mirror of
				https://github.com/rust-lang/rust.git
				synced 2025-11-04 15:05:30 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1039 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			TOML
		
	
	
	
	
	
			
		
		
	
	
			1039 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			TOML
		
	
	
	
	
	
# Sample TOML configuration file for building Rust.
 | 
						|
#
 | 
						|
# To configure bootstrap, run `./configure` or `./x.py setup`.
 | 
						|
# See https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#create-a-bootstraptoml for more information.
 | 
						|
#
 | 
						|
# All options are commented out by default in this file, and they're commented
 | 
						|
# out with their default values. The build system by default looks for
 | 
						|
# `bootstrap.toml` in the current directory of a build for build configuration, but
 | 
						|
# a custom configuration file can also be specified with `--config` to the build
 | 
						|
# system.
 | 
						|
#
 | 
						|
# Note that the following are equivelent, for more details see <https://toml.io/en/v1.0.0>.
 | 
						|
#
 | 
						|
#     build.verbose = 1
 | 
						|
#
 | 
						|
#     [build]
 | 
						|
#     verbose = 1
 | 
						|
 | 
						|
 | 
						|
# =============================================================================
 | 
						|
# Global Settings
 | 
						|
# =============================================================================
 | 
						|
 | 
						|
# Use different pre-set defaults than the global defaults.
 | 
						|
#
 | 
						|
# See `src/bootstrap/defaults` for more information.
 | 
						|
# Note that this has no default value (x.py uses the defaults in `bootstrap.example.toml`).
 | 
						|
#profile = <none>
 | 
						|
 | 
						|
# Inherits configuration values from different configuration files (a.k.a. config extensions).
 | 
						|
# Supports absolute paths, and uses the current directory (where the bootstrap was invoked)
 | 
						|
# as the base if the given path is not absolute.
 | 
						|
#
 | 
						|
# The overriding logic follows a right-to-left order. For example, in `include = ["a.toml", "b.toml"]`,
 | 
						|
# extension `b.toml` overrides `a.toml`. Also, parent extensions always overrides the inner ones.
 | 
						|
#include = []
 | 
						|
 | 
						|
# Keeps track of major changes made to this configuration.
 | 
						|
#
 | 
						|
# This value also represents ID of the PR that caused major changes. Meaning,
 | 
						|
# you can visit github.com/rust-lang/rust/pull/{change-id} to check for more details.
 | 
						|
#
 | 
						|
# A 'major change' includes any of the following
 | 
						|
#  - A new option
 | 
						|
#  - A change in the default values
 | 
						|
#
 | 
						|
# If the change-id does not match the version currently in use, x.py will
 | 
						|
# display the changes made to the bootstrap.
 | 
						|
# To suppress these warnings, you can set change-id = "ignore".
 | 
						|
#change-id = <latest change id in src/bootstrap/src/utils/change_tracker.rs>
 | 
						|
 | 
						|
# =============================================================================
 | 
						|
# Tweaking how LLVM is compiled
 | 
						|
# =============================================================================
 | 
						|
 | 
						|
# Whether to use Rust CI built LLVM instead of locally building it.
 | 
						|
#
 | 
						|
# Unless you're developing for a target where Rust CI doesn't build a compiler
 | 
						|
# toolchain or changing LLVM locally, you probably want to leave this enabled.
 | 
						|
#
 | 
						|
# Set this to `true` to download if CI llvm available otherwise it builds
 | 
						|
# from `src/llvm-project`.
 | 
						|
#
 | 
						|
# Set this to `"if-unchanged"` to download only if the llvm-project has not
 | 
						|
# been modified. You can also use this if you are unsure whether you're on a
 | 
						|
# tier 1 target. All tier 1 targets are currently supported.
 | 
						|
 | 
						|
# Currently, we only support this when building LLVM for the build triple.
 | 
						|
#
 | 
						|
# Note that many of the LLVM options are not currently supported for
 | 
						|
# downloading. Currently only the "assertions" option can be toggled.
 | 
						|
#llvm.download-ci-llvm = true
 | 
						|
 | 
						|
# Indicates whether the LLVM build is a Release or Debug build
 | 
						|
#llvm.optimize = true
 | 
						|
 | 
						|
# Indicates whether LLVM should be built with ThinLTO. Note that this will
 | 
						|
# only succeed if you use clang, lld, llvm-ar, and llvm-ranlib in your C/C++
 | 
						|
# toolchain (see the `cc`, `cxx`, `linker`, `ar`, and `ranlib` options below).
 | 
						|
# More info at: https://clang.llvm.org/docs/ThinLTO.html#clang-bootstrap
 | 
						|
#llvm.thin-lto = false
 | 
						|
 | 
						|
# Indicates whether an LLVM Release build should include debug info
 | 
						|
#llvm.release-debuginfo = false
 | 
						|
 | 
						|
# Indicates whether the LLVM assertions are enabled or not
 | 
						|
# NOTE: When assertions are disabled, bugs in the integration between rustc and LLVM can lead to
 | 
						|
# unsoundness (segfaults, etc.) in the rustc process itself, not just in the generated code.
 | 
						|
#llvm.assertions = false
 | 
						|
 | 
						|
# Indicates whether the LLVM testsuite is enabled in the build or not. Does
 | 
						|
# not execute the tests as part of the build as part of x.py build et al,
 | 
						|
# just makes it possible to do `ninja check-llvm` in the staged LLVM build
 | 
						|
# directory when doing LLVM development as part of Rust development.
 | 
						|
#llvm.tests = false
 | 
						|
 | 
						|
# Indicates whether the LLVM plugin is enabled or not
 | 
						|
#llvm.plugins = false
 | 
						|
 | 
						|
# Whether to build Enzyme as AutoDiff backend.
 | 
						|
#llvm.enzyme = false
 | 
						|
 | 
						|
# Whether to build LLVM with support for it's gpu offload runtime.
 | 
						|
#llvm.offload = false
 | 
						|
 | 
						|
# When true, link libstdc++ statically into the rustc_llvm.
 | 
						|
# This is useful if you don't want to use the dynamic version of that
 | 
						|
# library provided by LLVM.
 | 
						|
#llvm.static-libstdcpp = false
 | 
						|
 | 
						|
# Enable LLVM to use zstd for compression.
 | 
						|
#llvm.libzstd = false
 | 
						|
 | 
						|
# Whether to use Ninja to build LLVM. This runs much faster than make.
 | 
						|
#llvm.ninja = true
 | 
						|
 | 
						|
# LLVM targets to build support for.
 | 
						|
# Note: this is NOT related to Rust compilation targets. However, as Rust is
 | 
						|
# dependent on LLVM for code generation, turning targets off here WILL lead to
 | 
						|
# the resulting rustc being unable to compile for the disabled architectures.
 | 
						|
#
 | 
						|
# To add support for new targets, see https://rustc-dev-guide.rust-lang.org/building/new-target.html.
 | 
						|
#llvm.targets = "AArch64;AMDGPU;ARM;BPF;Hexagon;LoongArch;MSP430;Mips;NVPTX;PowerPC;RISCV;Sparc;SystemZ;WebAssembly;X86"
 | 
						|
 | 
						|
# LLVM experimental targets to build support for. These targets are specified in
 | 
						|
# the same format as above, but since these targets are experimental, they are
 | 
						|
# not built by default and the experimental Rust compilation targets that depend
 | 
						|
# on them will not work unless the user opts in to building them.
 | 
						|
#llvm.experimental-targets = "AVR;M68k;CSKY"
 | 
						|
 | 
						|
# Cap the number of parallel linker invocations when compiling LLVM.
 | 
						|
# This can be useful when building LLVM with debug info, which significantly
 | 
						|
# increases the size of binaries and consequently the memory required by
 | 
						|
# each linker process.
 | 
						|
# If set to 0, linker invocations are treated like any other job and
 | 
						|
# controlled by bootstrap's -j parameter.
 | 
						|
#llvm.link-jobs = 0
 | 
						|
 | 
						|
# Whether to build LLVM as a dynamically linked library (as opposed to statically linked).
 | 
						|
# Under the hood, this passes `--shared` to llvm-config.
 | 
						|
# NOTE: To avoid performing LTO multiple times, we suggest setting this to `true` when `thin-lto` is enabled.
 | 
						|
#llvm.link-shared = llvm.thin-lto
 | 
						|
 | 
						|
# When building llvm, this configures what is being appended to the version.
 | 
						|
# To use LLVM version as is, provide an empty string.
 | 
						|
#llvm.version-suffix = if rust.channel == "dev" { "-rust-dev" } else { "-rust-$version-$channel" }
 | 
						|
 | 
						|
# On MSVC you can compile LLVM with clang-cl, but the test suite doesn't pass
 | 
						|
# with clang-cl, so this is special in that it only compiles LLVM with clang-cl.
 | 
						|
# Note that this takes a /path/to/clang-cl, not a boolean.
 | 
						|
#llvm.clang-cl = cc
 | 
						|
 | 
						|
# Pass extra compiler and linker flags to the LLVM CMake build.
 | 
						|
#llvm.cflags = ""
 | 
						|
#llvm.cxxflags = ""
 | 
						|
#llvm.ldflags = ""
 | 
						|
 | 
						|
# Use libc++ when building LLVM instead of libstdc++. This is the default on
 | 
						|
# platforms already use libc++ as the default C++ library, but this option
 | 
						|
# allows you to use libc++ even on platforms when it's not. You need to ensure
 | 
						|
# that your host compiler ships with libc++.
 | 
						|
#llvm.use-libcxx = false
 | 
						|
 | 
						|
# The value specified here will be passed as `-DLLVM_USE_LINKER` to CMake.
 | 
						|
#llvm.use-linker = <none> (path)
 | 
						|
 | 
						|
# Whether or not to specify `-DLLVM_TEMPORARILY_ALLOW_OLD_TOOLCHAIN=YES`
 | 
						|
#llvm.allow-old-toolchain = false
 | 
						|
 | 
						|
# Whether to include the Polly optimizer.
 | 
						|
#llvm.polly = false
 | 
						|
 | 
						|
# Whether to build the clang compiler.
 | 
						|
#llvm.clang = false
 | 
						|
 | 
						|
# Whether to enable llvm compilation warnings.
 | 
						|
#llvm.enable-warnings = false
 | 
						|
 | 
						|
# Custom CMake defines to set when building LLVM.
 | 
						|
#llvm.build-config = {}
 | 
						|
 | 
						|
# =============================================================================
 | 
						|
# Tweaking how GCC is compiled
 | 
						|
# =============================================================================
 | 
						|
# Download GCC from CI instead of building it locally.
 | 
						|
# Note that this will attempt to download GCC even if there are local
 | 
						|
# modifications to the `src/gcc` submodule.
 | 
						|
# Currently, this is only supported for the `x86_64-unknown-linux-gnu` target.
 | 
						|
#gcc.download-ci-gcc = false
 | 
						|
 | 
						|
# =============================================================================
 | 
						|
# General build configuration options
 | 
						|
# =============================================================================
 | 
						|
 | 
						|
# The default stage to use for the `check` subcommand
 | 
						|
#build.check-stage = 0
 | 
						|
 | 
						|
# The default stage to use for the `doc` subcommand
 | 
						|
#build.doc-stage = 0
 | 
						|
 | 
						|
# The default stage to use for the `build` subcommand
 | 
						|
#build.build-stage = 1
 | 
						|
 | 
						|
# The default stage to use for the `test` subcommand
 | 
						|
#build.test-stage = 1
 | 
						|
 | 
						|
# The default stage to use for the `dist` subcommand
 | 
						|
#build.dist-stage = 2
 | 
						|
 | 
						|
# The default stage to use for the `install` subcommand
 | 
						|
#build.install-stage = 2
 | 
						|
 | 
						|
# The default stage to use for the `bench` subcommand
 | 
						|
#build.bench-stage = 2
 | 
						|
 | 
						|
# A descriptive string to be appended to version output (e.g., `rustc --version`),
 | 
						|
# which is also used in places like debuginfo `DW_AT_producer`. This may be useful for
 | 
						|
# supplementary build information, like distro-specific package versions.
 | 
						|
#
 | 
						|
# The Rust compiler will differentiate between versions of itself, including
 | 
						|
# based on this string, which means that if you wish to be compatible with
 | 
						|
# upstream Rust you need to set this to "". However, note that if you set this to "" but
 | 
						|
# are not actually compatible -- for example if you've backported patches that change
 | 
						|
# behavior -- this may lead to miscompilations or other bugs.
 | 
						|
#build.description = ""
 | 
						|
 | 
						|
# Build triple for the pre-compiled snapshot compiler. If `rustc` is set, this must match its host
 | 
						|
# triple (see `rustc --version --verbose`; cross-compiling the rust build system itself is NOT
 | 
						|
# supported). If `rustc` is unset, this must be a platform with pre-compiled host tools
 | 
						|
# (https://doc.rust-lang.org/nightly/rustc/platform-support.html). The current platform must be
 | 
						|
# able to run binaries of this build triple.
 | 
						|
#
 | 
						|
# If `rustc` is present in path, this defaults to the host it was compiled for.
 | 
						|
# Otherwise, `x.py` will try to infer it from the output of `uname`.
 | 
						|
# If `uname` is not found in PATH, we assume this is `x86_64-pc-windows-msvc`.
 | 
						|
# This may be changed in the future.
 | 
						|
#build.build = "x86_64-unknown-linux-gnu" (as an example)
 | 
						|
 | 
						|
# Which triples to produce a compiler toolchain for. Each of these triples will be bootstrapped from
 | 
						|
# the build triple themselves. In other words, this is the list of triples for which to build a
 | 
						|
# compiler that can RUN on that triple.
 | 
						|
#
 | 
						|
# Defaults to just the `build` triple.
 | 
						|
#build.host = [build.build] (list of triples)
 | 
						|
 | 
						|
# Which triples to build libraries (core/alloc/std/test/proc_macro) for. Each of these triples will
 | 
						|
# be bootstrapped from the build triple themselves. In other words, this is the list of triples for
 | 
						|
# which to build a library that can CROSS-COMPILE to that triple.
 | 
						|
#
 | 
						|
# Defaults to `host`. If you set this explicitly, you likely want to add all
 | 
						|
# host triples to this list as well in order for those host toolchains to be
 | 
						|
# able to compile programs for their native target.
 | 
						|
#build.target = build.host (list of triples)
 | 
						|
 | 
						|
# Use this directory to store build artifacts. Paths are relative to the current directory, not to
 | 
						|
# the root of the repository.
 | 
						|
#build.build-dir = "build"
 | 
						|
 | 
						|
# Instead of downloading the src/stage0 version of Cargo specified, use
 | 
						|
# this Cargo binary instead to build all Rust code
 | 
						|
# If you set this, you likely want to set `rustc` as well.
 | 
						|
#build.cargo = "/path/to/cargo"
 | 
						|
 | 
						|
# Instead of downloading the src/stage0 version of the compiler
 | 
						|
# specified, use this rustc binary instead as the stage0 snapshot compiler.
 | 
						|
# If you set this, you likely want to set `cargo` as well.
 | 
						|
#build.rustc = "/path/to/rustc"
 | 
						|
 | 
						|
# Instead of downloading the src/stage0 version of rustfmt specified,
 | 
						|
# use this rustfmt binary instead as the stage0 snapshot rustfmt.
 | 
						|
#build.rustfmt = "/path/to/rustfmt"
 | 
						|
 | 
						|
# Instead of downloading the src/stage0 version of cargo-clippy specified,
 | 
						|
# use this cargo-clippy binary instead as the stage0 snapshot cargo-clippy.
 | 
						|
#
 | 
						|
# Note that this option should be used with the same toolchain as the `rustc` option above.
 | 
						|
# Otherwise, clippy is likely to fail due to a toolchain conflict.
 | 
						|
#build.cargo-clippy = "/path/to/cargo-clippy"
 | 
						|
 | 
						|
# Whether to build documentation by default. If false, rustdoc and
 | 
						|
# friends will still be compiled but they will not be used to generate any
 | 
						|
# documentation.
 | 
						|
#
 | 
						|
# You can still build documentation when this is disabled by explicitly passing paths,
 | 
						|
# e.g. `x doc library`.
 | 
						|
#build.docs = true
 | 
						|
 | 
						|
# Flag to specify whether CSS, JavaScript, and HTML are minified when
 | 
						|
# docs are generated. JSON is always minified, because it's enormous,
 | 
						|
# and generated in already-minified form from the beginning.
 | 
						|
#build.docs-minification = true
 | 
						|
 | 
						|
# Flag to specify whether private items should be included in the library docs.
 | 
						|
#build.library-docs-private-items = false
 | 
						|
 | 
						|
# Indicate whether to build compiler documentation by default.
 | 
						|
# You can still build documentation when this is disabled by explicitly passing a path: `x doc compiler`.
 | 
						|
#build.compiler-docs = false
 | 
						|
 | 
						|
# Indicate whether git submodules are managed and updated automatically.
 | 
						|
#build.submodules = true
 | 
						|
 | 
						|
# The path to (or name of) the GDB executable to use. This is only used for
 | 
						|
# executing the debuginfo test suite.
 | 
						|
#build.gdb = "gdb"
 | 
						|
 | 
						|
# The path to (or name of) the LLDB executable to use. This is only used for
 | 
						|
# executing the debuginfo test suite.
 | 
						|
#build.lldb = "lldb"
 | 
						|
 | 
						|
# The node.js executable to use. Note that this is only used for the emscripten
 | 
						|
# target when running tests, otherwise this can be omitted.
 | 
						|
#build.nodejs = "node"
 | 
						|
 | 
						|
# The npm executable to use. Note that this is used for rustdoc-gui tests,
 | 
						|
# otherwise this can be omitted.
 | 
						|
#
 | 
						|
# Under Windows this should be `npm.cmd` or path to it (verified on nodejs v18.06), or
 | 
						|
# error will be emitted.
 | 
						|
#build.npm = "npm"
 | 
						|
 | 
						|
# Python interpreter to use for various tasks throughout the build, notably
 | 
						|
# rustdoc tests, the lldb python interpreter, and some dist bits and pieces.
 | 
						|
#
 | 
						|
# Defaults to the Python interpreter used to execute x.py.
 | 
						|
#build.python = "python"
 | 
						|
 | 
						|
# The path to the REUSE executable to use. Note that REUSE is not required in
 | 
						|
# most cases, as our tooling relies on a cached (and shrunk) copy of the
 | 
						|
# REUSE output present in the git repository and in our source tarballs.
 | 
						|
#
 | 
						|
# REUSE is only needed if your changes caused the overall licensing of the
 | 
						|
# repository to change, and the cached copy has to be regenerated.
 | 
						|
#
 | 
						|
# Defaults to the "reuse" command in the system path.
 | 
						|
#build.reuse = "reuse"
 | 
						|
 | 
						|
# Force Cargo to check that Cargo.lock describes the precise dependency
 | 
						|
# set that all the Cargo.toml files create, instead of updating it.
 | 
						|
#build.locked-deps = false
 | 
						|
 | 
						|
# Indicate whether the vendored sources are used for Rust dependencies or not.
 | 
						|
#
 | 
						|
# Vendoring requires additional setup. We recommend using the pre-generated source tarballs if you
 | 
						|
# want to use vendoring. See https://forge.rust-lang.org/infra/other-installation-methods.html#source-code.
 | 
						|
#build.vendor = if "is a tarball source" && "vendor" dir exists && ".cargo/config.toml" file exists { true } else { false }
 | 
						|
 | 
						|
# Typically the build system will build the Rust compiler twice. The second
 | 
						|
# compiler, however, will simply use its own libraries to link against. If you
 | 
						|
# would rather to perform a full bootstrap, compiling the compiler three times,
 | 
						|
# then you can set this option to true.
 | 
						|
#
 | 
						|
# This is only useful for verifying that rustc generates reproducible builds.
 | 
						|
#build.full-bootstrap = false
 | 
						|
 | 
						|
# Set the bootstrap/download cache path. It is useful when building rust
 | 
						|
# repeatedly in a CI environment.
 | 
						|
#build.bootstrap-cache-path = /path/to/shared/cache
 | 
						|
 | 
						|
# Enable a build of the extended Rust tool set which is not only the compiler
 | 
						|
# but also tools such as Cargo. This will also produce "combined installers"
 | 
						|
# which are used to install Rust and Cargo together.
 | 
						|
# The `tools` (check `bootstrap.example.toml` to see its default value) option specifies
 | 
						|
# which tools should be built if `extended = true`.
 | 
						|
#
 | 
						|
# This is disabled by default.
 | 
						|
#build.extended = false
 | 
						|
 | 
						|
# Set of tools to be included in the installation.
 | 
						|
#
 | 
						|
# If `extended = false`, the only one of these built by default is rustdoc.
 | 
						|
#
 | 
						|
# If `extended = true`, they are all included.
 | 
						|
#
 | 
						|
# If any enabled tool fails to build, the installation fails.
 | 
						|
#build.tools = [
 | 
						|
#    "cargo",
 | 
						|
#    "clippy",
 | 
						|
#    "rustdoc",
 | 
						|
#    "rustfmt",
 | 
						|
#    "rust-analyzer",
 | 
						|
#    "rust-analyzer-proc-macro-srv",
 | 
						|
#    "analysis",
 | 
						|
#    "src",
 | 
						|
#    "wasm-component-ld",
 | 
						|
#    "miri", "cargo-miri" # for dev/nightly channels
 | 
						|
#]
 | 
						|
 | 
						|
# Specify build configuration specific for some tool, such as enabled features.
 | 
						|
# This option has no effect on which tools are enabled: refer to the `tools` option for that.
 | 
						|
#
 | 
						|
# For example, to build Miri with tracing support, use `tool.miri.features = ["tracing"]`
 | 
						|
#
 | 
						|
# The default value for the `features` array is `[]`. However, please note that other flags in
 | 
						|
# `bootstrap.toml` might influence the features enabled for some tools. Also, enabling features
 | 
						|
# in tools which are not part of the internal "extra-features" preset might not always work.
 | 
						|
#build.tool.TOOL_NAME.features = [FEATURE1, FEATURE2]
 | 
						|
 | 
						|
# Verbosity level: 0 == not verbose, 1 == verbose, 2 == very verbose, 3 == print environment variables on each rustc invocation
 | 
						|
#build.verbose = 0
 | 
						|
 | 
						|
# Build the sanitizer runtimes
 | 
						|
#build.sanitizers = false
 | 
						|
 | 
						|
# Build the profiler runtime (required when compiling with options that depend
 | 
						|
# on this runtime, such as `-C profile-generate` or `-C instrument-coverage`).
 | 
						|
#build.profiler = false
 | 
						|
 | 
						|
# Use the optimized LLVM C intrinsics for `compiler_builtins`, rather than Rust intrinsics.
 | 
						|
# Requires the LLVM submodule to be managed by bootstrap (i.e. not external) so that `compiler-rt`
 | 
						|
# sources are available.
 | 
						|
#
 | 
						|
# Setting this to `false` generates slower code, but removes the requirement for a C toolchain in
 | 
						|
# order to run `x check`.
 | 
						|
#build.optimized-compiler-builtins = if rust.channel == "dev" { false } else { true }
 | 
						|
 | 
						|
# Indicates whether the native libraries linked into Cargo will be statically
 | 
						|
# linked or not.
 | 
						|
#build.cargo-native-static = false
 | 
						|
 | 
						|
# Run the build with low priority, by setting the process group's "nice" value
 | 
						|
# to +10 on Unix platforms, and by using a "low priority" job object on Windows.
 | 
						|
#build.low-priority = false
 | 
						|
 | 
						|
# Arguments passed to the `./configure` script, used during distcheck. You
 | 
						|
# probably won't fill this in but rather it's filled in by the `./configure`
 | 
						|
# script. Useful for debugging.
 | 
						|
#build.configure-args = []
 | 
						|
 | 
						|
# Indicates that a local rebuild is occurring instead of a full bootstrap,
 | 
						|
# essentially skipping stage0 as the local compiler is recompiling itself again.
 | 
						|
# Useful for modifying only the stage2 compiler without having to pass `--keep-stage 0` each time.
 | 
						|
#build.local-rebuild = false
 | 
						|
 | 
						|
# Print out how long each bootstrap step took (mostly intended for CI and
 | 
						|
# tracking over time)
 | 
						|
#build.print-step-timings = false
 | 
						|
 | 
						|
# Print out resource usage data for each bootstrap step, as defined by the Unix
 | 
						|
# struct rusage. (Note that this setting is completely unstable: the data it
 | 
						|
# captures, what platforms it supports, the format of its associated output, and
 | 
						|
# this setting's very existence, are all subject to change.)
 | 
						|
#build.print-step-rusage = false
 | 
						|
 | 
						|
# Always patch binaries for usage with Nix toolchains. If `true` then binaries
 | 
						|
# will be patched unconditionally. If `false` or unset, binaries will be patched
 | 
						|
# only if the current distribution is NixOS. This option is useful when using
 | 
						|
# a Nix toolchain on non-NixOS distributions.
 | 
						|
#build.patch-binaries-for-nix = false
 | 
						|
 | 
						|
# Collect information and statistics about the current build, and write it to
 | 
						|
# disk. Enabling this has no impact on the resulting build output. The
 | 
						|
# schema of the file generated by the build metrics feature is unstable, and
 | 
						|
# this is not intended to be used during local development.
 | 
						|
#build.metrics = false
 | 
						|
 | 
						|
# Specify the location of the Android NDK. Used when targeting Android.
 | 
						|
#build.android-ndk = "/path/to/android-ndk-r26d"
 | 
						|
 | 
						|
# Number of parallel jobs to be used for building and testing. If set to `0` or
 | 
						|
# omitted, it will be automatically determined. This is the `-j`/`--jobs` flag
 | 
						|
# passed to cargo invocations.
 | 
						|
#build.jobs = 0
 | 
						|
 | 
						|
# What custom diff tool to use for displaying compiletest tests.
 | 
						|
#build.compiletest-diff-tool = <none>
 | 
						|
 | 
						|
# Whether to use the precompiled stage0 libtest with compiletest.
 | 
						|
#build.compiletest-use-stage0-libtest = true
 | 
						|
 | 
						|
# Default value for the `--extra-checks` flag of tidy.
 | 
						|
#
 | 
						|
# See `./x test tidy --help` for details.
 | 
						|
#
 | 
						|
# Note that if any value is manually given to bootstrap such as
 | 
						|
# `./x test tidy --extra-checks=js`, this value is ignored.
 | 
						|
# Use `--extra-checks=''` to temporarily disable all extra checks.
 | 
						|
#build.tidy-extra-checks = ""
 | 
						|
 | 
						|
# Indicates whether ccache is used when building certain artifacts (e.g. LLVM).
 | 
						|
# Set to `true` to use the first `ccache` in PATH, or set an absolute path to use
 | 
						|
# a specific version.
 | 
						|
#build.ccache = false
 | 
						|
 | 
						|
# List of paths to exclude from the build and test processes.
 | 
						|
# For example, exclude = ["tests/ui", "src/tools/tidy"].
 | 
						|
#build.exclude = []
 | 
						|
 | 
						|
# =============================================================================
 | 
						|
# General install configuration options
 | 
						|
# =============================================================================
 | 
						|
 | 
						|
# Where to install the generated toolchain. Must be an absolute path.
 | 
						|
#install.prefix = "/usr/local"
 | 
						|
 | 
						|
# Where to install system configuration files.
 | 
						|
# If this is a relative path, it will get installed in `prefix` above
 | 
						|
#install.sysconfdir = "/etc"
 | 
						|
 | 
						|
# Where to install documentation in `prefix` above
 | 
						|
#install.docdir = "share/doc/rust"
 | 
						|
 | 
						|
# Where to install binaries in `prefix` above
 | 
						|
#install.bindir = "bin"
 | 
						|
 | 
						|
# Where to install libraries in `prefix` above
 | 
						|
#install.libdir = "lib"
 | 
						|
 | 
						|
# Where to install man pages in `prefix` above
 | 
						|
#install.mandir = "share/man"
 | 
						|
 | 
						|
# Where to install data in `prefix` above
 | 
						|
#install.datadir = "share"
 | 
						|
 | 
						|
# =============================================================================
 | 
						|
# Options for compiling Rust code itself
 | 
						|
# =============================================================================
 | 
						|
 | 
						|
# Whether or not to optimize when compiling the compiler and standard library,
 | 
						|
# and what level of optimization to use.
 | 
						|
# WARNING: Building with optimize = false is NOT SUPPORTED. Due to bootstrapping,
 | 
						|
# building without optimizations takes much longer than optimizing. Further, some platforms
 | 
						|
# fail to build without this optimization (c.f. #65352).
 | 
						|
# The valid options are:
 | 
						|
# true - Enable optimizations (same as 3).
 | 
						|
# false - Disable optimizations.
 | 
						|
# 0 - Disable optimizations.
 | 
						|
# 1 - Basic optimizations.
 | 
						|
# 2 - Some optimizations.
 | 
						|
# 3 - All optimizations.
 | 
						|
# "s" - Optimize for binary size.
 | 
						|
# "z" - Optimize for binary size, but also turn off loop vectorization.
 | 
						|
#rust.optimize = true
 | 
						|
 | 
						|
# Indicates that the build should be configured for debugging Rust. A
 | 
						|
# `debug`-enabled compiler and standard library will be somewhat
 | 
						|
# slower (due to e.g. checking of debug assertions) but should remain
 | 
						|
# usable.
 | 
						|
#
 | 
						|
# Note: If this value is set to `true`, it will affect a number of
 | 
						|
#       configuration options below as well, if they have been left
 | 
						|
#       unconfigured in this file.
 | 
						|
#
 | 
						|
# Note: changes to the `debug` setting do *not* affect `optimize`
 | 
						|
#       above. In theory, a "maximally debuggable" environment would
 | 
						|
#       set `optimize` to `false` above to assist the introspection
 | 
						|
#       facilities of debuggers like lldb and gdb. To recreate such an
 | 
						|
#       environment, explicitly set `optimize` to `false` and `debug`
 | 
						|
#       to `true`. In practice, everyone leaves `optimize` set to
 | 
						|
#       `true`, because an unoptimized rustc with debugging
 | 
						|
#       enabled becomes *unusably slow* (e.g. rust-lang/rust#24840
 | 
						|
#       reported a 25x slowdown) and bootstrapping the supposed
 | 
						|
#       "maximally debuggable" environment (notably libstd) takes
 | 
						|
#       hours to build.
 | 
						|
#
 | 
						|
#rust.debug = false
 | 
						|
 | 
						|
# Whether to download the stage 1 and 2 compilers from CI. This is useful if you
 | 
						|
# are working on tools, doc-comments, or library (you will be able to build the
 | 
						|
# standard library without needing to build the compiler).
 | 
						|
#
 | 
						|
# Set this to "if-unchanged" if you are working on `src/tools`, `tests` or
 | 
						|
# `library` (on CI, `library` changes triggers in-tree compiler build) to speed
 | 
						|
# up the build process if you don't need to build a compiler from the latest
 | 
						|
# commit from `master`.
 | 
						|
#
 | 
						|
# Set this to `true` to always download or `false` to always use the in-tree
 | 
						|
# compiler.
 | 
						|
#rust.download-rustc = false
 | 
						|
 | 
						|
# Number of codegen units to use for each compiler invocation. A value of 0
 | 
						|
# means "the number of cores on this machine", and 1+ is passed through to the
 | 
						|
# compiler.
 | 
						|
#
 | 
						|
# Uses the rustc defaults: https://doc.rust-lang.org/rustc/codegen-options/index.html#codegen-units
 | 
						|
#rust.codegen-units = if incremental { 256 } else { 16 }
 | 
						|
 | 
						|
# Sets the number of codegen units to build the standard library with,
 | 
						|
# regardless of what the codegen-unit setting for the rest of the compiler is.
 | 
						|
# NOTE: building with anything other than 1 is known to occasionally have bugs.
 | 
						|
#rust.codegen-units-std = codegen-units
 | 
						|
 | 
						|
# Whether or not debug assertions are enabled for the compiler and standard library.
 | 
						|
# These can help find bugs at the cost of a small runtime slowdown.
 | 
						|
#
 | 
						|
# Defaults to rust.debug value
 | 
						|
#rust.debug-assertions = rust.debug (boolean)
 | 
						|
 | 
						|
# Whether or not debug assertions are enabled for the standard library.
 | 
						|
# Overrides the `debug-assertions` option, if defined.
 | 
						|
#
 | 
						|
# Defaults to rust.debug-assertions value
 | 
						|
#rust.debug-assertions-std = rust.debug-assertions (boolean)
 | 
						|
 | 
						|
# Whether or not debug assertions are enabled for the tools built by bootstrap.
 | 
						|
# Overrides the `debug-assertions` option, if defined.
 | 
						|
#
 | 
						|
# Defaults to rust.debug-assertions value
 | 
						|
#rust.debug-assertions-tools = rust.debug-assertions (boolean)
 | 
						|
 | 
						|
# Whether or not to leave debug! and trace! calls in the rust binary.
 | 
						|
#
 | 
						|
# Defaults to rust.debug-assertions value
 | 
						|
#
 | 
						|
# If you see a message from `tracing` saying "some trace filter directives would enable traces that
 | 
						|
# are disabled statically" because `max_level_info` is enabled, set this value to `true`.
 | 
						|
#rust.debug-logging = rust.debug-assertions (boolean)
 | 
						|
 | 
						|
# Whether or not to build rustc, tools and the libraries with randomized type layout
 | 
						|
#rust.randomize-layout = false
 | 
						|
 | 
						|
# Whether or not overflow checks are enabled for the compiler and standard
 | 
						|
# library.
 | 
						|
#
 | 
						|
# Defaults to rust.debug value
 | 
						|
#rust.overflow-checks = rust.debug (boolean)
 | 
						|
 | 
						|
# Whether or not overflow checks are enabled for the standard library.
 | 
						|
# Overrides the `overflow-checks` option, if defined.
 | 
						|
#
 | 
						|
# Defaults to rust.overflow-checks value
 | 
						|
#rust.overflow-checks-std = rust.overflow-checks (boolean)
 | 
						|
 | 
						|
# Debuginfo level for most of Rust code, corresponds to the `-C debuginfo=N` option of `rustc`.
 | 
						|
# See https://doc.rust-lang.org/rustc/codegen-options/index.html#debuginfo for available options.
 | 
						|
#
 | 
						|
# Can be overridden for specific subsets of Rust code (rustc, std or tools).
 | 
						|
# Debuginfo for tests run with compiletest is not controlled by this option
 | 
						|
# and needs to be enabled separately with `debuginfo-level-tests`.
 | 
						|
#
 | 
						|
# Note that debuginfo-level = 2 generates several gigabytes of debuginfo
 | 
						|
# and will slow down the linking process significantly.
 | 
						|
#rust.debuginfo-level = if rust.debug { 1 } else { 0 }
 | 
						|
 | 
						|
# Debuginfo level for the compiler.
 | 
						|
#rust.debuginfo-level-rustc = rust.debuginfo-level
 | 
						|
 | 
						|
# Debuginfo level for the standard library.
 | 
						|
#rust.debuginfo-level-std = rust.debuginfo-level
 | 
						|
 | 
						|
# Debuginfo level for the tools.
 | 
						|
#rust.debuginfo-level-tools = rust.debuginfo-level
 | 
						|
 | 
						|
# Debuginfo level for the test suites run with compiletest.
 | 
						|
# FIXME(#61117): Some tests fail when this option is enabled.
 | 
						|
#rust.debuginfo-level-tests = 0
 | 
						|
 | 
						|
# Should rustc and the standard library be built with split debuginfo? Default
 | 
						|
# is platform dependent.
 | 
						|
#
 | 
						|
# This field is deprecated, use `target.<triple>.split-debuginfo` instead.
 | 
						|
#
 | 
						|
# The value specified here is only used when targeting the `build.build` triple,
 | 
						|
# and is overridden by `target.<triple>.split-debuginfo` if specified.
 | 
						|
#
 | 
						|
#rust.split-debuginfo = see target.<triple>.split-debuginfo
 | 
						|
 | 
						|
# Whether or not `panic!`s generate backtraces (RUST_BACKTRACE)
 | 
						|
#rust.backtrace = true
 | 
						|
 | 
						|
# Whether to always use incremental compilation when building rustc
 | 
						|
#rust.incremental = false
 | 
						|
 | 
						|
# The default linker that will be hard-coded into the generated
 | 
						|
# compiler for targets that don't specify a default linker explicitly
 | 
						|
# in their target specifications.  Note that this is not the linker
 | 
						|
# used to link said compiler. It can also be set per-target (via the
 | 
						|
# `[target.<triple>]` block), which may be useful in a cross-compilation
 | 
						|
# setting.
 | 
						|
#
 | 
						|
# See https://doc.rust-lang.org/rustc/codegen-options/index.html#linker for more information.
 | 
						|
#rust.default-linker = <none> (path)
 | 
						|
 | 
						|
# The "channel" for the Rust build to produce. The stable/beta channels only
 | 
						|
# allow using stable features, whereas the nightly and dev channels allow using
 | 
						|
# nightly features.
 | 
						|
#
 | 
						|
# You can set the channel to "auto-detect" to load the channel name from `src/ci/channel`.
 | 
						|
#
 | 
						|
# If using tarball sources, default value is "auto-detect", otherwise, it's "dev".
 | 
						|
#rust.channel = if "is a tarball source" { "auto-detect" } else { "dev" }
 | 
						|
 | 
						|
# The root location of the musl installation directory. The library directory
 | 
						|
# will also need to contain libunwind.a for an unwinding implementation. Note
 | 
						|
# that this option only makes sense for musl targets that produce statically
 | 
						|
# linked binaries.
 | 
						|
#
 | 
						|
# Defaults to /usr on musl hosts. Has no default otherwise.
 | 
						|
#rust.musl-root = <platform specific> (path)
 | 
						|
 | 
						|
# By default the `rustc` executable is built with `-Wl,-rpath` flags on Unix
 | 
						|
# platforms to ensure that the compiler is usable by default from the build
 | 
						|
# directory (as it links to a number of dynamic libraries). This may not be
 | 
						|
# desired in distributions, for example.
 | 
						|
#rust.rpath = true
 | 
						|
 | 
						|
# Indicates whether symbols should be stripped using `-Cstrip=symbols`.
 | 
						|
#rust.strip = false
 | 
						|
 | 
						|
# Forces frame pointers to be used with `-Cforce-frame-pointers`.
 | 
						|
# This can be helpful for profiling at a small performance cost.
 | 
						|
#rust.frame-pointers = false
 | 
						|
 | 
						|
# Indicates whether stack protectors should be used
 | 
						|
# via the unstable option `-Zstack-protector`.
 | 
						|
#
 | 
						|
# Valid options are : `none`(default),`basic`,`strong`, or `all`.
 | 
						|
# `strong` and `basic` options may be buggy and are not recommended, see rust-lang/rust#114903.
 | 
						|
#rust.stack-protector = "none"
 | 
						|
 | 
						|
# Prints each test name as it is executed, to help debug issues in the test harness itself.
 | 
						|
#rust.verbose-tests = if is_verbose { true } else { false }
 | 
						|
 | 
						|
# Flag indicating whether tests are compiled with optimizations (the -O flag).
 | 
						|
#rust.optimize-tests = true
 | 
						|
 | 
						|
# Flag indicating whether codegen tests will be run or not. If you get an error
 | 
						|
# saying that the FileCheck executable is missing, you may want to disable this.
 | 
						|
# Also see the target's llvm-filecheck option.
 | 
						|
#rust.codegen-tests = true
 | 
						|
 | 
						|
# Flag indicating whether git info will be retrieved from .git automatically.
 | 
						|
# Having the git information can cause a lot of rebuilds during development.
 | 
						|
#rust.omit-git-hash = if rust.channel == "dev" { true } else { false }
 | 
						|
 | 
						|
# Whether to create a source tarball by default when running `x dist`.
 | 
						|
#
 | 
						|
# You can still build a source tarball when this is disabled by explicitly passing `x dist rustc-src`.
 | 
						|
#rust.dist-src = true
 | 
						|
 | 
						|
# After building or testing an optional component (e.g. the nomicon or reference), append the
 | 
						|
# result (broken, compiling, testing) into this JSON file.
 | 
						|
#rust.save-toolstates = <none> (path)
 | 
						|
 | 
						|
# This is an array of the codegen backends that will be compiled for the rustc
 | 
						|
# that's being compiled. The default is to only build the LLVM codegen backend,
 | 
						|
# and currently the only standard options supported are `"llvm"`, `"cranelift"`
 | 
						|
# and `"gcc"`. The first backend in this list will be used as default by rustc
 | 
						|
# when no explicit backend is specified.
 | 
						|
#rust.codegen-backends = ["llvm"]
 | 
						|
 | 
						|
# Indicates whether LLD will be compiled and made available in the sysroot for rustc to execute, and
 | 
						|
# whether to set it as rustc's default linker on `x86_64-unknown-linux-gnu`. This will also only be
 | 
						|
# when *not* building an external LLVM (so only when using `download-ci-llvm` or building LLVM from
 | 
						|
# the in-tree source): setting `llvm-config` in the `[target.x86_64-unknown-linux-gnu]` section will
 | 
						|
# make this default to false.
 | 
						|
#rust.lld = false in all cases, except on `x86_64-unknown-linux-gnu` as described above, where it is true
 | 
						|
 | 
						|
# Indicates whether LLD will be used to link Rust crates during bootstrap on
 | 
						|
# supported platforms.
 | 
						|
# If set to `true` or `"external"`, a global `lld` binary that has to be in $PATH
 | 
						|
# will be used.
 | 
						|
# If set to `"self-contained"`, rust-lld from the snapshot compiler will be used.
 | 
						|
#
 | 
						|
# On MSVC, LLD will not be used if we're cross linking.
 | 
						|
#
 | 
						|
# Explicitly setting the linker for a target will override this option when targeting MSVC.
 | 
						|
#rust.use-lld = false
 | 
						|
 | 
						|
# Indicates whether some LLVM tools, like llvm-objdump, will be made available in the
 | 
						|
# sysroot.
 | 
						|
#rust.llvm-tools = true
 | 
						|
 | 
						|
# Indicates whether the `self-contained` llvm-bitcode-linker, will be made available
 | 
						|
# in the sysroot. It is required for running nvptx tests.
 | 
						|
#rust.llvm-bitcode-linker = false
 | 
						|
 | 
						|
# Whether to deny warnings in crates
 | 
						|
#rust.deny-warnings = true
 | 
						|
 | 
						|
# Print backtrace on internal compiler errors during bootstrap
 | 
						|
#rust.backtrace-on-ice = false
 | 
						|
 | 
						|
# Whether to verify generated LLVM IR
 | 
						|
#rust.verify-llvm-ir = false
 | 
						|
 | 
						|
# Compile the compiler with a non-default ThinLTO import limit. This import
 | 
						|
# limit controls the maximum size of functions imported by ThinLTO. Decreasing
 | 
						|
# will make code compile faster at the expense of lower runtime performance.
 | 
						|
#rust.thin-lto-import-instr-limit = if incremental { 10 } else { LLVM default (currently 100) }
 | 
						|
 | 
						|
# Map debuginfo paths to `/rust/$sha/...`.
 | 
						|
# Useful for reproducible builds. Generally only set for releases
 | 
						|
#rust.remap-debuginfo = false
 | 
						|
 | 
						|
# Link the compiler and LLVM against `jemalloc` instead of the default libc allocator.
 | 
						|
# This option is only tested on Linux and OSX. It can also be configured per-target in the
 | 
						|
# [target.<tuple>] section.
 | 
						|
#rust.jemalloc = false
 | 
						|
 | 
						|
# Run tests in various test suites with the "nll compare mode" in addition to
 | 
						|
# running the tests in normal mode. Largely only used on CI and during local
 | 
						|
# development of NLL
 | 
						|
#rust.test-compare-mode = false
 | 
						|
 | 
						|
# Global default for llvm-libunwind for all targets. See the target-specific
 | 
						|
# documentation for llvm-libunwind below. Note that the target-specific
 | 
						|
# option will override this if set.
 | 
						|
#rust.llvm-libunwind = 'no'
 | 
						|
 | 
						|
# Enable Windows Control Flow Guard checks in the standard library.
 | 
						|
# This only applies from stage 1 onwards, and only for Windows targets.
 | 
						|
#rust.control-flow-guard = false
 | 
						|
 | 
						|
# Enable Windows EHCont Guard checks in the standard library.
 | 
						|
# This only applies from stage 1 onwards, and only for Windows targets.
 | 
						|
#rust.ehcont-guard = false
 | 
						|
 | 
						|
# Enable symbol-mangling-version v0. This can be helpful when profiling rustc,
 | 
						|
# as generics will be preserved in symbols (rather than erased into opaque T).
 | 
						|
# When no setting is given, the new scheme will be used when compiling the
 | 
						|
# compiler and its tools and the legacy scheme will be used when compiling the
 | 
						|
# standard library.
 | 
						|
# If an explicit setting is given, it will be used for all parts of the codebase.
 | 
						|
#rust.new-symbol-mangling = true|false (see comment)
 | 
						|
 | 
						|
# Select LTO mode that will be used for compiling rustc. By default, thin local LTO
 | 
						|
# (LTO within a single crate) is used (like for any Rust crate). You can also select
 | 
						|
# "thin" or "fat" to apply Thin/Fat LTO to the `rustc_driver` dylib, or "off" to disable
 | 
						|
# LTO entirely.
 | 
						|
#rust.lto = "thin-local"
 | 
						|
 | 
						|
# Build compiler with the optimization enabled and -Zvalidate-mir, currently only for `std`
 | 
						|
#rust.validate-mir-opts = 3
 | 
						|
 | 
						|
# Configure `std` features used during bootstrap.
 | 
						|
#
 | 
						|
# Default features will be expanded in the following cases:
 | 
						|
#  - If `rust.llvm-libunwind` or `target.llvm-libunwind` is enabled:
 | 
						|
#    - "llvm-libunwind" will be added for in-tree LLVM builds.
 | 
						|
#    - "system-llvm-libunwind" will be added for system LLVM builds.
 | 
						|
#  - If `rust.backtrace` is enabled, "backtrace" will be added.
 | 
						|
#  - If `rust.profiler` or `target.profiler` is enabled, "profiler" will be added.
 | 
						|
#  - If building for a zkvm target, "compiler-builtins-mem" will be added.
 | 
						|
#
 | 
						|
# Since libstd also builds libcore and liballoc as dependencies and all their features are mirrored
 | 
						|
# as libstd features, this option can also be used to configure features such as optimize_for_size.
 | 
						|
#rust.std-features = ["panic_unwind"]
 | 
						|
 | 
						|
# =============================================================================
 | 
						|
# Distribution options
 | 
						|
#
 | 
						|
# These options are related to distribution, mostly for the Rust project itself.
 | 
						|
# You probably won't need to concern yourself with any of these options
 | 
						|
# =============================================================================
 | 
						|
 | 
						|
# This is the folder of artifacts that the build system will sign. All files in
 | 
						|
# this directory will be signed with the default gpg key using the system `gpg`
 | 
						|
# binary. The `asc` and `sha256` files will all be output into the standard dist
 | 
						|
# output folder (currently `build/dist`)
 | 
						|
#
 | 
						|
# This folder should be populated ahead of time before the build system is
 | 
						|
# invoked.
 | 
						|
#dist.sign-folder = <none> (path)
 | 
						|
 | 
						|
# The remote address that all artifacts will eventually be uploaded to. The
 | 
						|
# build system generates manifests which will point to these urls, and for the
 | 
						|
# manifests to be correct they'll have to have the right URLs encoded.
 | 
						|
#
 | 
						|
# Note that this address should not contain a trailing slash as file names will
 | 
						|
# be appended to it.
 | 
						|
#dist.upload-addr = <none> (URL)
 | 
						|
 | 
						|
# Whether to build a plain source tarball to upload
 | 
						|
# We disable that on Windows not to override the one already uploaded on S3
 | 
						|
# as the one built on Windows will contain backslashes in paths causing problems
 | 
						|
# on linux
 | 
						|
#dist.src-tarball = true
 | 
						|
 | 
						|
# List of compression formats to use when generating dist tarballs. The list of
 | 
						|
# formats is provided to rust-installer, which must support all of them.
 | 
						|
#
 | 
						|
# This list must be non-empty.
 | 
						|
#dist.compression-formats = ["gz", "xz"]
 | 
						|
 | 
						|
# How much time should be spent compressing the tarballs. The better the
 | 
						|
# compression profile, the longer compression will take.
 | 
						|
#
 | 
						|
# Available options: fast, balanced, best
 | 
						|
#dist.compression-profile = "fast"
 | 
						|
 | 
						|
# Copy the linker, DLLs, and various libraries from MinGW into the Rust toolchain.
 | 
						|
# Only applies when the host or target is pc-windows-gnu.
 | 
						|
#dist.include-mingw-linker = true
 | 
						|
 | 
						|
# Whether to vendor dependencies for the dist tarball.
 | 
						|
#dist.vendor = if "is a tarball source" || "is a git repository" { true } else { false }
 | 
						|
 | 
						|
 | 
						|
# =============================================================================
 | 
						|
# Options for specific targets
 | 
						|
#
 | 
						|
# Each of the following options is scoped to the specific target triple in
 | 
						|
# question and is used for determining how to compile each target.
 | 
						|
# =============================================================================
 | 
						|
[target.x86_64-unknown-linux-gnu]
 | 
						|
 | 
						|
# C compiler to be used to compile C code. Note that the
 | 
						|
# default value is platform specific, and if not specified it may also depend on
 | 
						|
# what platform is crossing to what platform.
 | 
						|
# See `src/bootstrap/src/utils/cc_detect.rs` for details.
 | 
						|
#cc = "cc" (path)
 | 
						|
 | 
						|
# C++ compiler to be used to compile C++ code (e.g. LLVM and our LLVM shims).
 | 
						|
# This is only used for host targets.
 | 
						|
# See `src/bootstrap/src/utils/cc_detect.rs` for details.
 | 
						|
#cxx = "c++" (path)
 | 
						|
 | 
						|
# Archiver to be used to assemble static libraries compiled from C/C++ code.
 | 
						|
# Note: an absolute path should be used, otherwise LLVM build will break.
 | 
						|
#ar = "ar" (path)
 | 
						|
 | 
						|
# Ranlib to be used to assemble static libraries compiled from C/C++ code.
 | 
						|
# Note: an absolute path should be used, otherwise LLVM build will break.
 | 
						|
#ranlib = "ranlib" (path)
 | 
						|
 | 
						|
# Linker to be used to bootstrap Rust code. Note that the
 | 
						|
# default value is platform specific, and if not specified it may also depend on
 | 
						|
# what platform is crossing to what platform.
 | 
						|
# Setting this will override the `use-lld` option for Rust code when targeting MSVC.
 | 
						|
#linker = "cc" (path)
 | 
						|
 | 
						|
# Should rustc and the standard library be built with split debuginfo? Default
 | 
						|
# is platform dependent.
 | 
						|
#
 | 
						|
# Valid values are the same as those accepted by `-C split-debuginfo`
 | 
						|
# (`off`/`unpacked`/`packed`).
 | 
						|
#
 | 
						|
# On Linux, split debuginfo is disabled by default.
 | 
						|
#
 | 
						|
# On Apple platforms, unpacked split debuginfo is used by default. Unpacked
 | 
						|
# debuginfo does not run `dsymutil`, which packages debuginfo from disparate
 | 
						|
# object files into a single `.dSYM` file. `dsymutil` adds time to builds for
 | 
						|
# no clear benefit, and also makes it more difficult for debuggers to find
 | 
						|
# debug info. The compiler currently defaults to running `dsymutil` to preserve
 | 
						|
# its historical default, but when compiling the compiler itself, we skip it by
 | 
						|
# default since we know it's safe to do so in that case.
 | 
						|
#
 | 
						|
# On Windows platforms, packed debuginfo is the only supported option,
 | 
						|
# producing a `.pdb` file.
 | 
						|
#split-debuginfo = if linux { off } else if windows { packed } else if apple { unpacked }
 | 
						|
 | 
						|
# Path to the `llvm-config` binary of the installation of a custom LLVM to link
 | 
						|
# against. Note that if this is specified we don't compile LLVM at all for this
 | 
						|
# target.
 | 
						|
#llvm-config = <none> (path)
 | 
						|
 | 
						|
# Override detection of whether this is a Rust-patched LLVM. This would be used
 | 
						|
# in conjunction with either an llvm-config or build.submodules = false.
 | 
						|
#llvm-has-rust-patches = if llvm-config { false } else { true }
 | 
						|
 | 
						|
# Normally the build system can find LLVM's FileCheck utility, but if
 | 
						|
# not, you can specify an explicit file name for it.
 | 
						|
#llvm-filecheck = "/path/to/llvm-version/bin/FileCheck"
 | 
						|
 | 
						|
# Use LLVM libunwind as the implementation for Rust's unwinder.
 | 
						|
# Accepted values are 'in-tree' (formerly true), 'system' or 'no' (formerly false).
 | 
						|
# This option only applies for Linux and Fuchsia targets.
 | 
						|
# On Linux target, if crt-static is not enabled, 'no' means dynamic link to
 | 
						|
# `libgcc_s.so`, 'in-tree' means static link to the in-tree build of llvm libunwind
 | 
						|
# and 'system' means dynamic link to `libunwind.so`. If crt-static is enabled,
 | 
						|
# the behavior is depend on the libc. On musl target, 'no' and 'in-tree' both
 | 
						|
# means static link to the in-tree build of llvm libunwind, and 'system' means
 | 
						|
# static link to `libunwind.a` provided by system. Due to the limitation of glibc,
 | 
						|
# it must link to `libgcc_eh.a` to get a working output, and this option have no effect.
 | 
						|
#llvm-libunwind = 'no' if Linux, 'in-tree' if Fuchsia
 | 
						|
 | 
						|
# Build the sanitizer runtimes for this target.
 | 
						|
# This option will override the same option under [build] section.
 | 
						|
#sanitizers = build.sanitizers (bool)
 | 
						|
 | 
						|
# When true, build the profiler runtime for this target (required when compiling
 | 
						|
# with options that depend on this runtime, such as `-C profile-generate` or
 | 
						|
# `-C instrument-coverage`). This may also be given a path to an existing build
 | 
						|
# of the profiling runtime library from LLVM's compiler-rt.
 | 
						|
# This option will override the same option under [build] section.
 | 
						|
#profiler = build.profiler (bool)
 | 
						|
 | 
						|
# This option supports enable `rpath` in each target independently,
 | 
						|
# and will override the same option under [rust] section. It only works on Unix platforms
 | 
						|
#rpath = rust.rpath (bool)
 | 
						|
 | 
						|
# Force static or dynamic linkage of the standard library for this target. If
 | 
						|
# this target is a host for rustc, this will also affect the linkage of the
 | 
						|
# compiler itself. This is useful for building rustc on targets that normally
 | 
						|
# only use static libraries. If unset, the target's default linkage is used.
 | 
						|
#crt-static = <platform-specific> (bool)
 | 
						|
 | 
						|
# The root location of the musl installation directory. The library directory
 | 
						|
# will also need to contain libunwind.a for an unwinding implementation. Note
 | 
						|
# that this option only makes sense for musl targets that produce statically
 | 
						|
# linked binaries.
 | 
						|
#musl-root = build.musl-root (path)
 | 
						|
 | 
						|
# The full path to the musl libdir.
 | 
						|
#musl-libdir = musl-root/lib
 | 
						|
 | 
						|
# The root location of the `wasm32-wasip1` sysroot. Only used for WASI
 | 
						|
# related targets. Make sure to create a `[target.wasm32-wasip1]`
 | 
						|
# section and move this field there (or equivalent for the target being built).
 | 
						|
#wasi-root = <none> (path)
 | 
						|
 | 
						|
# Used in testing for configuring where the QEMU images are located, you
 | 
						|
# probably don't want to use this.
 | 
						|
#qemu-rootfs = <none> (path)
 | 
						|
 | 
						|
# Skip building the `std` library for this target. Enabled by default for
 | 
						|
# target triples containing `-none`, `nvptx`, `switch`, or `-uefi`.
 | 
						|
#no-std = <platform-specific> (bool)
 | 
						|
 | 
						|
# This is an array of the codegen backends that will be
 | 
						|
# compiled for this target, overriding the global rust.codegen-backends option.
 | 
						|
# See that option for more info.
 | 
						|
#codegen-backends = rust.codegen-backends (array)
 | 
						|
 | 
						|
# This is a "runner" to pass to `compiletest` when executing tests. Tests will
 | 
						|
# execute this tool where the binary-to-test is passed as an argument. Can
 | 
						|
# be useful for situations such as when WebAssembly is being tested and a
 | 
						|
# runtime needs to be configured. This value is similar to
 | 
						|
# Cargo's `CARGO_$target_RUNNER` configuration.
 | 
						|
#
 | 
						|
# This configuration is a space-separated list of arguments so `foo bar` would
 | 
						|
# execute the program `foo` with the first argument as `bar` and the second
 | 
						|
# argument as the test binary.
 | 
						|
#runner = <none> (string)
 | 
						|
 | 
						|
# Use the optimized LLVM C intrinsics for `compiler_builtins`, rather than Rust intrinsics
 | 
						|
# on this target.
 | 
						|
# Requires the LLVM submodule to be managed by bootstrap (i.e. not external) so that `compiler-rt`
 | 
						|
# sources are available.
 | 
						|
#
 | 
						|
# Setting this to `false` generates slower code, but removes the requirement for a C toolchain in
 | 
						|
# order to run `x check`.
 | 
						|
#optimized-compiler-builtins = build.optimized-compiler-builtins (bool)
 | 
						|
 | 
						|
# Link the compiler and LLVM against `jemalloc` instead of the default libc allocator.
 | 
						|
# This overrides the global `rust.jemalloc` option. See that option for more info.
 | 
						|
#jemalloc = rust.jemalloc (bool)
 |