rust/compiler/rustc_expand/src/mbe/macro_parser.rs
Nicholas Nethercote 6b0a16ab1a Pre-allocate an empty Lrc<NamedMatchVec>.
This avoids some allocations.
2022-03-30 10:54:57 +11:00

745 lines
30 KiB
Rust

//! This is an NFA-based parser, which calls out to the main Rust parser for named non-terminals
//! (which it commits to fully when it hits one in a grammar). There's a set of current NFA threads
//! and a set of next ones. Instead of NTs, we have a special case for Kleene star. The big-O, in
//! pathological cases, is worse than traditional use of NFA or Earley parsing, but it's an easier
//! fit for Macro-by-Example-style rules.
//!
//! (In order to prevent the pathological case, we'd need to lazily construct the resulting
//! `NamedMatch`es at the very end. It'd be a pain, and require more memory to keep around old
//! matcher positions, but it would also save overhead)
//!
//! We don't say this parser uses the Earley algorithm, because it's unnecessarily inaccurate.
//! The macro parser restricts itself to the features of finite state automata. Earley parsers
//! can be described as an extension of NFAs with completion rules, prediction rules, and recursion.
//!
//! Quick intro to how the parser works:
//!
//! A "matcher position" (a.k.a. "position" or "mp") is a dot in the middle of a matcher, usually
//! written as a `·`. For example `· a $( a )* a b` is one, as is `a $( · a )* a b`.
//!
//! The parser walks through the input a character at a time, maintaining a list
//! of threads consistent with the current position in the input string: `cur_mps`.
//!
//! As it processes them, it fills up `eof_mps` with threads that would be valid if
//! the macro invocation is now over, `bb_mps` with threads that are waiting on
//! a Rust non-terminal like `$e:expr`, and `next_mps` with threads that are waiting
//! on a particular token. Most of the logic concerns moving the · through the
//! repetitions indicated by Kleene stars. The rules for moving the · without
//! consuming any input are called epsilon transitions. It only advances or calls
//! out to the real Rust parser when no `cur_mps` threads remain.
//!
//! Example:
//!
//! ```text, ignore
//! Start parsing a a a a b against [· a $( a )* a b].
//!
//! Remaining input: a a a a b
//! next: [· a $( a )* a b]
//!
//! - - - Advance over an a. - - -
//!
//! Remaining input: a a a b
//! cur: [a · $( a )* a b]
//! Descend/Skip (first position).
//! next: [a $( · a )* a b] [a $( a )* · a b].
//!
//! - - - Advance over an a. - - -
//!
//! Remaining input: a a b
//! cur: [a $( a · )* a b] [a $( a )* a · b]
//! Follow epsilon transition: Finish/Repeat (first position)
//! next: [a $( a )* · a b] [a $( · a )* a b] [a $( a )* a · b]
//!
//! - - - Advance over an a. - - - (this looks exactly like the last step)
//!
//! Remaining input: a b
//! cur: [a $( a · )* a b] [a $( a )* a · b]
//! Follow epsilon transition: Finish/Repeat (first position)
//! next: [a $( a )* · a b] [a $( · a )* a b] [a $( a )* a · b]
//!
//! - - - Advance over an a. - - - (this looks exactly like the last step)
//!
//! Remaining input: b
//! cur: [a $( a · )* a b] [a $( a )* a · b]
//! Follow epsilon transition: Finish/Repeat (first position)
//! next: [a $( a )* · a b] [a $( · a )* a b] [a $( a )* a · b]
//!
//! - - - Advance over a b. - - -
//!
//! Remaining input: ''
//! eof: [a $( a )* a b ·]
//! ```
crate use NamedMatch::*;
crate use ParseResult::*;
use crate::mbe::{self, SequenceRepetition, TokenTree};
use rustc_ast::token::{self, DocComment, Nonterminal, Token};
use rustc_parse::parser::{NtOrTt, Parser};
use rustc_session::parse::ParseSess;
use rustc_span::symbol::MacroRulesNormalizedIdent;
use smallvec::{smallvec, SmallVec};
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::sync::Lrc;
use rustc_span::symbol::Ident;
use std::borrow::Cow;
use std::collections::hash_map::Entry::{Occupied, Vacant};
use std::mem;
/// This is used by `parse_tt_inner` to keep track of delimited submatchers that we have
/// descended into.
#[derive(Clone)]
struct MatcherPosFrame<'tt> {
/// The "parent" matcher that we have descended from.
tts: &'tt [TokenTree],
/// The position of the "dot" in `tt` at the time we descended.
idx: usize,
}
// One element is enough to cover 95-99% of vectors for most benchmarks. Also,
// vectors longer than one frequently have many elements, not just two or
// three.
type NamedMatchVec = SmallVec<[NamedMatch; 1]>;
// This type is used a lot. Make sure it doesn't unintentionally get bigger.
#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
rustc_data_structures::static_assert_size!(NamedMatchVec, 48);
/// A single matcher position, which could be within the top-level matcher, a submatcher, a
/// subsubmatcher, etc. For example:
/// ```text
/// macro_rules! m { $id:ident ( $($e:expr),* ) } => { ... }
/// <----------> second submatcher; one tt, one metavar
/// <--------------> first submatcher; three tts, zero metavars
/// <--------------------------> top-level matcher; two tts, one metavar
/// ```
#[derive(Clone)]
struct MatcherPos<'tt> {
/// The tokens that make up the current matcher. When we are within a `Sequence` or `Delimited`
/// submatcher, this is just the contents of that submatcher.
tts: &'tt [TokenTree],
/// The "dot" position within the current submatcher, i.e. the index into `tts`.
idx: usize,
/// This vector ends up with one element per metavar in the *top-level* matcher, even when this
/// `MatcherPos` is for a submatcher. Each element records token trees matched against the
/// relevant metavar by the black box parser. The element will be a `MatchedSeq` if the
/// corresponding metavar is within a sequence.
matches: Lrc<NamedMatchVec>,
/// The number of sequences this mp is within.
seq_depth: usize,
/// The position in `matches` of the first metavar in this (sub)matcher. Zero if there are
/// no metavars.
match_lo: usize,
/// The position in `matches` of the next metavar to be matched against the source token
/// stream. Should not be used if there are no metavars.
match_cur: usize,
/// This field is only used if we are matching a sequence.
sequence: Option<MatcherPosSequence<'tt>>,
/// When we are within a `Delimited` submatcher (or subsubmatcher), this tracks the parent
/// matcher(s). The bottom of the stack is the top-level matcher.
stack: SmallVec<[MatcherPosFrame<'tt>; 1]>,
}
// This type is used a lot. Make sure it doesn't unintentionally get bigger.
#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
rustc_data_structures::static_assert_size!(MatcherPos<'_>, 104);
impl<'tt> MatcherPos<'tt> {
fn top_level(matcher: &'tt [TokenTree], empty_matches: Lrc<NamedMatchVec>) -> Self {
MatcherPos {
tts: matcher,
idx: 0,
matches: empty_matches,
seq_depth: 0,
match_lo: 0,
match_cur: 0,
stack: smallvec![],
sequence: None,
}
}
fn sequence(
parent: Box<MatcherPos<'tt>>,
seq: &'tt SequenceRepetition,
empty_matches: Lrc<NamedMatchVec>,
) -> Self {
let mut mp = MatcherPos {
tts: &seq.tts,
idx: 0,
matches: parent.matches.clone(),
seq_depth: parent.seq_depth,
match_lo: parent.match_cur,
match_cur: parent.match_cur,
sequence: Some(MatcherPosSequence { parent, seq }),
stack: smallvec![],
};
// Start with an empty vec for each metavar within the sequence. Note that `mp.seq_depth`
// must have the parent's depth at this point for these `push_match` calls to work.
for idx in mp.match_lo..mp.match_lo + seq.num_captures {
mp.push_match(idx, MatchedSeq(empty_matches.clone()));
}
mp.seq_depth += 1;
mp
}
/// Adds `m` as a named match for the `idx`-th metavar.
fn push_match(&mut self, idx: usize, m: NamedMatch) {
let matches = Lrc::make_mut(&mut self.matches);
match self.seq_depth {
0 => {
// We are not within a sequence. Just append `m`.
assert_eq!(idx, matches.len());
matches.push(m);
}
_ => {
// We are within a sequence. Find the final `MatchedSeq` at the appropriate depth
// and append `m` to its vector.
let mut curr = &mut matches[idx];
for _ in 0..self.seq_depth - 1 {
match curr {
MatchedSeq(seq) => {
let seq = Lrc::make_mut(seq);
curr = seq.last_mut().unwrap();
}
_ => unreachable!(),
}
}
match curr {
MatchedSeq(seq) => {
let seq = Lrc::make_mut(seq);
seq.push(m);
}
_ => unreachable!(),
}
}
}
}
}
#[derive(Clone)]
struct MatcherPosSequence<'tt> {
/// The parent matcher position. Effectively gives a linked list of matches all the way to the
/// top-level matcher.
parent: Box<MatcherPos<'tt>>,
/// The sequence itself.
seq: &'tt SequenceRepetition,
}
enum EofMatcherPositions<'tt> {
None,
One(Box<MatcherPos<'tt>>),
Multiple,
}
/// Represents the possible results of an attempted parse.
crate enum ParseResult<T> {
/// Parsed successfully.
Success(T),
/// Arm failed to match. If the second parameter is `token::Eof`, it indicates an unexpected
/// end of macro invocation. Otherwise, it indicates that no rules expected the given token.
Failure(Token, &'static str),
/// Fatal error (malformed macro?). Abort compilation.
Error(rustc_span::Span, String),
ErrorReported,
}
/// A `ParseResult` where the `Success` variant contains a mapping of
/// `MacroRulesNormalizedIdent`s to `NamedMatch`es. This represents the mapping
/// of metavars to the token trees they bind to.
crate type NamedParseResult = ParseResult<FxHashMap<MacroRulesNormalizedIdent, NamedMatch>>;
/// Count how many metavars declarations are in `matcher`.
pub(super) fn count_metavar_decls(matcher: &[TokenTree]) -> usize {
matcher
.iter()
.map(|tt| {
match tt {
TokenTree::Delimited(_, delim) => count_metavar_decls(delim.inner_tts()),
TokenTree::MetaVar(..) => 0,
TokenTree::MetaVarDecl(..) => 1,
// RHS meta-variable expressions eventually end-up here. `0` is returned to inform
// that no meta-variable was found, because "meta-variables" != "meta-variable
// expressions".
TokenTree::MetaVarExpr(..) => 0,
TokenTree::Sequence(_, seq) => seq.num_captures,
TokenTree::Token(..) => 0,
}
})
.sum()
}
/// `NamedMatch` is a pattern-match result for a single metavar. All
/// `MatchedNonterminal`s in the `NamedMatch` have the same non-terminal type
/// (expr, item, etc).
///
/// The in-memory structure of a particular `NamedMatch` represents the match
/// that occurred when a particular subset of a matcher was applied to a
/// particular token tree.
///
/// The width of each `MatchedSeq` in the `NamedMatch`, and the identity of
/// the `MatchedNtNonTts`s, will depend on the token tree it was applied
/// to: each `MatchedSeq` corresponds to a single repetition in the originating
/// token tree. The depth of the `NamedMatch` structure will therefore depend
/// only on the nesting depth of repetitions in the originating token tree it
/// was derived from.
///
/// In layman's terms: `NamedMatch` will form a tree representing nested matches of a particular
/// meta variable. For example, if we are matching the following macro against the following
/// invocation...
///
/// ```rust
/// macro_rules! foo {
/// ($($($x:ident),+);+) => {}
/// }
///
/// foo!(a, b, c, d; a, b, c, d, e);
/// ```
///
/// Then, the tree will have the following shape:
///
/// ```rust
/// MatchedSeq([
/// MatchedSeq([
/// MatchedNonterminal(a),
/// MatchedNonterminal(b),
/// MatchedNonterminal(c),
/// MatchedNonterminal(d),
/// ]),
/// MatchedSeq([
/// MatchedNonterminal(a),
/// MatchedNonterminal(b),
/// MatchedNonterminal(c),
/// MatchedNonterminal(d),
/// MatchedNonterminal(e),
/// ])
/// ])
/// ```
#[derive(Debug, Clone)]
crate enum NamedMatch {
MatchedSeq(Lrc<NamedMatchVec>),
// A metavar match of type `tt`.
MatchedTokenTree(rustc_ast::tokenstream::TokenTree),
// A metavar match of any type other than `tt`.
MatchedNonterminal(Lrc<Nonterminal>),
}
fn nameize<I: Iterator<Item = NamedMatch>>(
sess: &ParseSess,
matcher: &[TokenTree],
mut res: I,
) -> NamedParseResult {
// Recursively descend into each type of matcher (e.g., sequences, delimited, metavars) and make
// sure that each metavar has _exactly one_ binding. If a metavar does not have exactly one
// binding, then there is an error. If it does, then we insert the binding into the
// `NamedParseResult`.
fn n_rec<I: Iterator<Item = NamedMatch>>(
sess: &ParseSess,
tt: &TokenTree,
res: &mut I,
ret_val: &mut FxHashMap<MacroRulesNormalizedIdent, NamedMatch>,
) -> Result<(), (rustc_span::Span, String)> {
match *tt {
TokenTree::Sequence(_, ref seq) => {
for next_m in &seq.tts {
n_rec(sess, next_m, res.by_ref(), ret_val)?
}
}
TokenTree::Delimited(_, ref delim) => {
for next_m in delim.inner_tts() {
n_rec(sess, next_m, res.by_ref(), ret_val)?;
}
}
TokenTree::MetaVarDecl(span, _, None) => {
if sess.missing_fragment_specifiers.borrow_mut().remove(&span).is_some() {
return Err((span, "missing fragment specifier".to_string()));
}
}
TokenTree::MetaVarDecl(sp, bind_name, _) => match ret_val
.entry(MacroRulesNormalizedIdent::new(bind_name))
{
Vacant(spot) => {
spot.insert(res.next().unwrap());
}
Occupied(..) => return Err((sp, format!("duplicated bind name: {}", bind_name))),
},
TokenTree::Token(..) => (),
TokenTree::MetaVar(..) | TokenTree::MetaVarExpr(..) => unreachable!(),
}
Ok(())
}
let mut ret_val = FxHashMap::default();
for tt in matcher {
match n_rec(sess, tt, res.by_ref(), &mut ret_val) {
Ok(_) => {}
Err((sp, msg)) => return Error(sp, msg),
}
}
Success(ret_val)
}
/// Performs a token equality check, ignoring syntax context (that is, an unhygienic comparison)
fn token_name_eq(t1: &Token, t2: &Token) -> bool {
if let (Some((ident1, is_raw1)), Some((ident2, is_raw2))) = (t1.ident(), t2.ident()) {
ident1.name == ident2.name && is_raw1 == is_raw2
} else if let (Some(ident1), Some(ident2)) = (t1.lifetime(), t2.lifetime()) {
ident1.name == ident2.name
} else {
t1.kind == t2.kind
}
}
// Note: the position vectors could be created and dropped within `parse_tt`, but to avoid excess
// allocations we have a single vector fo each kind that is cleared and reused repeatedly.
pub struct TtParser<'tt> {
macro_name: Ident,
/// The set of current mps to be processed. This should be empty by the end of a successful
/// execution of `parse_tt_inner`.
cur_mps: Vec<Box<MatcherPos<'tt>>>,
/// The set of newly generated mps. These are used to replenish `cur_mps` in the function
/// `parse_tt`.
next_mps: Vec<Box<MatcherPos<'tt>>>,
/// The set of mps that are waiting for the black-box parser.
bb_mps: Vec<Box<MatcherPos<'tt>>>,
/// Pre-allocate an empty match array, so it can be cloned cheaply for macros with many rules
/// that have no metavars.
empty_matches: Lrc<NamedMatchVec>,
}
impl<'tt> TtParser<'tt> {
pub(super) fn new(macro_name: Ident) -> TtParser<'tt> {
TtParser {
macro_name,
cur_mps: vec![],
next_mps: vec![],
bb_mps: vec![],
empty_matches: Lrc::new(smallvec![]),
}
}
/// Process the matcher positions of `cur_mps` until it is empty. In the process, this will
/// produce more mps in `next_mps` and `bb_mps`.
///
/// # Returns
///
/// `Some(result)` if everything is finished, `None` otherwise. Note that matches are kept
/// track of through the mps generated.
fn parse_tt_inner(
&mut self,
sess: &ParseSess,
matcher: &[TokenTree],
token: &Token,
) -> Option<NamedParseResult> {
// Matcher positions that would be valid if the macro invocation was over now. Only
// modified if `token == Eof`.
let mut eof_mps = EofMatcherPositions::None;
while let Some(mut mp) = self.cur_mps.pop() {
// Backtrack out of delimited submatcher when necessary. When backtracking out again,
// we need to advance the "dot" past the delimiters in the parent matcher(s).
while mp.idx >= mp.tts.len() {
match mp.stack.pop() {
Some(MatcherPosFrame { tts, idx }) => {
mp.tts = tts;
mp.idx = idx + 1;
}
None => break,
}
}
// Get the current position of the "dot" (`idx`) in `mp` and the number of token
// trees in the matcher (`len`).
let idx = mp.idx;
let len = mp.tts.len();
if idx < len {
// We are in the middle of a matcher. Compare the matcher's current tt against
// `token`.
match &mp.tts[idx] {
TokenTree::Sequence(_sp, seq) => {
let op = seq.kleene.op;
if op == mbe::KleeneOp::ZeroOrMore || op == mbe::KleeneOp::ZeroOrOne {
// Allow for the possibility of zero matches of this sequence.
let mut new_mp = mp.clone();
new_mp.match_cur += seq.num_captures;
new_mp.idx += 1;
for idx in mp.match_cur..mp.match_cur + seq.num_captures {
new_mp.push_match(idx, MatchedSeq(self.empty_matches.clone()));
}
self.cur_mps.push(new_mp);
}
// Allow for the possibility of one or more matches of this sequence.
self.cur_mps.push(box MatcherPos::sequence(
mp,
&seq,
self.empty_matches.clone(),
));
}
&TokenTree::MetaVarDecl(span, _, None) => {
// E.g. `$e` instead of `$e:expr`.
if sess.missing_fragment_specifiers.borrow_mut().remove(&span).is_some() {
return Some(Error(span, "missing fragment specifier".to_string()));
}
}
&TokenTree::MetaVarDecl(_, _, Some(kind)) => {
// Built-in nonterminals never start with these tokens, so we can eliminate
// them from consideration.
//
// We use the span of the metavariable declaration to determine any
// edition-specific matching behavior for non-terminals.
if Parser::nonterminal_may_begin_with(kind, token) {
self.bb_mps.push(mp);
}
}
TokenTree::Delimited(_, delimited) => {
// To descend into a delimited submatcher, we push the current matcher onto
// a stack and push a new mp containing the submatcher onto `cur_mps`.
//
// At the beginning of the loop, if we reach the end of the delimited
// submatcher, we pop the stack to backtrack out of the descent. Note that
// we use `all_tts` to include the open and close delimiter tokens.
let tts = mem::replace(&mut mp.tts, &delimited.all_tts);
let idx = mp.idx;
mp.stack.push(MatcherPosFrame { tts, idx });
mp.idx = 0;
self.cur_mps.push(mp);
}
TokenTree::Token(t) => {
// If it's a doc comment, we just ignore it and move on to the next tt in
// the matcher. This is a bug, but #95267 showed that existing programs
// rely on this behaviour, and changing it would require some care and a
// transition period.
//
// If the token matches, we can just advance the parser.
//
// Otherwise, this match has failed, there is nothing to do, and hopefully
// another mp in `cur_mps` will match.
if matches!(t, Token { kind: DocComment(..), .. }) {
mp.idx += 1;
self.cur_mps.push(mp);
} else if token_name_eq(&t, token) {
mp.idx += 1;
self.next_mps.push(mp);
}
}
// These cannot appear in a matcher.
TokenTree::MetaVar(..) | TokenTree::MetaVarExpr(..) => unreachable!(),
}
} else if let Some(sequence) = &mp.sequence {
// We are past the end of a sequence.
debug_assert!(idx <= len + 1);
if idx == len {
// Add all matches from the sequence to `parent`, and move the "dot" past the
// sequence in `parent`. This allows for the case where the sequence matching
// is finished.
let mut new_mp = sequence.parent.clone();
new_mp.matches = mp.matches.clone();
new_mp.match_cur = mp.match_lo + sequence.seq.num_captures;
new_mp.idx += 1;
self.cur_mps.push(new_mp);
}
if idx == len && sequence.seq.separator.is_some() {
if sequence
.seq
.separator
.as_ref()
.map_or(false, |sep| token_name_eq(token, sep))
{
// The matcher has a separator, and it matches the current token. We can
// advance past the separator token.
mp.idx += 1;
self.next_mps.push(mp);
}
} else if sequence.seq.kleene.op != mbe::KleeneOp::ZeroOrOne {
// We don't need a separator. Move the "dot" back to the beginning of the
// matcher and try to match again UNLESS we are only allowed to have _one_
// repetition.
mp.match_cur = mp.match_lo;
mp.idx = 0;
self.cur_mps.push(mp);
}
} else {
// We are past the end of the matcher, and not in a sequence. Look for end of
// input.
debug_assert_eq!(idx, len);
if *token == token::Eof {
eof_mps = match eof_mps {
EofMatcherPositions::None => EofMatcherPositions::One(mp),
EofMatcherPositions::One(_) | EofMatcherPositions::Multiple => {
EofMatcherPositions::Multiple
}
}
}
}
}
// If we reached the end of input, check that there is EXACTLY ONE possible matcher.
// Otherwise, either the parse is ambiguous (which is an error) or there is a syntax error.
if *token == token::Eof {
Some(match eof_mps {
EofMatcherPositions::One(mut eof_mp) => {
assert_eq!(eof_mp.matches.len(), count_metavar_decls(matcher));
// Need to take ownership of the matches from within the `Lrc`.
Lrc::make_mut(&mut eof_mp.matches);
let matches = Lrc::try_unwrap(eof_mp.matches).unwrap().into_iter();
nameize(sess, matcher, matches)
}
EofMatcherPositions::Multiple => {
Error(token.span, "ambiguity: multiple successful parses".to_string())
}
EofMatcherPositions::None => Failure(
Token::new(
token::Eof,
if token.span.is_dummy() { token.span } else { token.span.shrink_to_hi() },
),
"missing tokens in macro arguments",
),
})
} else {
None
}
}
/// Match the token stream from `parser` against `matcher`.
pub(super) fn parse_tt(
&mut self,
parser: &mut Cow<'_, Parser<'_>>,
matcher: &'tt [TokenTree],
) -> NamedParseResult {
// A queue of possible matcher positions. We initialize it with the matcher position in
// which the "dot" is before the first token of the first token tree in `matcher`.
// `parse_tt_inner` then processes all of these possible matcher positions and produces
// possible next positions into `next_mps`. After some post-processing, the contents of
// `next_mps` replenish `cur_mps` and we start over again.
self.cur_mps.clear();
self.cur_mps.push(box MatcherPos::top_level(matcher, self.empty_matches.clone()));
loop {
self.next_mps.clear();
self.bb_mps.clear();
// Process `cur_mps` until either we have finished the input or we need to get some
// parsing from the black-box parser done.
if let Some(result) = self.parse_tt_inner(parser.sess, matcher, &parser.token) {
return result;
}
// `parse_tt_inner` handled all of `cur_mps`, so it's empty.
assert!(self.cur_mps.is_empty());
// Error messages here could be improved with links to original rules.
match (self.next_mps.len(), self.bb_mps.len()) {
(0, 0) => {
// There are no possible next positions AND we aren't waiting for the black-box
// parser: syntax error.
return Failure(
parser.token.clone(),
"no rules expected this token in macro call",
);
}
(_, 0) => {
// Dump all possible `next_mps` into `cur_mps` for the next iteration. Then
// process the next token.
self.cur_mps.extend(self.next_mps.drain(..));
parser.to_mut().bump();
}
(0, 1) => {
// We need to call the black-box parser to get some nonterminal.
let mut mp = self.bb_mps.pop().unwrap();
if let TokenTree::MetaVarDecl(span, _, Some(kind)) = mp.tts[mp.idx] {
let match_cur = mp.match_cur;
// We use the span of the metavariable declaration to determine any
// edition-specific matching behavior for non-terminals.
let nt = match parser.to_mut().parse_nonterminal(kind) {
Err(mut err) => {
err.span_label(
span,
format!(
"while parsing argument for this `{kind}` macro fragment"
),
)
.emit();
return ErrorReported;
}
Ok(nt) => nt,
};
let m = match nt {
NtOrTt::Nt(nt) => MatchedNonterminal(Lrc::new(nt)),
NtOrTt::Tt(tt) => MatchedTokenTree(tt),
};
mp.push_match(match_cur, m);
mp.idx += 1;
mp.match_cur += 1;
} else {
unreachable!()
}
self.cur_mps.push(mp);
}
(_, _) => {
// Too many possibilities!
return self.ambiguity_error(parser.token.span);
}
}
assert!(!self.cur_mps.is_empty());
}
}
fn ambiguity_error(&self, token_span: rustc_span::Span) -> NamedParseResult {
let nts = self
.bb_mps
.iter()
.map(|mp| match mp.tts[mp.idx] {
TokenTree::MetaVarDecl(_, bind, Some(kind)) => {
format!("{} ('{}')", kind, bind)
}
_ => panic!(),
})
.collect::<Vec<String>>()
.join(" or ");
Error(
token_span,
format!(
"local ambiguity when calling macro `{}`: multiple parsing options: {}",
self.macro_name,
match self.next_mps.len() {
0 => format!("built-in NTs {}.", nts),
1 => format!("built-in NTs {} or 1 other option.", nts),
n => format!("built-in NTs {} or {} other options.", nts, n),
}
),
)
}
}