rust/compiler/rustc_lint/src/nonstandard_style.rs
Nicholas Nethercote df247968f2 Move ast::Item::ident into ast::ItemKind.
`ast::Item` has an `ident` field.

- It's always non-empty for these item kinds: `ExternCrate`, `Static`,
  `Const`, `Fn`, `Mod`, `TyAlias`, `Enum`, `Struct`, `Union`,
  `Trait`, `TraitAlias`, `MacroDef`, `Delegation`.

- It's always empty for these item kinds: `Use`, `ForeignMod`,
  `GlobalAsm`, `Impl`, `MacCall`, `DelegationMac`.

There is a similar story for `AssocItemKind` and `ForeignItemKind`.

Some sites that handle items check for an empty ident, some don't. This
is a very C-like way of doing things, but this is Rust, we have sum
types, we can do this properly and never forget to check for the
exceptional case and never YOLO possibly empty identifiers (or possibly
dummy spans) around and hope that things will work out.

The commit is large but it's mostly obvious plumbing work. Some notable
things.

- `ast::Item` got 8 bytes bigger. This could be avoided by boxing the
  fields within some of the `ast::ItemKind` variants (specifically:
  `Struct`, `Union`, `Enum`). I might do that in a follow-up; this
  commit is big enough already.

- For the visitors: `FnKind` no longer needs an `ident` field because
  the `Fn` within how has one.

- In the parser, the `ItemInfo` typedef is no longer needed. It was used
  in various places to return an `Ident` alongside an `ItemKind`, but
  now the `Ident` (if present) is within the `ItemKind`.

- In a few places I renamed identifier variables called `name` (or
  `foo_name`) as `ident` (or `foo_ident`), to better match the type, and
  because `name` is normally used for `Symbol`s. It's confusing to see
  something like `foo_name.name`.
2025-04-01 14:08:57 +11:00

559 lines
20 KiB
Rust

use rustc_abi::ExternAbi;
use rustc_attr_parsing::{AttributeKind, AttributeParser, ReprAttr};
use rustc_hir::def::{DefKind, Res};
use rustc_hir::intravisit::FnKind;
use rustc_hir::{AttrArgs, AttrItem, Attribute, GenericParamKind, PatExprKind, PatKind};
use rustc_middle::ty;
use rustc_session::config::CrateType;
use rustc_session::{declare_lint, declare_lint_pass};
use rustc_span::def_id::LocalDefId;
use rustc_span::{BytePos, Ident, Span, sym};
use {rustc_ast as ast, rustc_hir as hir};
use crate::lints::{
NonCamelCaseType, NonCamelCaseTypeSub, NonSnakeCaseDiag, NonSnakeCaseDiagSub,
NonUpperCaseGlobal, NonUpperCaseGlobalSub,
};
use crate::{EarlyContext, EarlyLintPass, LateContext, LateLintPass, LintContext};
#[derive(PartialEq)]
pub(crate) enum MethodLateContext {
TraitAutoImpl,
TraitImpl,
PlainImpl,
}
pub(crate) fn method_context(cx: &LateContext<'_>, id: LocalDefId) -> MethodLateContext {
let item = cx.tcx.associated_item(id);
match item.container {
ty::AssocItemContainer::Trait => MethodLateContext::TraitAutoImpl,
ty::AssocItemContainer::Impl => match cx.tcx.impl_trait_ref(item.container_id(cx.tcx)) {
Some(_) => MethodLateContext::TraitImpl,
None => MethodLateContext::PlainImpl,
},
}
}
fn assoc_item_in_trait_impl(cx: &LateContext<'_>, ii: &hir::ImplItem<'_>) -> bool {
let item = cx.tcx.associated_item(ii.owner_id);
item.trait_item_def_id.is_some()
}
declare_lint! {
/// The `non_camel_case_types` lint detects types, variants, traits and
/// type parameters that don't have camel case names.
///
/// ### Example
///
/// ```rust
/// struct my_struct;
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// The preferred style for these identifiers is to use "camel case", such
/// as `MyStruct`, where the first letter should not be lowercase, and
/// should not use underscores between letters. Underscores are allowed at
/// the beginning and end of the identifier, as well as between
/// non-letters (such as `X86_64`).
pub NON_CAMEL_CASE_TYPES,
Warn,
"types, variants, traits and type parameters should have camel case names"
}
declare_lint_pass!(NonCamelCaseTypes => [NON_CAMEL_CASE_TYPES]);
/// Some unicode characters *have* case, are considered upper case or lower case, but they *can't*
/// be upper cased or lower cased. For the purposes of the lint suggestion, we care about being able
/// to change the char's case.
fn char_has_case(c: char) -> bool {
let mut l = c.to_lowercase();
let mut u = c.to_uppercase();
while let Some(l) = l.next() {
match u.next() {
Some(u) if l != u => return true,
_ => {}
}
}
u.next().is_some()
}
fn is_camel_case(name: &str) -> bool {
let name = name.trim_matches('_');
if name.is_empty() {
return true;
}
// start with a non-lowercase letter rather than non-uppercase
// ones (some scripts don't have a concept of upper/lowercase)
!name.chars().next().unwrap().is_lowercase()
&& !name.contains("__")
&& !name.chars().collect::<Vec<_>>().array_windows().any(|&[fst, snd]| {
// contains a capitalisable character followed by, or preceded by, an underscore
char_has_case(fst) && snd == '_' || char_has_case(snd) && fst == '_'
})
}
fn to_camel_case(s: &str) -> String {
s.trim_matches('_')
.split('_')
.filter(|component| !component.is_empty())
.map(|component| {
let mut camel_cased_component = String::new();
let mut new_word = true;
let mut prev_is_lower_case = true;
for c in component.chars() {
// Preserve the case if an uppercase letter follows a lowercase letter, so that
// `camelCase` is converted to `CamelCase`.
if prev_is_lower_case && c.is_uppercase() {
new_word = true;
}
if new_word {
camel_cased_component.extend(c.to_uppercase());
} else {
camel_cased_component.extend(c.to_lowercase());
}
prev_is_lower_case = c.is_lowercase();
new_word = false;
}
camel_cased_component
})
.fold((String::new(), None), |(acc, prev): (String, Option<String>), next| {
// separate two components with an underscore if their boundary cannot
// be distinguished using an uppercase/lowercase case distinction
let join = if let Some(prev) = prev {
let l = prev.chars().last().unwrap();
let f = next.chars().next().unwrap();
!char_has_case(l) && !char_has_case(f)
} else {
false
};
(acc + if join { "_" } else { "" } + &next, Some(next))
})
.0
}
impl NonCamelCaseTypes {
fn check_case(&self, cx: &EarlyContext<'_>, sort: &str, ident: &Ident) {
let name = ident.name.as_str();
if !is_camel_case(name) {
let cc = to_camel_case(name);
let sub = if *name != cc {
NonCamelCaseTypeSub::Suggestion { span: ident.span, replace: cc }
} else {
NonCamelCaseTypeSub::Label { span: ident.span }
};
cx.emit_span_lint(
NON_CAMEL_CASE_TYPES,
ident.span,
NonCamelCaseType { sort, name, sub },
);
}
}
}
impl EarlyLintPass for NonCamelCaseTypes {
fn check_item(&mut self, cx: &EarlyContext<'_>, it: &ast::Item) {
let has_repr_c = matches!(
AttributeParser::parse_limited(cx.sess(), &it.attrs, sym::repr, it.span, true),
Some(Attribute::Parsed(AttributeKind::Repr(r))) if r.iter().any(|(r, _)| r == &ReprAttr::ReprC)
);
if has_repr_c {
return;
}
match &it.kind {
ast::ItemKind::TyAlias(box ast::TyAlias { ident, .. })
| ast::ItemKind::Enum(ident, ..)
| ast::ItemKind::Struct(ident, ..)
| ast::ItemKind::Union(ident, ..) => self.check_case(cx, "type", ident),
ast::ItemKind::Trait(box ast::Trait { ident, .. }) => {
self.check_case(cx, "trait", ident)
}
ast::ItemKind::TraitAlias(ident, _, _) => self.check_case(cx, "trait alias", ident),
// N.B. This check is only for inherent associated types, so that we don't lint against
// trait impls where we should have warned for the trait definition already.
ast::ItemKind::Impl(box ast::Impl { of_trait: None, items, .. }) => {
for it in items {
// FIXME: this doesn't respect `#[allow(..)]` on the item itself.
if let ast::AssocItemKind::Type(alias) = &it.kind {
self.check_case(cx, "associated type", &alias.ident);
}
}
}
_ => (),
}
}
fn check_trait_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) {
if let ast::AssocItemKind::Type(alias) = &it.kind {
self.check_case(cx, "associated type", &alias.ident);
}
}
fn check_variant(&mut self, cx: &EarlyContext<'_>, v: &ast::Variant) {
self.check_case(cx, "variant", &v.ident);
}
fn check_generic_param(&mut self, cx: &EarlyContext<'_>, param: &ast::GenericParam) {
if let ast::GenericParamKind::Type { .. } = param.kind {
self.check_case(cx, "type parameter", &param.ident);
}
}
}
declare_lint! {
/// The `non_snake_case` lint detects variables, methods, functions,
/// lifetime parameters and modules that don't have snake case names.
///
/// ### Example
///
/// ```rust
/// let MY_VALUE = 5;
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// The preferred style for these identifiers is to use "snake case",
/// where all the characters are in lowercase, with words separated with a
/// single underscore, such as `my_value`.
pub NON_SNAKE_CASE,
Warn,
"variables, methods, functions, lifetime parameters and modules should have snake case names"
}
declare_lint_pass!(NonSnakeCase => [NON_SNAKE_CASE]);
impl NonSnakeCase {
fn to_snake_case(mut name: &str) -> String {
let mut words = vec![];
// Preserve leading underscores
name = name.trim_start_matches(|c: char| {
if c == '_' {
words.push(String::new());
true
} else {
false
}
});
for s in name.split('_') {
let mut last_upper = false;
let mut buf = String::new();
if s.is_empty() {
continue;
}
for ch in s.chars() {
if !buf.is_empty() && buf != "'" && ch.is_uppercase() && !last_upper {
words.push(buf);
buf = String::new();
}
last_upper = ch.is_uppercase();
buf.extend(ch.to_lowercase());
}
words.push(buf);
}
words.join("_")
}
/// Checks if a given identifier is snake case, and reports a diagnostic if not.
fn check_snake_case(&self, cx: &LateContext<'_>, sort: &str, ident: &Ident) {
fn is_snake_case(ident: &str) -> bool {
if ident.is_empty() {
return true;
}
let ident = ident.trim_start_matches('\'');
let ident = ident.trim_matches('_');
if ident.contains("__") {
return false;
}
// This correctly handles letters in languages with and without
// cases, as well as numbers and underscores.
!ident.chars().any(char::is_uppercase)
}
let name = ident.name.as_str();
if !is_snake_case(name) {
let span = ident.span;
let sc = NonSnakeCase::to_snake_case(name);
// We cannot provide meaningful suggestions
// if the characters are in the category of "Uppercase Letter".
let sub = if name != sc {
// We have a valid span in almost all cases, but we don't have one when linting a
// crate name provided via the command line.
if !span.is_dummy() {
let sc_ident = Ident::from_str_and_span(&sc, span);
if sc_ident.is_reserved() {
// We shouldn't suggest a reserved identifier to fix non-snake-case
// identifiers. Instead, recommend renaming the identifier entirely or, if
// permitted, escaping it to create a raw identifier.
if sc_ident.name.can_be_raw() {
NonSnakeCaseDiagSub::RenameOrConvertSuggestion {
span,
suggestion: sc_ident,
}
} else {
NonSnakeCaseDiagSub::SuggestionAndNote { span }
}
} else {
NonSnakeCaseDiagSub::ConvertSuggestion { span, suggestion: sc.clone() }
}
} else {
NonSnakeCaseDiagSub::Help
}
} else {
NonSnakeCaseDiagSub::Label { span }
};
cx.emit_span_lint(NON_SNAKE_CASE, span, NonSnakeCaseDiag { sort, name, sc, sub });
}
}
}
impl<'tcx> LateLintPass<'tcx> for NonSnakeCase {
fn check_mod(&mut self, cx: &LateContext<'_>, _: &'tcx hir::Mod<'tcx>, id: hir::HirId) {
if id != hir::CRATE_HIR_ID {
return;
}
// Issue #45127: don't enforce `snake_case` for binary crates as binaries are not intended
// to be distributed and depended on like libraries. The lint is not suppressed for cdylib
// or staticlib because it's not clear what the desired lint behavior for those are.
if cx.tcx.crate_types().iter().all(|&crate_type| crate_type == CrateType::Executable) {
return;
}
let crate_ident = if let Some(name) = &cx.tcx.sess.opts.crate_name {
Some(Ident::from_str(name))
} else {
ast::attr::find_by_name(cx.tcx.hir_attrs(hir::CRATE_HIR_ID), sym::crate_name).and_then(
|attr| {
if let Attribute::Unparsed(n) = attr
&& let AttrItem { args: AttrArgs::Eq { eq_span: _, expr: lit }, .. } =
n.as_ref()
&& let ast::LitKind::Str(name, ..) = lit.kind
{
// Discard the double quotes surrounding the literal.
let sp = cx
.sess()
.source_map()
.span_to_snippet(lit.span)
.ok()
.and_then(|snippet| {
let left = snippet.find('"')?;
let right = snippet.rfind('"').map(|pos| snippet.len() - pos)?;
Some(
lit.span
.with_lo(lit.span.lo() + BytePos(left as u32 + 1))
.with_hi(lit.span.hi() - BytePos(right as u32)),
)
})
.unwrap_or(lit.span);
Some(Ident::new(name, sp))
} else {
None
}
},
)
};
if let Some(ident) = &crate_ident {
self.check_snake_case(cx, "crate", ident);
}
}
fn check_generic_param(&mut self, cx: &LateContext<'_>, param: &hir::GenericParam<'_>) {
if let GenericParamKind::Lifetime { .. } = param.kind {
self.check_snake_case(cx, "lifetime", &param.name.ident());
}
}
fn check_fn(
&mut self,
cx: &LateContext<'_>,
fk: FnKind<'_>,
_: &hir::FnDecl<'_>,
_: &hir::Body<'_>,
_: Span,
id: LocalDefId,
) {
match &fk {
FnKind::Method(ident, sig, ..) => match method_context(cx, id) {
MethodLateContext::PlainImpl => {
if sig.header.abi != ExternAbi::Rust && cx.tcx.has_attr(id, sym::no_mangle) {
return;
}
self.check_snake_case(cx, "method", ident);
}
MethodLateContext::TraitAutoImpl => {
self.check_snake_case(cx, "trait method", ident);
}
_ => (),
},
FnKind::ItemFn(ident, _, header) => {
// Skip foreign-ABI #[no_mangle] functions (Issue #31924)
if header.abi != ExternAbi::Rust && cx.tcx.has_attr(id, sym::no_mangle) {
return;
}
self.check_snake_case(cx, "function", ident);
}
FnKind::Closure => (),
}
}
fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
if let hir::ItemKind::Mod(ident, _) = it.kind {
self.check_snake_case(cx, "module", &ident);
}
}
fn check_trait_item(&mut self, cx: &LateContext<'_>, item: &hir::TraitItem<'_>) {
if let hir::TraitItemKind::Fn(_, hir::TraitFn::Required(pnames)) = item.kind {
self.check_snake_case(cx, "trait method", &item.ident);
for param_name in pnames {
if let Some(param_name) = param_name {
self.check_snake_case(cx, "variable", param_name);
}
}
}
}
fn check_pat(&mut self, cx: &LateContext<'_>, p: &hir::Pat<'_>) {
if let PatKind::Binding(_, hid, ident, _) = p.kind {
if let hir::Node::PatField(field) = cx.tcx.parent_hir_node(hid) {
if !field.is_shorthand {
// Only check if a new name has been introduced, to avoid warning
// on both the struct definition and this pattern.
self.check_snake_case(cx, "variable", &ident);
}
return;
}
self.check_snake_case(cx, "variable", &ident);
}
}
fn check_struct_def(&mut self, cx: &LateContext<'_>, s: &hir::VariantData<'_>) {
for sf in s.fields() {
self.check_snake_case(cx, "structure field", &sf.ident);
}
}
}
declare_lint! {
/// The `non_upper_case_globals` lint detects static items that don't have
/// uppercase identifiers.
///
/// ### Example
///
/// ```rust
/// static max_points: i32 = 5;
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// The preferred style is for static item names to use all uppercase
/// letters such as `MAX_POINTS`.
pub NON_UPPER_CASE_GLOBALS,
Warn,
"static constants should have uppercase identifiers"
}
declare_lint_pass!(NonUpperCaseGlobals => [NON_UPPER_CASE_GLOBALS]);
impl NonUpperCaseGlobals {
fn check_upper_case(cx: &LateContext<'_>, sort: &str, ident: &Ident) {
let name = ident.name.as_str();
if name.chars().any(|c| c.is_lowercase()) {
let uc = NonSnakeCase::to_snake_case(name).to_uppercase();
// We cannot provide meaningful suggestions
// if the characters are in the category of "Lowercase Letter".
let sub = if *name != uc {
NonUpperCaseGlobalSub::Suggestion { span: ident.span, replace: uc }
} else {
NonUpperCaseGlobalSub::Label { span: ident.span }
};
cx.emit_span_lint(
NON_UPPER_CASE_GLOBALS,
ident.span,
NonUpperCaseGlobal { sort, name, sub },
);
}
}
}
impl<'tcx> LateLintPass<'tcx> for NonUpperCaseGlobals {
fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
let attrs = cx.tcx.hir_attrs(it.hir_id());
match it.kind {
hir::ItemKind::Static(ident, ..)
if !ast::attr::contains_name(attrs, sym::no_mangle) =>
{
NonUpperCaseGlobals::check_upper_case(cx, "static variable", &ident);
}
hir::ItemKind::Const(ident, ..) => {
NonUpperCaseGlobals::check_upper_case(cx, "constant", &ident);
}
_ => {}
}
}
fn check_trait_item(&mut self, cx: &LateContext<'_>, ti: &hir::TraitItem<'_>) {
if let hir::TraitItemKind::Const(..) = ti.kind {
NonUpperCaseGlobals::check_upper_case(cx, "associated constant", &ti.ident);
}
}
fn check_impl_item(&mut self, cx: &LateContext<'_>, ii: &hir::ImplItem<'_>) {
if let hir::ImplItemKind::Const(..) = ii.kind
&& !assoc_item_in_trait_impl(cx, ii)
{
NonUpperCaseGlobals::check_upper_case(cx, "associated constant", &ii.ident);
}
}
fn check_pat(&mut self, cx: &LateContext<'_>, p: &hir::Pat<'_>) {
// Lint for constants that look like binding identifiers (#7526)
if let PatKind::Expr(hir::PatExpr {
kind: PatExprKind::Path(hir::QPath::Resolved(None, path)),
..
}) = p.kind
{
if let Res::Def(DefKind::Const, _) = path.res {
if let [segment] = path.segments {
NonUpperCaseGlobals::check_upper_case(
cx,
"constant in pattern",
&segment.ident,
);
}
}
}
}
fn check_generic_param(&mut self, cx: &LateContext<'_>, param: &hir::GenericParam<'_>) {
if let GenericParamKind::Const { .. } = param.kind {
NonUpperCaseGlobals::check_upper_case(cx, "const parameter", &param.name.ident());
}
}
}
#[cfg(test)]
mod tests;