mirror of
				https://github.com/rust-lang/rust.git
				synced 2025-10-31 04:57:19 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			868 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			868 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
| //! Trait Resolution. See the [rustc dev guide] for more information on how this works.
 | |
| //!
 | |
| //! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/traits/resolution.html
 | |
| 
 | |
| pub mod auto_trait;
 | |
| mod chalk_fulfill;
 | |
| pub mod codegen;
 | |
| mod coherence;
 | |
| pub mod const_evaluatable;
 | |
| mod engine;
 | |
| pub mod error_reporting;
 | |
| mod fulfill;
 | |
| pub mod misc;
 | |
| mod object_safety;
 | |
| mod on_unimplemented;
 | |
| mod project;
 | |
| pub mod query;
 | |
| pub(crate) mod relationships;
 | |
| mod select;
 | |
| mod specialize;
 | |
| mod structural_match;
 | |
| mod util;
 | |
| pub mod wf;
 | |
| 
 | |
| use crate::infer::outlives::env::OutlivesEnvironment;
 | |
| use crate::infer::{InferCtxt, RegionckMode, TyCtxtInferExt};
 | |
| use crate::traits::error_reporting::InferCtxtExt as _;
 | |
| use crate::traits::query::evaluate_obligation::InferCtxtExt as _;
 | |
| use rustc_errors::ErrorReported;
 | |
| use rustc_hir as hir;
 | |
| use rustc_hir::def_id::DefId;
 | |
| use rustc_hir::lang_items::LangItem;
 | |
| use rustc_middle::ty::fold::TypeFoldable;
 | |
| use rustc_middle::ty::subst::{InternalSubsts, SubstsRef};
 | |
| use rustc_middle::ty::{
 | |
|     self, GenericParamDefKind, ToPredicate, Ty, TyCtxt, VtblEntry, WithConstness,
 | |
|     COMMON_VTABLE_ENTRIES,
 | |
| };
 | |
| use rustc_span::{sym, Span};
 | |
| use smallvec::SmallVec;
 | |
| 
 | |
| use std::fmt::Debug;
 | |
| use std::ops::ControlFlow;
 | |
| 
 | |
| pub use self::FulfillmentErrorCode::*;
 | |
| pub use self::ImplSource::*;
 | |
| pub use self::ObligationCauseCode::*;
 | |
| pub use self::SelectionError::*;
 | |
| 
 | |
| pub use self::coherence::{add_placeholder_note, orphan_check, overlapping_impls};
 | |
| pub use self::coherence::{OrphanCheckErr, OverlapResult};
 | |
| pub use self::engine::TraitEngineExt;
 | |
| pub use self::fulfill::{FulfillmentContext, PendingPredicateObligation};
 | |
| pub use self::object_safety::astconv_object_safety_violations;
 | |
| pub use self::object_safety::is_vtable_safe_method;
 | |
| pub use self::object_safety::MethodViolationCode;
 | |
| pub use self::object_safety::ObjectSafetyViolation;
 | |
| pub use self::on_unimplemented::{OnUnimplementedDirective, OnUnimplementedNote};
 | |
| pub use self::project::{normalize, normalize_projection_type, normalize_to};
 | |
| pub use self::select::{EvaluationCache, SelectionCache, SelectionContext};
 | |
| pub use self::select::{EvaluationResult, IntercrateAmbiguityCause, OverflowError};
 | |
| pub use self::specialize::specialization_graph::FutureCompatOverlapError;
 | |
| pub use self::specialize::specialization_graph::FutureCompatOverlapErrorKind;
 | |
| pub use self::specialize::{specialization_graph, translate_substs, OverlapError};
 | |
| pub use self::structural_match::search_for_structural_match_violation;
 | |
| pub use self::structural_match::NonStructuralMatchTy;
 | |
| pub use self::util::{
 | |
|     elaborate_obligations, elaborate_predicates, elaborate_predicates_with_span,
 | |
|     elaborate_trait_ref, elaborate_trait_refs,
 | |
| };
 | |
| pub use self::util::{expand_trait_aliases, TraitAliasExpander};
 | |
| pub use self::util::{
 | |
|     get_vtable_index_of_object_method, impl_item_is_final, predicate_for_trait_def, upcast_choices,
 | |
| };
 | |
| pub use self::util::{
 | |
|     supertrait_def_ids, supertraits, transitive_bounds, transitive_bounds_that_define_assoc_type,
 | |
|     SupertraitDefIds, Supertraits,
 | |
| };
 | |
| 
 | |
| pub use self::chalk_fulfill::FulfillmentContext as ChalkFulfillmentContext;
 | |
| 
 | |
| pub use rustc_infer::traits::*;
 | |
| 
 | |
| /// Whether to skip the leak check, as part of a future compatibility warning step.
 | |
| ///
 | |
| /// The "default" for skip-leak-check corresponds to the current
 | |
| /// behavior (do not skip the leak check) -- not the behavior we are
 | |
| /// transitioning into.
 | |
| #[derive(Copy, Clone, PartialEq, Eq, Debug, Default)]
 | |
| pub enum SkipLeakCheck {
 | |
|     Yes,
 | |
|     #[default]
 | |
|     No,
 | |
| }
 | |
| 
 | |
| impl SkipLeakCheck {
 | |
|     fn is_yes(self) -> bool {
 | |
|         self == SkipLeakCheck::Yes
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// The mode that trait queries run in.
 | |
| #[derive(Copy, Clone, PartialEq, Eq, Debug)]
 | |
| pub enum TraitQueryMode {
 | |
|     /// Standard/un-canonicalized queries get accurate
 | |
|     /// spans etc. passed in and hence can do reasonable
 | |
|     /// error reporting on their own.
 | |
|     Standard,
 | |
|     /// Canonicalized queries get dummy spans and hence
 | |
|     /// must generally propagate errors to
 | |
|     /// pre-canonicalization callsites.
 | |
|     Canonical,
 | |
| }
 | |
| 
 | |
| /// Creates predicate obligations from the generic bounds.
 | |
| pub fn predicates_for_generics<'tcx>(
 | |
|     cause: ObligationCause<'tcx>,
 | |
|     param_env: ty::ParamEnv<'tcx>,
 | |
|     generic_bounds: ty::InstantiatedPredicates<'tcx>,
 | |
| ) -> impl Iterator<Item = PredicateObligation<'tcx>> {
 | |
|     util::predicates_for_generics(cause, 0, param_env, generic_bounds)
 | |
| }
 | |
| 
 | |
| /// Determines whether the type `ty` is known to meet `bound` and
 | |
| /// returns true if so. Returns false if `ty` either does not meet
 | |
| /// `bound` or is not known to meet bound (note that this is
 | |
| /// conservative towards *no impl*, which is the opposite of the
 | |
| /// `evaluate` methods).
 | |
| pub fn type_known_to_meet_bound_modulo_regions<'a, 'tcx>(
 | |
|     infcx: &InferCtxt<'a, 'tcx>,
 | |
|     param_env: ty::ParamEnv<'tcx>,
 | |
|     ty: Ty<'tcx>,
 | |
|     def_id: DefId,
 | |
|     span: Span,
 | |
| ) -> bool {
 | |
|     debug!(
 | |
|         "type_known_to_meet_bound_modulo_regions(ty={:?}, bound={:?})",
 | |
|         ty,
 | |
|         infcx.tcx.def_path_str(def_id)
 | |
|     );
 | |
| 
 | |
|     let trait_ref =
 | |
|         ty::Binder::dummy(ty::TraitRef { def_id, substs: infcx.tcx.mk_substs_trait(ty, &[]) });
 | |
|     let obligation = Obligation {
 | |
|         param_env,
 | |
|         cause: ObligationCause::misc(span, hir::CRATE_HIR_ID),
 | |
|         recursion_depth: 0,
 | |
|         predicate: trait_ref.without_const().to_predicate(infcx.tcx),
 | |
|     };
 | |
| 
 | |
|     let result = infcx.predicate_must_hold_modulo_regions(&obligation);
 | |
|     debug!(
 | |
|         "type_known_to_meet_ty={:?} bound={} => {:?}",
 | |
|         ty,
 | |
|         infcx.tcx.def_path_str(def_id),
 | |
|         result
 | |
|     );
 | |
| 
 | |
|     if result && ty.has_infer_types_or_consts() {
 | |
|         // Because of inference "guessing", selection can sometimes claim
 | |
|         // to succeed while the success requires a guess. To ensure
 | |
|         // this function's result remains infallible, we must confirm
 | |
|         // that guess. While imperfect, I believe this is sound.
 | |
| 
 | |
|         // The handling of regions in this area of the code is terrible,
 | |
|         // see issue #29149. We should be able to improve on this with
 | |
|         // NLL.
 | |
|         let mut fulfill_cx = FulfillmentContext::new_ignoring_regions();
 | |
| 
 | |
|         // We can use a dummy node-id here because we won't pay any mind
 | |
|         // to region obligations that arise (there shouldn't really be any
 | |
|         // anyhow).
 | |
|         let cause = ObligationCause::misc(span, hir::CRATE_HIR_ID);
 | |
| 
 | |
|         fulfill_cx.register_bound(infcx, param_env, ty, def_id, cause);
 | |
| 
 | |
|         // Note: we only assume something is `Copy` if we can
 | |
|         // *definitively* show that it implements `Copy`. Otherwise,
 | |
|         // assume it is move; linear is always ok.
 | |
|         match fulfill_cx.select_all_or_error(infcx).as_slice() {
 | |
|             [] => {
 | |
|                 debug!(
 | |
|                     "type_known_to_meet_bound_modulo_regions: ty={:?} bound={} success",
 | |
|                     ty,
 | |
|                     infcx.tcx.def_path_str(def_id)
 | |
|                 );
 | |
|                 true
 | |
|             }
 | |
|             errors => {
 | |
|                 debug!(
 | |
|                     ?ty,
 | |
|                     bound = %infcx.tcx.def_path_str(def_id),
 | |
|                     ?errors,
 | |
|                     "type_known_to_meet_bound_modulo_regions"
 | |
|                 );
 | |
|                 false
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         result
 | |
|     }
 | |
| }
 | |
| 
 | |
| fn do_normalize_predicates<'tcx>(
 | |
|     tcx: TyCtxt<'tcx>,
 | |
|     region_context: DefId,
 | |
|     cause: ObligationCause<'tcx>,
 | |
|     elaborated_env: ty::ParamEnv<'tcx>,
 | |
|     predicates: Vec<ty::Predicate<'tcx>>,
 | |
| ) -> Result<Vec<ty::Predicate<'tcx>>, ErrorReported> {
 | |
|     debug!(
 | |
|         "do_normalize_predicates(predicates={:?}, region_context={:?}, cause={:?})",
 | |
|         predicates, region_context, cause,
 | |
|     );
 | |
|     let span = cause.span;
 | |
|     tcx.infer_ctxt().enter(|infcx| {
 | |
|         // FIXME. We should really... do something with these region
 | |
|         // obligations. But this call just continues the older
 | |
|         // behavior (i.e., doesn't cause any new bugs), and it would
 | |
|         // take some further refactoring to actually solve them. In
 | |
|         // particular, we would have to handle implied bounds
 | |
|         // properly, and that code is currently largely confined to
 | |
|         // regionck (though I made some efforts to extract it
 | |
|         // out). -nmatsakis
 | |
|         //
 | |
|         // @arielby: In any case, these obligations are checked
 | |
|         // by wfcheck anyway, so I'm not sure we have to check
 | |
|         // them here too, and we will remove this function when
 | |
|         // we move over to lazy normalization *anyway*.
 | |
|         let fulfill_cx = FulfillmentContext::new_ignoring_regions();
 | |
|         let predicates =
 | |
|             match fully_normalize(&infcx, fulfill_cx, cause, elaborated_env, predicates) {
 | |
|                 Ok(predicates) => predicates,
 | |
|                 Err(errors) => {
 | |
|                     infcx.report_fulfillment_errors(&errors, None, false);
 | |
|                     return Err(ErrorReported);
 | |
|                 }
 | |
|             };
 | |
| 
 | |
|         debug!("do_normalize_predictes: normalized predicates = {:?}", predicates);
 | |
| 
 | |
|         // We can use the `elaborated_env` here; the region code only
 | |
|         // cares about declarations like `'a: 'b`.
 | |
|         let outlives_env = OutlivesEnvironment::new(elaborated_env);
 | |
| 
 | |
|         infcx.resolve_regions_and_report_errors(
 | |
|             region_context,
 | |
|             &outlives_env,
 | |
|             RegionckMode::default(),
 | |
|         );
 | |
| 
 | |
|         let predicates = match infcx.fully_resolve(predicates) {
 | |
|             Ok(predicates) => predicates,
 | |
|             Err(fixup_err) => {
 | |
|                 // If we encounter a fixup error, it means that some type
 | |
|                 // variable wound up unconstrained. I actually don't know
 | |
|                 // if this can happen, and I certainly don't expect it to
 | |
|                 // happen often, but if it did happen it probably
 | |
|                 // represents a legitimate failure due to some kind of
 | |
|                 // unconstrained variable, and it seems better not to ICE,
 | |
|                 // all things considered.
 | |
|                 tcx.sess.span_err(span, &fixup_err.to_string());
 | |
|                 return Err(ErrorReported);
 | |
|             }
 | |
|         };
 | |
|         if predicates.needs_infer() {
 | |
|             tcx.sess.delay_span_bug(span, "encountered inference variables after `fully_resolve`");
 | |
|             Err(ErrorReported)
 | |
|         } else {
 | |
|             Ok(predicates)
 | |
|         }
 | |
|     })
 | |
| }
 | |
| 
 | |
| // FIXME: this is gonna need to be removed ...
 | |
| /// Normalizes the parameter environment, reporting errors if they occur.
 | |
| pub fn normalize_param_env_or_error<'tcx>(
 | |
|     tcx: TyCtxt<'tcx>,
 | |
|     region_context: DefId,
 | |
|     unnormalized_env: ty::ParamEnv<'tcx>,
 | |
|     cause: ObligationCause<'tcx>,
 | |
| ) -> ty::ParamEnv<'tcx> {
 | |
|     // I'm not wild about reporting errors here; I'd prefer to
 | |
|     // have the errors get reported at a defined place (e.g.,
 | |
|     // during typeck). Instead I have all parameter
 | |
|     // environments, in effect, going through this function
 | |
|     // and hence potentially reporting errors. This ensures of
 | |
|     // course that we never forget to normalize (the
 | |
|     // alternative seemed like it would involve a lot of
 | |
|     // manual invocations of this fn -- and then we'd have to
 | |
|     // deal with the errors at each of those sites).
 | |
|     //
 | |
|     // In any case, in practice, typeck constructs all the
 | |
|     // parameter environments once for every fn as it goes,
 | |
|     // and errors will get reported then; so after typeck we
 | |
|     // can be sure that no errors should occur.
 | |
| 
 | |
|     debug!(
 | |
|         "normalize_param_env_or_error(region_context={:?}, unnormalized_env={:?}, cause={:?})",
 | |
|         region_context, unnormalized_env, cause
 | |
|     );
 | |
| 
 | |
|     let mut predicates: Vec<_> =
 | |
|         util::elaborate_predicates(tcx, unnormalized_env.caller_bounds().into_iter())
 | |
|             .map(|obligation| obligation.predicate)
 | |
|             .collect();
 | |
| 
 | |
|     debug!("normalize_param_env_or_error: elaborated-predicates={:?}", predicates);
 | |
| 
 | |
|     let elaborated_env = ty::ParamEnv::new(
 | |
|         tcx.intern_predicates(&predicates),
 | |
|         unnormalized_env.reveal(),
 | |
|         unnormalized_env.constness(),
 | |
|     );
 | |
| 
 | |
|     // HACK: we are trying to normalize the param-env inside *itself*. The problem is that
 | |
|     // normalization expects its param-env to be already normalized, which means we have
 | |
|     // a circularity.
 | |
|     //
 | |
|     // The way we handle this is by normalizing the param-env inside an unnormalized version
 | |
|     // of the param-env, which means that if the param-env contains unnormalized projections,
 | |
|     // we'll have some normalization failures. This is unfortunate.
 | |
|     //
 | |
|     // Lazy normalization would basically handle this by treating just the
 | |
|     // normalizing-a-trait-ref-requires-itself cycles as evaluation failures.
 | |
|     //
 | |
|     // Inferred outlives bounds can create a lot of `TypeOutlives` predicates for associated
 | |
|     // types, so to make the situation less bad, we normalize all the predicates *but*
 | |
|     // the `TypeOutlives` predicates first inside the unnormalized parameter environment, and
 | |
|     // then we normalize the `TypeOutlives` bounds inside the normalized parameter environment.
 | |
|     //
 | |
|     // This works fairly well because trait matching  does not actually care about param-env
 | |
|     // TypeOutlives predicates - these are normally used by regionck.
 | |
|     let outlives_predicates: Vec<_> = predicates
 | |
|         .drain_filter(|predicate| {
 | |
|             matches!(predicate.kind().skip_binder(), ty::PredicateKind::TypeOutlives(..))
 | |
|         })
 | |
|         .collect();
 | |
| 
 | |
|     debug!(
 | |
|         "normalize_param_env_or_error: predicates=(non-outlives={:?}, outlives={:?})",
 | |
|         predicates, outlives_predicates
 | |
|     );
 | |
|     let non_outlives_predicates = match do_normalize_predicates(
 | |
|         tcx,
 | |
|         region_context,
 | |
|         cause.clone(),
 | |
|         elaborated_env,
 | |
|         predicates,
 | |
|     ) {
 | |
|         Ok(predicates) => predicates,
 | |
|         // An unnormalized env is better than nothing.
 | |
|         Err(ErrorReported) => {
 | |
|             debug!("normalize_param_env_or_error: errored resolving non-outlives predicates");
 | |
|             return elaborated_env;
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     debug!("normalize_param_env_or_error: non-outlives predicates={:?}", non_outlives_predicates);
 | |
| 
 | |
|     // Not sure whether it is better to include the unnormalized TypeOutlives predicates
 | |
|     // here. I believe they should not matter, because we are ignoring TypeOutlives param-env
 | |
|     // predicates here anyway. Keeping them here anyway because it seems safer.
 | |
|     let outlives_env: Vec<_> =
 | |
|         non_outlives_predicates.iter().chain(&outlives_predicates).cloned().collect();
 | |
|     let outlives_env = ty::ParamEnv::new(
 | |
|         tcx.intern_predicates(&outlives_env),
 | |
|         unnormalized_env.reveal(),
 | |
|         unnormalized_env.constness(),
 | |
|     );
 | |
|     let outlives_predicates = match do_normalize_predicates(
 | |
|         tcx,
 | |
|         region_context,
 | |
|         cause,
 | |
|         outlives_env,
 | |
|         outlives_predicates,
 | |
|     ) {
 | |
|         Ok(predicates) => predicates,
 | |
|         // An unnormalized env is better than nothing.
 | |
|         Err(ErrorReported) => {
 | |
|             debug!("normalize_param_env_or_error: errored resolving outlives predicates");
 | |
|             return elaborated_env;
 | |
|         }
 | |
|     };
 | |
|     debug!("normalize_param_env_or_error: outlives predicates={:?}", outlives_predicates);
 | |
| 
 | |
|     let mut predicates = non_outlives_predicates;
 | |
|     predicates.extend(outlives_predicates);
 | |
|     debug!("normalize_param_env_or_error: final predicates={:?}", predicates);
 | |
|     ty::ParamEnv::new(
 | |
|         tcx.intern_predicates(&predicates),
 | |
|         unnormalized_env.reveal(),
 | |
|         unnormalized_env.constness(),
 | |
|     )
 | |
| }
 | |
| 
 | |
| pub fn fully_normalize<'a, 'tcx, T>(
 | |
|     infcx: &InferCtxt<'a, 'tcx>,
 | |
|     mut fulfill_cx: FulfillmentContext<'tcx>,
 | |
|     cause: ObligationCause<'tcx>,
 | |
|     param_env: ty::ParamEnv<'tcx>,
 | |
|     value: T,
 | |
| ) -> Result<T, Vec<FulfillmentError<'tcx>>>
 | |
| where
 | |
|     T: TypeFoldable<'tcx>,
 | |
| {
 | |
|     debug!("fully_normalize_with_fulfillcx(value={:?})", value);
 | |
|     let selcx = &mut SelectionContext::new(infcx);
 | |
|     let Normalized { value: normalized_value, obligations } =
 | |
|         project::normalize(selcx, param_env, cause, value);
 | |
|     debug!(
 | |
|         "fully_normalize: normalized_value={:?} obligations={:?}",
 | |
|         normalized_value, obligations
 | |
|     );
 | |
|     for obligation in obligations {
 | |
|         fulfill_cx.register_predicate_obligation(selcx.infcx(), obligation);
 | |
|     }
 | |
| 
 | |
|     debug!("fully_normalize: select_all_or_error start");
 | |
|     let errors = fulfill_cx.select_all_or_error(infcx);
 | |
|     if !errors.is_empty() {
 | |
|         return Err(errors);
 | |
|     }
 | |
|     debug!("fully_normalize: select_all_or_error complete");
 | |
|     let resolved_value = infcx.resolve_vars_if_possible(normalized_value);
 | |
|     debug!("fully_normalize: resolved_value={:?}", resolved_value);
 | |
|     Ok(resolved_value)
 | |
| }
 | |
| 
 | |
| /// Normalizes the predicates and checks whether they hold in an empty environment. If this
 | |
| /// returns true, then either normalize encountered an error or one of the predicates did not
 | |
| /// hold. Used when creating vtables to check for unsatisfiable methods.
 | |
| pub fn impossible_predicates<'tcx>(
 | |
|     tcx: TyCtxt<'tcx>,
 | |
|     predicates: Vec<ty::Predicate<'tcx>>,
 | |
| ) -> bool {
 | |
|     debug!("impossible_predicates(predicates={:?})", predicates);
 | |
| 
 | |
|     let result = tcx.infer_ctxt().enter(|infcx| {
 | |
|         let param_env = ty::ParamEnv::reveal_all();
 | |
|         let mut selcx = SelectionContext::new(&infcx);
 | |
|         let mut fulfill_cx = FulfillmentContext::new();
 | |
|         let cause = ObligationCause::dummy();
 | |
|         let Normalized { value: predicates, obligations } =
 | |
|             normalize(&mut selcx, param_env, cause.clone(), predicates);
 | |
|         for obligation in obligations {
 | |
|             fulfill_cx.register_predicate_obligation(&infcx, obligation);
 | |
|         }
 | |
|         for predicate in predicates {
 | |
|             let obligation = Obligation::new(cause.clone(), param_env, predicate);
 | |
|             fulfill_cx.register_predicate_obligation(&infcx, obligation);
 | |
|         }
 | |
| 
 | |
|         let errors = fulfill_cx.select_all_or_error(&infcx);
 | |
| 
 | |
|         !errors.is_empty()
 | |
|     });
 | |
|     debug!("impossible_predicates = {:?}", result);
 | |
|     result
 | |
| }
 | |
| 
 | |
| fn subst_and_check_impossible_predicates<'tcx>(
 | |
|     tcx: TyCtxt<'tcx>,
 | |
|     key: (DefId, SubstsRef<'tcx>),
 | |
| ) -> bool {
 | |
|     debug!("subst_and_check_impossible_predicates(key={:?})", key);
 | |
| 
 | |
|     let mut predicates = tcx.predicates_of(key.0).instantiate(tcx, key.1).predicates;
 | |
|     predicates.retain(|predicate| !predicate.definitely_needs_subst(tcx));
 | |
|     let result = impossible_predicates(tcx, predicates);
 | |
| 
 | |
|     debug!("subst_and_check_impossible_predicates(key={:?}) = {:?}", key, result);
 | |
|     result
 | |
| }
 | |
| 
 | |
| #[derive(Clone, Debug)]
 | |
| enum VtblSegment<'tcx> {
 | |
|     MetadataDSA,
 | |
|     TraitOwnEntries { trait_ref: ty::PolyTraitRef<'tcx>, emit_vptr: bool },
 | |
| }
 | |
| 
 | |
| /// Prepare the segments for a vtable
 | |
| fn prepare_vtable_segments<'tcx, T>(
 | |
|     tcx: TyCtxt<'tcx>,
 | |
|     trait_ref: ty::PolyTraitRef<'tcx>,
 | |
|     mut segment_visitor: impl FnMut(VtblSegment<'tcx>) -> ControlFlow<T>,
 | |
| ) -> Option<T> {
 | |
|     // The following constraints holds for the final arrangement.
 | |
|     // 1. The whole virtual table of the first direct super trait is included as the
 | |
|     //    the prefix. If this trait doesn't have any super traits, then this step
 | |
|     //    consists of the dsa metadata.
 | |
|     // 2. Then comes the proper pointer metadata(vptr) and all own methods for all
 | |
|     //    other super traits except those already included as part of the first
 | |
|     //    direct super trait virtual table.
 | |
|     // 3. finally, the own methods of this trait.
 | |
| 
 | |
|     // This has the advantage that trait upcasting to the first direct super trait on each level
 | |
|     // is zero cost, and to another trait includes only replacing the pointer with one level indirection,
 | |
|     // while not using too much extra memory.
 | |
| 
 | |
|     // For a single inheritance relationship like this,
 | |
|     //   D --> C --> B --> A
 | |
|     // The resulting vtable will consists of these segments:
 | |
|     //  DSA, A, B, C, D
 | |
| 
 | |
|     // For a multiple inheritance relationship like this,
 | |
|     //   D --> C --> A
 | |
|     //           \-> B
 | |
|     // The resulting vtable will consists of these segments:
 | |
|     //  DSA, A, B, B-vptr, C, D
 | |
| 
 | |
|     // For a diamond inheritance relationship like this,
 | |
|     //   D --> B --> A
 | |
|     //     \-> C -/
 | |
|     // The resulting vtable will consists of these segments:
 | |
|     //  DSA, A, B, C, C-vptr, D
 | |
| 
 | |
|     // For a more complex inheritance relationship like this:
 | |
|     //   O --> G --> C --> A
 | |
|     //     \     \     \-> B
 | |
|     //     |     |-> F --> D
 | |
|     //     |           \-> E
 | |
|     //     |-> N --> J --> H
 | |
|     //           \     \-> I
 | |
|     //           |-> M --> K
 | |
|     //                 \-> L
 | |
|     // The resulting vtable will consists of these segments:
 | |
|     //  DSA, A, B, B-vptr, C, D, D-vptr, E, E-vptr, F, F-vptr, G,
 | |
|     //  H, H-vptr, I, I-vptr, J, J-vptr, K, K-vptr, L, L-vptr, M, M-vptr,
 | |
|     //  N, N-vptr, O
 | |
| 
 | |
|     // emit dsa segment first.
 | |
|     if let ControlFlow::Break(v) = (segment_visitor)(VtblSegment::MetadataDSA) {
 | |
|         return Some(v);
 | |
|     }
 | |
| 
 | |
|     let mut emit_vptr_on_new_entry = false;
 | |
|     let mut visited = util::PredicateSet::new(tcx);
 | |
|     let predicate = trait_ref.without_const().to_predicate(tcx);
 | |
|     let mut stack: SmallVec<[(ty::PolyTraitRef<'tcx>, _, _); 5]> =
 | |
|         smallvec![(trait_ref, emit_vptr_on_new_entry, None)];
 | |
|     visited.insert(predicate);
 | |
| 
 | |
|     // the main traversal loop:
 | |
|     // basically we want to cut the inheritance directed graph into a few non-overlapping slices of nodes
 | |
|     // that each node is emited after all its descendents have been emitted.
 | |
|     // so we convert the directed graph into a tree by skipping all previously visted nodes using a visited set.
 | |
|     // this is done on the fly.
 | |
|     // Each loop run emits a slice - it starts by find a "childless" unvisited node, backtracking upwards, and it
 | |
|     // stops after it finds a node that has a next-sibling node.
 | |
|     // This next-sibling node will used as the starting point of next slice.
 | |
| 
 | |
|     // Example:
 | |
|     // For a diamond inheritance relationship like this,
 | |
|     //   D#1 --> B#0 --> A#0
 | |
|     //     \-> C#1 -/
 | |
| 
 | |
|     // Starting point 0 stack [D]
 | |
|     // Loop run #0: Stack after diving in is [D B A], A is "childless"
 | |
|     // after this point, all newly visited nodes won't have a vtable that equals to a prefix of this one.
 | |
|     // Loop run #0: Emiting the slice [B A] (in reverse order), B has a next-sibling node, so this slice stops here.
 | |
|     // Loop run #0: Stack after exiting out is [D C], C is the next starting point.
 | |
|     // Loop run #1: Stack after diving in is [D C], C is "childless", since its child A is skipped(already emitted).
 | |
|     // Loop run #1: Emiting the slice [D C] (in reverse order). No one has a next-sibling node.
 | |
|     // Loop run #1: Stack after exiting out is []. Now the function exits.
 | |
| 
 | |
|     loop {
 | |
|         // dive deeper into the stack, recording the path
 | |
|         'diving_in: loop {
 | |
|             if let Some((inner_most_trait_ref, _, _)) = stack.last() {
 | |
|                 let inner_most_trait_ref = *inner_most_trait_ref;
 | |
|                 let mut direct_super_traits_iter = tcx
 | |
|                     .super_predicates_of(inner_most_trait_ref.def_id())
 | |
|                     .predicates
 | |
|                     .into_iter()
 | |
|                     .filter_map(move |(pred, _)| {
 | |
|                         pred.subst_supertrait(tcx, &inner_most_trait_ref).to_opt_poly_trait_ref()
 | |
|                     });
 | |
| 
 | |
|                 'diving_in_skip_visited_traits: loop {
 | |
|                     if let Some(next_super_trait) = direct_super_traits_iter.next() {
 | |
|                         if visited.insert(next_super_trait.to_predicate(tcx)) {
 | |
|                             stack.push((
 | |
|                                 next_super_trait.value,
 | |
|                                 emit_vptr_on_new_entry,
 | |
|                                 Some(direct_super_traits_iter),
 | |
|                             ));
 | |
|                             break 'diving_in_skip_visited_traits;
 | |
|                         } else {
 | |
|                             continue 'diving_in_skip_visited_traits;
 | |
|                         }
 | |
|                     } else {
 | |
|                         break 'diving_in;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Other than the left-most path, vptr should be emitted for each trait.
 | |
|         emit_vptr_on_new_entry = true;
 | |
| 
 | |
|         // emit innermost item, move to next sibling and stop there if possible, otherwise jump to outer level.
 | |
|         'exiting_out: loop {
 | |
|             if let Some((inner_most_trait_ref, emit_vptr, siblings_opt)) = stack.last_mut() {
 | |
|                 if let ControlFlow::Break(v) = (segment_visitor)(VtblSegment::TraitOwnEntries {
 | |
|                     trait_ref: *inner_most_trait_ref,
 | |
|                     emit_vptr: *emit_vptr,
 | |
|                 }) {
 | |
|                     return Some(v);
 | |
|                 }
 | |
| 
 | |
|                 'exiting_out_skip_visited_traits: loop {
 | |
|                     if let Some(siblings) = siblings_opt {
 | |
|                         if let Some(next_inner_most_trait_ref) = siblings.next() {
 | |
|                             if visited.insert(next_inner_most_trait_ref.to_predicate(tcx)) {
 | |
|                                 *inner_most_trait_ref = next_inner_most_trait_ref.value;
 | |
|                                 *emit_vptr = emit_vptr_on_new_entry;
 | |
|                                 break 'exiting_out;
 | |
|                             } else {
 | |
|                                 continue 'exiting_out_skip_visited_traits;
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                     stack.pop();
 | |
|                     continue 'exiting_out;
 | |
|                 }
 | |
|             }
 | |
|             // all done
 | |
|             return None;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| fn dump_vtable_entries<'tcx>(
 | |
|     tcx: TyCtxt<'tcx>,
 | |
|     sp: Span,
 | |
|     trait_ref: ty::PolyTraitRef<'tcx>,
 | |
|     entries: &[VtblEntry<'tcx>],
 | |
| ) {
 | |
|     let msg = format!("vtable entries for `{}`: {:#?}", trait_ref, entries);
 | |
|     tcx.sess.struct_span_err(sp, &msg).emit();
 | |
| }
 | |
| 
 | |
| fn own_existential_vtable_entries<'tcx>(
 | |
|     tcx: TyCtxt<'tcx>,
 | |
|     trait_ref: ty::PolyExistentialTraitRef<'tcx>,
 | |
| ) -> &'tcx [DefId] {
 | |
|     let trait_methods = tcx
 | |
|         .associated_items(trait_ref.def_id())
 | |
|         .in_definition_order()
 | |
|         .filter(|item| item.kind == ty::AssocKind::Fn);
 | |
|     // Now list each method's DefId (for within its trait).
 | |
|     let own_entries = trait_methods.filter_map(move |trait_method| {
 | |
|         debug!("own_existential_vtable_entry: trait_method={:?}", trait_method);
 | |
|         let def_id = trait_method.def_id;
 | |
| 
 | |
|         // Some methods cannot be called on an object; skip those.
 | |
|         if !is_vtable_safe_method(tcx, trait_ref.def_id(), &trait_method) {
 | |
|             debug!("own_existential_vtable_entry: not vtable safe");
 | |
|             return None;
 | |
|         }
 | |
| 
 | |
|         Some(def_id)
 | |
|     });
 | |
| 
 | |
|     tcx.arena.alloc_from_iter(own_entries.into_iter())
 | |
| }
 | |
| 
 | |
| /// Given a trait `trait_ref`, iterates the vtable entries
 | |
| /// that come from `trait_ref`, including its supertraits.
 | |
| fn vtable_entries<'tcx>(
 | |
|     tcx: TyCtxt<'tcx>,
 | |
|     trait_ref: ty::PolyTraitRef<'tcx>,
 | |
| ) -> &'tcx [VtblEntry<'tcx>] {
 | |
|     debug!("vtable_entries({:?})", trait_ref);
 | |
| 
 | |
|     let mut entries = vec![];
 | |
| 
 | |
|     let vtable_segment_callback = |segment| -> ControlFlow<()> {
 | |
|         match segment {
 | |
|             VtblSegment::MetadataDSA => {
 | |
|                 entries.extend(COMMON_VTABLE_ENTRIES);
 | |
|             }
 | |
|             VtblSegment::TraitOwnEntries { trait_ref, emit_vptr } => {
 | |
|                 let existential_trait_ref = trait_ref
 | |
|                     .map_bound(|trait_ref| ty::ExistentialTraitRef::erase_self_ty(tcx, trait_ref));
 | |
| 
 | |
|                 // Lookup the shape of vtable for the trait.
 | |
|                 let own_existential_entries =
 | |
|                     tcx.own_existential_vtable_entries(existential_trait_ref);
 | |
| 
 | |
|                 let own_entries = own_existential_entries.iter().copied().map(|def_id| {
 | |
|                     debug!("vtable_entries: trait_method={:?}", def_id);
 | |
| 
 | |
|                     // The method may have some early-bound lifetimes; add regions for those.
 | |
|                     let substs = trait_ref.map_bound(|trait_ref| {
 | |
|                         InternalSubsts::for_item(tcx, def_id, |param, _| match param.kind {
 | |
|                             GenericParamDefKind::Lifetime => tcx.lifetimes.re_erased.into(),
 | |
|                             GenericParamDefKind::Type { .. }
 | |
|                             | GenericParamDefKind::Const { .. } => {
 | |
|                                 trait_ref.substs[param.index as usize]
 | |
|                             }
 | |
|                         })
 | |
|                     });
 | |
| 
 | |
|                     // The trait type may have higher-ranked lifetimes in it;
 | |
|                     // erase them if they appear, so that we get the type
 | |
|                     // at some particular call site.
 | |
|                     let substs = tcx
 | |
|                         .normalize_erasing_late_bound_regions(ty::ParamEnv::reveal_all(), substs);
 | |
| 
 | |
|                     // It's possible that the method relies on where-clauses that
 | |
|                     // do not hold for this particular set of type parameters.
 | |
|                     // Note that this method could then never be called, so we
 | |
|                     // do not want to try and codegen it, in that case (see #23435).
 | |
|                     let predicates = tcx.predicates_of(def_id).instantiate_own(tcx, substs);
 | |
|                     if impossible_predicates(tcx, predicates.predicates) {
 | |
|                         debug!("vtable_entries: predicates do not hold");
 | |
|                         return VtblEntry::Vacant;
 | |
|                     }
 | |
| 
 | |
|                     let instance = ty::Instance::resolve_for_vtable(
 | |
|                         tcx,
 | |
|                         ty::ParamEnv::reveal_all(),
 | |
|                         def_id,
 | |
|                         substs,
 | |
|                     )
 | |
|                     .expect("resolution failed during building vtable representation");
 | |
|                     VtblEntry::Method(instance)
 | |
|                 });
 | |
| 
 | |
|                 entries.extend(own_entries);
 | |
| 
 | |
|                 if emit_vptr {
 | |
|                     entries.push(VtblEntry::TraitVPtr(trait_ref));
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         ControlFlow::Continue(())
 | |
|     };
 | |
| 
 | |
|     let _ = prepare_vtable_segments(tcx, trait_ref, vtable_segment_callback);
 | |
| 
 | |
|     if tcx.has_attr(trait_ref.def_id(), sym::rustc_dump_vtable) {
 | |
|         let sp = tcx.def_span(trait_ref.def_id());
 | |
|         dump_vtable_entries(tcx, sp, trait_ref, &entries);
 | |
|     }
 | |
| 
 | |
|     tcx.arena.alloc_from_iter(entries.into_iter())
 | |
| }
 | |
| 
 | |
| /// Find slot base for trait methods within vtable entries of another trait
 | |
| fn vtable_trait_first_method_offset<'tcx>(
 | |
|     tcx: TyCtxt<'tcx>,
 | |
|     key: (
 | |
|         ty::PolyTraitRef<'tcx>, // trait_to_be_found
 | |
|         ty::PolyTraitRef<'tcx>, // trait_owning_vtable
 | |
|     ),
 | |
| ) -> usize {
 | |
|     let (trait_to_be_found, trait_owning_vtable) = key;
 | |
| 
 | |
|     // #90177
 | |
|     let trait_to_be_found_erased = tcx.erase_regions(trait_to_be_found);
 | |
| 
 | |
|     let vtable_segment_callback = {
 | |
|         let mut vtable_base = 0;
 | |
| 
 | |
|         move |segment| {
 | |
|             match segment {
 | |
|                 VtblSegment::MetadataDSA => {
 | |
|                     vtable_base += COMMON_VTABLE_ENTRIES.len();
 | |
|                 }
 | |
|                 VtblSegment::TraitOwnEntries { trait_ref, emit_vptr } => {
 | |
|                     if tcx.erase_regions(trait_ref) == trait_to_be_found_erased {
 | |
|                         return ControlFlow::Break(vtable_base);
 | |
|                     }
 | |
|                     vtable_base += util::count_own_vtable_entries(tcx, trait_ref);
 | |
|                     if emit_vptr {
 | |
|                         vtable_base += 1;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             ControlFlow::Continue(())
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     if let Some(vtable_base) =
 | |
|         prepare_vtable_segments(tcx, trait_owning_vtable, vtable_segment_callback)
 | |
|     {
 | |
|         vtable_base
 | |
|     } else {
 | |
|         bug!("Failed to find info for expected trait in vtable");
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// Find slot offset for trait vptr within vtable entries of another trait
 | |
| pub fn vtable_trait_upcasting_coercion_new_vptr_slot(
 | |
|     tcx: TyCtxt<'tcx>,
 | |
|     key: (
 | |
|         Ty<'tcx>, // trait object type whose trait owning vtable
 | |
|         Ty<'tcx>, // trait object for supertrait
 | |
|     ),
 | |
| ) -> Option<usize> {
 | |
|     let (source, target) = key;
 | |
|     assert!(matches!(&source.kind(), &ty::Dynamic(..)) && !source.needs_infer());
 | |
|     assert!(matches!(&target.kind(), &ty::Dynamic(..)) && !target.needs_infer());
 | |
| 
 | |
|     // this has been typecked-before, so diagnostics is not really needed.
 | |
|     let unsize_trait_did = tcx.require_lang_item(LangItem::Unsize, None);
 | |
| 
 | |
|     let trait_ref = ty::TraitRef {
 | |
|         def_id: unsize_trait_did,
 | |
|         substs: tcx.mk_substs_trait(source, &[target.into()]),
 | |
|     };
 | |
|     let obligation = Obligation::new(
 | |
|         ObligationCause::dummy(),
 | |
|         ty::ParamEnv::reveal_all(),
 | |
|         ty::Binder::dummy(ty::TraitPredicate {
 | |
|             trait_ref,
 | |
|             constness: ty::BoundConstness::NotConst,
 | |
|             polarity: ty::ImplPolarity::Positive,
 | |
|         }),
 | |
|     );
 | |
| 
 | |
|     let implsrc = tcx.infer_ctxt().enter(|infcx| {
 | |
|         let mut selcx = SelectionContext::new(&infcx);
 | |
|         selcx.select(&obligation).unwrap()
 | |
|     });
 | |
| 
 | |
|     let implsrc_traitcasting = match implsrc {
 | |
|         Some(ImplSource::TraitUpcasting(data)) => data,
 | |
|         _ => bug!(),
 | |
|     };
 | |
| 
 | |
|     implsrc_traitcasting.vtable_vptr_slot
 | |
| }
 | |
| 
 | |
| pub fn provide(providers: &mut ty::query::Providers) {
 | |
|     object_safety::provide(providers);
 | |
|     structural_match::provide(providers);
 | |
|     *providers = ty::query::Providers {
 | |
|         specialization_graph_of: specialize::specialization_graph_provider,
 | |
|         specializes: specialize::specializes,
 | |
|         codegen_fulfill_obligation: codegen::codegen_fulfill_obligation,
 | |
|         own_existential_vtable_entries,
 | |
|         vtable_entries,
 | |
|         vtable_trait_upcasting_coercion_new_vptr_slot,
 | |
|         subst_and_check_impossible_predicates,
 | |
|         thir_abstract_const: |tcx, def_id| {
 | |
|             let def_id = def_id.expect_local();
 | |
|             if let Some(def) = ty::WithOptConstParam::try_lookup(def_id, tcx) {
 | |
|                 tcx.thir_abstract_const_of_const_arg(def)
 | |
|             } else {
 | |
|                 const_evaluatable::thir_abstract_const(tcx, ty::WithOptConstParam::unknown(def_id))
 | |
|             }
 | |
|         },
 | |
|         thir_abstract_const_of_const_arg: |tcx, (did, param_did)| {
 | |
|             const_evaluatable::thir_abstract_const(
 | |
|                 tcx,
 | |
|                 ty::WithOptConstParam { did, const_param_did: Some(param_did) },
 | |
|             )
 | |
|         },
 | |
|         try_unify_abstract_consts: const_evaluatable::try_unify_abstract_consts,
 | |
|         ..*providers
 | |
|     };
 | |
| }
 | 
