Ralf Jung a0215d8e46 Re-do recursive const stability checks
Fundamentally, we have *three* disjoint categories of functions:
1. const-stable functions
2. private/unstable functions that are meant to be callable from const-stable functions
3. functions that can make use of unstable const features

This PR implements the following system:
- `#[rustc_const_stable]` puts functions in the first category. It may only be applied to `#[stable]` functions.
- `#[rustc_const_unstable]` by default puts functions in the third category. The new attribute `#[rustc_const_stable_indirect]` can be added to such a function to move it into the second category.
- `const fn` without a const stability marker are in the second category if they are still unstable. They automatically inherit the feature gate for regular calls, it can now also be used for const-calls.

Also, several holes in recursive const stability checking are being closed.
There's still one potential hole that is hard to avoid, which is when MIR
building automatically inserts calls to a particular function in stable
functions -- which happens in the panic machinery. Those need to *not* be
`rustc_const_unstable` (or manually get a `rustc_const_stable_indirect`) to be
sure they follow recursive const stability. But that's a fairly rare and special
case so IMO it's fine.

The net effect of this is that a `#[unstable]` or unmarked function can be
constified simply by marking it as `const fn`, and it will then be
const-callable from stable `const fn` and subject to recursive const stability
requirements. If it is publicly reachable (which implies it cannot be unmarked),
it will be const-unstable under the same feature gate. Only if the function ever
becomes `#[stable]` does it need a `#[rustc_const_unstable]` or
`#[rustc_const_stable]` marker to decide if this should also imply
const-stability.

Adding `#[rustc_const_unstable]` is only needed for (a) functions that need to
use unstable const lang features (including intrinsics), or (b) `#[stable]`
functions that are not yet intended to be const-stable. Adding
`#[rustc_const_stable]` is only needed for functions that are actually meant to
be directly callable from stable const code. `#[rustc_const_stable_indirect]` is
used to mark intrinsics as const-callable and for `#[rustc_const_unstable]`
functions that are actually called from other, exposed-on-stable `const fn`. No
other attributes are required.
2024-10-25 20:31:40 +02:00

78 lines
3.2 KiB
Rust

use rustc_hir as hir;
use rustc_hir::def::DefKind;
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_middle::query::Providers;
use rustc_middle::ty::TyCtxt;
pub fn is_parent_const_impl_raw(tcx: TyCtxt<'_>, def_id: LocalDefId) -> bool {
let parent_id = tcx.local_parent(def_id);
matches!(tcx.def_kind(parent_id), DefKind::Impl { .. })
&& tcx.constness(parent_id) == hir::Constness::Const
}
/// Checks whether an item is considered to be `const`. If it is a constructor, anonymous const,
/// const block, const item or associated const, it is const. If it is a trait impl/function,
/// return if it has a `const` modifier. If it is an intrinsic, report whether said intrinsic
/// has a `rustc_const_{un,}stable` attribute. Otherwise, return `Constness::NotConst`.
fn constness(tcx: TyCtxt<'_>, def_id: LocalDefId) -> hir::Constness {
let node = tcx.hir_node_by_def_id(def_id);
match node {
hir::Node::Ctor(_)
| hir::Node::AnonConst(_)
| hir::Node::ConstBlock(_)
| hir::Node::ImplItem(hir::ImplItem { kind: hir::ImplItemKind::Const(..), .. }) => {
hir::Constness::Const
}
hir::Node::Item(hir::Item { kind: hir::ItemKind::Impl(impl_), .. }) => impl_.constness,
hir::Node::ForeignItem(hir::ForeignItem { kind: hir::ForeignItemKind::Fn(..), .. }) => {
// Intrinsics use `rustc_const_{un,}stable` attributes to indicate constness. All other
// foreign items cannot be evaluated at compile-time.
let is_const = if tcx.intrinsic(def_id).is_some() {
tcx.lookup_const_stability(def_id).is_some()
} else {
false
};
if is_const { hir::Constness::Const } else { hir::Constness::NotConst }
}
hir::Node::Expr(e) if let hir::ExprKind::Closure(c) = e.kind => c.constness,
_ => {
if let Some(fn_kind) = node.fn_kind() {
if fn_kind.constness() == hir::Constness::Const {
return hir::Constness::Const;
}
// If the function itself is not annotated with `const`, it may still be a `const fn`
// if it resides in a const trait impl.
let is_const = is_parent_const_impl_raw(tcx, def_id);
if is_const { hir::Constness::Const } else { hir::Constness::NotConst }
} else {
hir::Constness::NotConst
}
}
}
}
fn is_promotable_const_fn(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
tcx.is_const_fn(def_id)
&& match tcx.lookup_const_stability(def_id) {
Some(stab) => {
if cfg!(debug_assertions) && stab.promotable {
let sig = tcx.fn_sig(def_id);
assert_eq!(
sig.skip_binder().safety(),
hir::Safety::Safe,
"don't mark const unsafe fns as promotable",
// https://github.com/rust-lang/rust/pull/53851#issuecomment-418760682
);
}
stab.promotable
}
None => false,
}
}
pub fn provide(providers: &mut Providers) {
*providers = Providers { constness, is_promotable_const_fn, ..*providers };
}