le_bytes()), 12.5);
 | |
|     both_assert!(f64::from_bits(0x4094e40000000000), 1337.0);
 | |
|     both_assert!(f64::from_ne_bytes(0x4094e40000000000u64.to_ne_bytes()), 1337.0);
 | |
|     both_assert!(f64::from_bits(0xc02c800000000000), -14.25);
 | |
| 
 | |
|     // Check that NaNs roundtrip their bits regardless of signalingness
 | |
|     // 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits
 | |
|     // NOTE: These names assume `f{BITS}::NAN` is a quiet NAN and IEEE754-2008's NaN rules apply!
 | |
|     const QUIET_NAN: u64 = f64::NAN.to_bits() ^ 0x0005_5555_5555_5555;
 | |
|     const SIGNALING_NAN: u64 = f64::NAN.to_bits() ^ 0x000A_AAAA_AAAA_AAAA;
 | |
| 
 | |
|     both_assert!(f64::from_bits(QUIET_NAN).is_nan());
 | |
|     both_assert!(f64::from_bits(SIGNALING_NAN).is_nan());
 | |
|     both_assert!(f64::from_bits(QUIET_NAN).to_bits(), QUIET_NAN);
 | |
|     if !has_broken_floats() {
 | |
|         both_assert!(f64::from_bits(SIGNALING_NAN).to_bits(), SIGNALING_NAN);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[cfg(target_has_reliable_f128)]
 | |
| fn f128() {
 | |
|     both_assert!((1f128).to_bits(), 0x3fff0000000000000000000000000000);
 | |
|     both_assert!(u128::from_be_bytes(1f128.to_be_bytes()), 0x3fff0000000000000000000000000000);
 | |
|     both_assert!((12.5f128).to_bits(), 0x40029000000000000000000000000000);
 | |
|     both_assert!(u128::from_le_bytes(12.5f128.to_le_bytes()), 0x40029000000000000000000000000000);
 | |
|     both_assert!((1337f128).to_bits(), 0x40094e40000000000000000000000000);
 | |
|     both_assert!(u128::from_ne_bytes(1337f128.to_ne_bytes()), 0x40094e40000000000000000000000000);
 | |
|     both_assert!((-14.25f128).to_bits(), 0xc002c800000000000000000000000000);
 | |
|     both_assert!(f128::from_bits(0x3fff0000000000000000000000000000), 1.0);
 | |
|     both_assert!(f128::from_be_bytes(0x3fff0000000000000000000000000000u128.to_be_bytes()), 1.0);
 | |
|     both_assert!(f128::from_bits(0x40029000000000000000000000000000), 12.5);
 | |
|     both_assert!(f128::from_le_bytes(0x40029000000000000000000000000000u128.to_le_bytes()), 12.5);
 | |
|     both_assert!(f128::from_bits(0x40094e40000000000000000000000000), 1337.0);
 | |
|     assert_eq!(f128::from_ne_bytes(0x40094e40000000000000000000000000u128.to_ne_bytes()), 1337.0);
 | |
|     both_assert!(f128::from_bits(0xc002c800000000000000000000000000), -14.25);
 | |
| 
 | |
|     // Check that NaNs roundtrip their bits regardless of signalingness
 | |
|     // 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits
 | |
|     // NOTE: These names assume `f{BITS}::NAN` is a quiet NAN and IEEE754-2008's NaN rules apply!
 | |
|     const QUIET_NAN: u128 = f128::NAN.to_bits() | 0x0000_AAAA_AAAA_AAAA_AAAA_AAAA_AAAA_AAAA;
 | |
|     const SIGNALING_NAN: u128 = f128::NAN.to_bits() ^ 0x0000_5555_5555_5555_5555_5555_5555_5555;
 | |
| 
 | |
|     both_assert!(f128::from_bits(QUIET_NAN).is_nan());
 | |
|     both_assert!(f128::from_bits(SIGNALING_NAN).is_nan());
 | |
|     both_assert!(f128::from_bits(QUIET_NAN).to_bits(), QUIET_NAN);
 | |
|     if !has_broken_floats() {
 | |
|         both_assert!(f128::from_bits(SIGNALING_NAN).to_bits(), SIGNALING_NAN);
 | |
|     }
 | |
| }
 | |
| 
 | |
| fn main() {
 | |
|     #[cfg(target_has_reliable_f16)]
 | |
|     f16();
 | |
|     f32();
 | |
|     f64();
 | |
|     #[cfg(target_has_reliable_f128)]
 | |
|     f128();
 | |
| }
 |