mirror of
https://github.com/rust-lang/rust.git
synced 2025-10-27 19:16:36 +00:00
These are hooks to: 1. control whether contract checks are run 2. allow 3rd party tools to intercept and reintepret the results of running contracts.
544 lines
22 KiB
Rust
544 lines
22 KiB
Rust
use either::Either;
|
|
use rustc_abi::Size;
|
|
use rustc_apfloat::{Float, FloatConvert};
|
|
use rustc_middle::mir::NullOp;
|
|
use rustc_middle::mir::interpret::{InterpResult, PointerArithmetic, Scalar};
|
|
use rustc_middle::ty::layout::{LayoutOf, TyAndLayout};
|
|
use rustc_middle::ty::{self, FloatTy, ScalarInt, Ty};
|
|
use rustc_middle::{bug, mir, span_bug};
|
|
use rustc_span::sym;
|
|
use tracing::trace;
|
|
|
|
use super::{ImmTy, InterpCx, Machine, MemPlaceMeta, interp_ok, throw_ub};
|
|
|
|
impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
|
|
fn three_way_compare<T: Ord>(&self, lhs: T, rhs: T) -> ImmTy<'tcx, M::Provenance> {
|
|
let res = Ord::cmp(&lhs, &rhs);
|
|
return ImmTy::from_ordering(res, *self.tcx);
|
|
}
|
|
|
|
fn binary_char_op(&self, bin_op: mir::BinOp, l: char, r: char) -> ImmTy<'tcx, M::Provenance> {
|
|
use rustc_middle::mir::BinOp::*;
|
|
|
|
if bin_op == Cmp {
|
|
return self.three_way_compare(l, r);
|
|
}
|
|
|
|
let res = match bin_op {
|
|
Eq => l == r,
|
|
Ne => l != r,
|
|
Lt => l < r,
|
|
Le => l <= r,
|
|
Gt => l > r,
|
|
Ge => l >= r,
|
|
_ => span_bug!(self.cur_span(), "Invalid operation on char: {:?}", bin_op),
|
|
};
|
|
ImmTy::from_bool(res, *self.tcx)
|
|
}
|
|
|
|
fn binary_bool_op(&self, bin_op: mir::BinOp, l: bool, r: bool) -> ImmTy<'tcx, M::Provenance> {
|
|
use rustc_middle::mir::BinOp::*;
|
|
|
|
let res = match bin_op {
|
|
Eq => l == r,
|
|
Ne => l != r,
|
|
Lt => l < r,
|
|
Le => l <= r,
|
|
Gt => l > r,
|
|
Ge => l >= r,
|
|
BitAnd => l & r,
|
|
BitOr => l | r,
|
|
BitXor => l ^ r,
|
|
_ => span_bug!(self.cur_span(), "Invalid operation on bool: {:?}", bin_op),
|
|
};
|
|
ImmTy::from_bool(res, *self.tcx)
|
|
}
|
|
|
|
fn binary_float_op<F: Float + FloatConvert<F> + Into<Scalar<M::Provenance>>>(
|
|
&self,
|
|
bin_op: mir::BinOp,
|
|
layout: TyAndLayout<'tcx>,
|
|
l: F,
|
|
r: F,
|
|
) -> ImmTy<'tcx, M::Provenance> {
|
|
use rustc_middle::mir::BinOp::*;
|
|
|
|
// Performs appropriate non-deterministic adjustments of NaN results.
|
|
let adjust_nan = |f: F| -> F { self.adjust_nan(f, &[l, r]) };
|
|
|
|
match bin_op {
|
|
Eq => ImmTy::from_bool(l == r, *self.tcx),
|
|
Ne => ImmTy::from_bool(l != r, *self.tcx),
|
|
Lt => ImmTy::from_bool(l < r, *self.tcx),
|
|
Le => ImmTy::from_bool(l <= r, *self.tcx),
|
|
Gt => ImmTy::from_bool(l > r, *self.tcx),
|
|
Ge => ImmTy::from_bool(l >= r, *self.tcx),
|
|
Add => ImmTy::from_scalar(adjust_nan((l + r).value).into(), layout),
|
|
Sub => ImmTy::from_scalar(adjust_nan((l - r).value).into(), layout),
|
|
Mul => ImmTy::from_scalar(adjust_nan((l * r).value).into(), layout),
|
|
Div => ImmTy::from_scalar(adjust_nan((l / r).value).into(), layout),
|
|
Rem => ImmTy::from_scalar(adjust_nan((l % r).value).into(), layout),
|
|
_ => span_bug!(self.cur_span(), "invalid float op: `{:?}`", bin_op),
|
|
}
|
|
}
|
|
|
|
fn binary_int_op(
|
|
&self,
|
|
bin_op: mir::BinOp,
|
|
left: &ImmTy<'tcx, M::Provenance>,
|
|
right: &ImmTy<'tcx, M::Provenance>,
|
|
) -> InterpResult<'tcx, ImmTy<'tcx, M::Provenance>> {
|
|
use rustc_middle::mir::BinOp::*;
|
|
|
|
// This checks the size, so that we can just assert it below.
|
|
let l = left.to_scalar_int()?;
|
|
let r = right.to_scalar_int()?;
|
|
// Prepare to convert the values to signed or unsigned form.
|
|
let l_signed = || l.to_int(left.layout.size);
|
|
let l_unsigned = || l.to_uint(left.layout.size);
|
|
let r_signed = || r.to_int(right.layout.size);
|
|
let r_unsigned = || r.to_uint(right.layout.size);
|
|
|
|
let throw_ub_on_overflow = match bin_op {
|
|
AddUnchecked => Some(sym::unchecked_add),
|
|
SubUnchecked => Some(sym::unchecked_sub),
|
|
MulUnchecked => Some(sym::unchecked_mul),
|
|
ShlUnchecked => Some(sym::unchecked_shl),
|
|
ShrUnchecked => Some(sym::unchecked_shr),
|
|
_ => None,
|
|
};
|
|
let with_overflow = bin_op.is_overflowing();
|
|
|
|
// Shift ops can have an RHS with a different numeric type.
|
|
if matches!(bin_op, Shl | ShlUnchecked | Shr | ShrUnchecked) {
|
|
let l_bits = left.layout.size.bits();
|
|
// Compute the equivalent shift modulo `size` that is in the range `0..size`. (This is
|
|
// the one MIR operator that does *not* directly map to a single LLVM operation.)
|
|
let (shift_amount, overflow) = if right.layout.backend_repr.is_signed() {
|
|
let shift_amount = r_signed();
|
|
let rem = shift_amount.rem_euclid(l_bits.into());
|
|
// `rem` is guaranteed positive, so the `unwrap` cannot fail
|
|
(u128::try_from(rem).unwrap(), rem != shift_amount)
|
|
} else {
|
|
let shift_amount = r_unsigned();
|
|
let rem = shift_amount.rem_euclid(l_bits.into());
|
|
(rem, rem != shift_amount)
|
|
};
|
|
let shift_amount = u32::try_from(shift_amount).unwrap(); // we brought this in the range `0..size` so this will always fit
|
|
// Compute the shifted result.
|
|
let result = if left.layout.backend_repr.is_signed() {
|
|
let l = l_signed();
|
|
let result = match bin_op {
|
|
Shl | ShlUnchecked => l.checked_shl(shift_amount).unwrap(),
|
|
Shr | ShrUnchecked => l.checked_shr(shift_amount).unwrap(),
|
|
_ => bug!(),
|
|
};
|
|
ScalarInt::truncate_from_int(result, left.layout.size).0
|
|
} else {
|
|
let l = l_unsigned();
|
|
let result = match bin_op {
|
|
Shl | ShlUnchecked => l.checked_shl(shift_amount).unwrap(),
|
|
Shr | ShrUnchecked => l.checked_shr(shift_amount).unwrap(),
|
|
_ => bug!(),
|
|
};
|
|
ScalarInt::truncate_from_uint(result, left.layout.size).0
|
|
};
|
|
|
|
if overflow && let Some(intrinsic) = throw_ub_on_overflow {
|
|
throw_ub!(ShiftOverflow {
|
|
intrinsic,
|
|
shift_amount: if right.layout.backend_repr.is_signed() {
|
|
Either::Right(r_signed())
|
|
} else {
|
|
Either::Left(r_unsigned())
|
|
}
|
|
});
|
|
}
|
|
|
|
return interp_ok(ImmTy::from_scalar_int(result, left.layout));
|
|
}
|
|
|
|
// For the remaining ops, the types must be the same on both sides
|
|
if left.layout.ty != right.layout.ty {
|
|
span_bug!(
|
|
self.cur_span(),
|
|
"invalid asymmetric binary op {bin_op:?}: {l:?} ({l_ty}), {r:?} ({r_ty})",
|
|
l_ty = left.layout.ty,
|
|
r_ty = right.layout.ty,
|
|
)
|
|
}
|
|
|
|
let size = left.layout.size;
|
|
|
|
// Operations that need special treatment for signed integers
|
|
if left.layout.backend_repr.is_signed() {
|
|
let op: Option<fn(&i128, &i128) -> bool> = match bin_op {
|
|
Lt => Some(i128::lt),
|
|
Le => Some(i128::le),
|
|
Gt => Some(i128::gt),
|
|
Ge => Some(i128::ge),
|
|
_ => None,
|
|
};
|
|
if let Some(op) = op {
|
|
return interp_ok(ImmTy::from_bool(op(&l_signed(), &r_signed()), *self.tcx));
|
|
}
|
|
if bin_op == Cmp {
|
|
return interp_ok(self.three_way_compare(l_signed(), r_signed()));
|
|
}
|
|
let op: Option<fn(i128, i128) -> (i128, bool)> = match bin_op {
|
|
Div if r.is_null() => throw_ub!(DivisionByZero),
|
|
Rem if r.is_null() => throw_ub!(RemainderByZero),
|
|
Div => Some(i128::overflowing_div),
|
|
Rem => Some(i128::overflowing_rem),
|
|
Add | AddUnchecked | AddWithOverflow => Some(i128::overflowing_add),
|
|
Sub | SubUnchecked | SubWithOverflow => Some(i128::overflowing_sub),
|
|
Mul | MulUnchecked | MulWithOverflow => Some(i128::overflowing_mul),
|
|
_ => None,
|
|
};
|
|
if let Some(op) = op {
|
|
let l = l_signed();
|
|
let r = r_signed();
|
|
|
|
// We need a special check for overflowing Rem and Div since they are *UB*
|
|
// on overflow, which can happen with "int_min $OP -1".
|
|
if matches!(bin_op, Rem | Div) {
|
|
if l == size.signed_int_min() && r == -1 {
|
|
if bin_op == Rem {
|
|
throw_ub!(RemainderOverflow)
|
|
} else {
|
|
throw_ub!(DivisionOverflow)
|
|
}
|
|
}
|
|
}
|
|
|
|
let (result, oflo) = op(l, r);
|
|
// This may be out-of-bounds for the result type, so we have to truncate.
|
|
// If that truncation loses any information, we have an overflow.
|
|
let (result, lossy) = ScalarInt::truncate_from_int(result, left.layout.size);
|
|
let overflow = oflo || lossy;
|
|
if overflow && let Some(intrinsic) = throw_ub_on_overflow {
|
|
throw_ub!(ArithOverflow { intrinsic });
|
|
}
|
|
let res = ImmTy::from_scalar_int(result, left.layout);
|
|
return interp_ok(if with_overflow {
|
|
let overflow = ImmTy::from_bool(overflow, *self.tcx);
|
|
ImmTy::from_pair(res, overflow, self)
|
|
} else {
|
|
res
|
|
});
|
|
}
|
|
}
|
|
// From here on it's okay to treat everything as unsigned.
|
|
let l = l_unsigned();
|
|
let r = r_unsigned();
|
|
|
|
if bin_op == Cmp {
|
|
return interp_ok(self.three_way_compare(l, r));
|
|
}
|
|
|
|
interp_ok(match bin_op {
|
|
Eq => ImmTy::from_bool(l == r, *self.tcx),
|
|
Ne => ImmTy::from_bool(l != r, *self.tcx),
|
|
|
|
Lt => ImmTy::from_bool(l < r, *self.tcx),
|
|
Le => ImmTy::from_bool(l <= r, *self.tcx),
|
|
Gt => ImmTy::from_bool(l > r, *self.tcx),
|
|
Ge => ImmTy::from_bool(l >= r, *self.tcx),
|
|
|
|
BitOr => ImmTy::from_uint(l | r, left.layout),
|
|
BitAnd => ImmTy::from_uint(l & r, left.layout),
|
|
BitXor => ImmTy::from_uint(l ^ r, left.layout),
|
|
|
|
_ => {
|
|
assert!(!left.layout.backend_repr.is_signed());
|
|
let op: fn(u128, u128) -> (u128, bool) = match bin_op {
|
|
Add | AddUnchecked | AddWithOverflow => u128::overflowing_add,
|
|
Sub | SubUnchecked | SubWithOverflow => u128::overflowing_sub,
|
|
Mul | MulUnchecked | MulWithOverflow => u128::overflowing_mul,
|
|
Div if r == 0 => throw_ub!(DivisionByZero),
|
|
Rem if r == 0 => throw_ub!(RemainderByZero),
|
|
Div => u128::overflowing_div,
|
|
Rem => u128::overflowing_rem,
|
|
_ => span_bug!(
|
|
self.cur_span(),
|
|
"invalid binary op {:?}: {:?}, {:?} (both {})",
|
|
bin_op,
|
|
left,
|
|
right,
|
|
right.layout.ty,
|
|
),
|
|
};
|
|
let (result, oflo) = op(l, r);
|
|
// Truncate to target type.
|
|
// If that truncation loses any information, we have an overflow.
|
|
let (result, lossy) = ScalarInt::truncate_from_uint(result, left.layout.size);
|
|
let overflow = oflo || lossy;
|
|
if overflow && let Some(intrinsic) = throw_ub_on_overflow {
|
|
throw_ub!(ArithOverflow { intrinsic });
|
|
}
|
|
let res = ImmTy::from_scalar_int(result, left.layout);
|
|
if with_overflow {
|
|
let overflow = ImmTy::from_bool(overflow, *self.tcx);
|
|
ImmTy::from_pair(res, overflow, self)
|
|
} else {
|
|
res
|
|
}
|
|
}
|
|
})
|
|
}
|
|
|
|
/// Computes the total size of this access, `count * elem_size`,
|
|
/// checking for overflow beyond isize::MAX.
|
|
pub fn compute_size_in_bytes(&self, elem_size: Size, count: u64) -> Option<Size> {
|
|
// `checked_mul` applies `u64` limits independent of the target pointer size... but the
|
|
// subsequent check for `max_size_of_val` means we also handle 32bit targets correctly.
|
|
// (We cannot use `Size::checked_mul` as that enforces `obj_size_bound` as the limit, which
|
|
// would be wrong here.)
|
|
elem_size
|
|
.bytes()
|
|
.checked_mul(count)
|
|
.map(Size::from_bytes)
|
|
.filter(|&total| total <= self.max_size_of_val())
|
|
}
|
|
|
|
fn binary_ptr_op(
|
|
&self,
|
|
bin_op: mir::BinOp,
|
|
left: &ImmTy<'tcx, M::Provenance>,
|
|
right: &ImmTy<'tcx, M::Provenance>,
|
|
) -> InterpResult<'tcx, ImmTy<'tcx, M::Provenance>> {
|
|
use rustc_middle::mir::BinOp::*;
|
|
|
|
match bin_op {
|
|
// Pointer ops that are always supported.
|
|
Offset => {
|
|
let ptr = left.to_scalar().to_pointer(self)?;
|
|
let pointee_ty = left.layout.ty.builtin_deref(true).unwrap();
|
|
let pointee_layout = self.layout_of(pointee_ty)?;
|
|
assert!(pointee_layout.is_sized());
|
|
|
|
// The size always fits in `i64` as it can be at most `isize::MAX`.
|
|
let pointee_size = i64::try_from(pointee_layout.size.bytes()).unwrap();
|
|
// This uses the same type as `right`, which can be `isize` or `usize`.
|
|
// `pointee_size` is guaranteed to fit into both types.
|
|
let pointee_size = ImmTy::from_int(pointee_size, right.layout);
|
|
// Multiply element size and element count.
|
|
let (val, overflowed) = self
|
|
.binary_op(mir::BinOp::MulWithOverflow, right, &pointee_size)?
|
|
.to_scalar_pair();
|
|
// This must not overflow.
|
|
if overflowed.to_bool()? {
|
|
throw_ub!(PointerArithOverflow)
|
|
}
|
|
|
|
let offset_bytes = val.to_target_isize(self)?;
|
|
if !right.layout.backend_repr.is_signed() && offset_bytes < 0 {
|
|
// We were supposed to do an unsigned offset but the result is negative -- this
|
|
// can only mean that the cast wrapped around.
|
|
throw_ub!(PointerArithOverflow)
|
|
}
|
|
let offset_ptr = self.ptr_offset_inbounds(ptr, offset_bytes)?;
|
|
interp_ok(ImmTy::from_scalar(
|
|
Scalar::from_maybe_pointer(offset_ptr, self),
|
|
left.layout,
|
|
))
|
|
}
|
|
|
|
// Fall back to machine hook so Miri can support more pointer ops.
|
|
_ => M::binary_ptr_op(self, bin_op, left, right),
|
|
}
|
|
}
|
|
|
|
/// Returns the result of the specified operation.
|
|
///
|
|
/// Whether this produces a scalar or a pair depends on the specific `bin_op`.
|
|
pub fn binary_op(
|
|
&self,
|
|
bin_op: mir::BinOp,
|
|
left: &ImmTy<'tcx, M::Provenance>,
|
|
right: &ImmTy<'tcx, M::Provenance>,
|
|
) -> InterpResult<'tcx, ImmTy<'tcx, M::Provenance>> {
|
|
trace!(
|
|
"Running binary op {:?}: {:?} ({}), {:?} ({})",
|
|
bin_op, *left, left.layout.ty, *right, right.layout.ty
|
|
);
|
|
|
|
match left.layout.ty.kind() {
|
|
ty::Char => {
|
|
assert_eq!(left.layout.ty, right.layout.ty);
|
|
let left = left.to_scalar();
|
|
let right = right.to_scalar();
|
|
interp_ok(self.binary_char_op(bin_op, left.to_char()?, right.to_char()?))
|
|
}
|
|
ty::Bool => {
|
|
assert_eq!(left.layout.ty, right.layout.ty);
|
|
let left = left.to_scalar();
|
|
let right = right.to_scalar();
|
|
interp_ok(self.binary_bool_op(bin_op, left.to_bool()?, right.to_bool()?))
|
|
}
|
|
ty::Float(fty) => {
|
|
assert_eq!(left.layout.ty, right.layout.ty);
|
|
let layout = left.layout;
|
|
let left = left.to_scalar();
|
|
let right = right.to_scalar();
|
|
interp_ok(match fty {
|
|
FloatTy::F16 => {
|
|
self.binary_float_op(bin_op, layout, left.to_f16()?, right.to_f16()?)
|
|
}
|
|
FloatTy::F32 => {
|
|
self.binary_float_op(bin_op, layout, left.to_f32()?, right.to_f32()?)
|
|
}
|
|
FloatTy::F64 => {
|
|
self.binary_float_op(bin_op, layout, left.to_f64()?, right.to_f64()?)
|
|
}
|
|
FloatTy::F128 => {
|
|
self.binary_float_op(bin_op, layout, left.to_f128()?, right.to_f128()?)
|
|
}
|
|
})
|
|
}
|
|
_ if left.layout.ty.is_integral() => {
|
|
// the RHS type can be different, e.g. for shifts -- but it has to be integral, too
|
|
assert!(
|
|
right.layout.ty.is_integral(),
|
|
"Unexpected types for BinOp: {} {:?} {}",
|
|
left.layout.ty,
|
|
bin_op,
|
|
right.layout.ty
|
|
);
|
|
|
|
self.binary_int_op(bin_op, left, right)
|
|
}
|
|
_ if left.layout.ty.is_any_ptr() => {
|
|
// The RHS type must be a `pointer` *or an integer type* (for `Offset`).
|
|
// (Even when both sides are pointers, their type might differ, see issue #91636)
|
|
assert!(
|
|
right.layout.ty.is_any_ptr() || right.layout.ty.is_integral(),
|
|
"Unexpected types for BinOp: {} {:?} {}",
|
|
left.layout.ty,
|
|
bin_op,
|
|
right.layout.ty
|
|
);
|
|
|
|
self.binary_ptr_op(bin_op, left, right)
|
|
}
|
|
_ => span_bug!(
|
|
self.cur_span(),
|
|
"Invalid MIR: bad LHS type for binop: {}",
|
|
left.layout.ty
|
|
),
|
|
}
|
|
}
|
|
|
|
/// Returns the result of the specified operation, whether it overflowed, and
|
|
/// the result type.
|
|
pub fn unary_op(
|
|
&self,
|
|
un_op: mir::UnOp,
|
|
val: &ImmTy<'tcx, M::Provenance>,
|
|
) -> InterpResult<'tcx, ImmTy<'tcx, M::Provenance>> {
|
|
use rustc_middle::mir::UnOp::*;
|
|
|
|
let layout = val.layout;
|
|
trace!("Running unary op {:?}: {:?} ({})", un_op, val, layout.ty);
|
|
|
|
match layout.ty.kind() {
|
|
ty::Bool => {
|
|
let val = val.to_scalar();
|
|
let val = val.to_bool()?;
|
|
let res = match un_op {
|
|
Not => !val,
|
|
_ => span_bug!(self.cur_span(), "Invalid bool op {:?}", un_op),
|
|
};
|
|
interp_ok(ImmTy::from_bool(res, *self.tcx))
|
|
}
|
|
ty::Float(fty) => {
|
|
let val = val.to_scalar();
|
|
if un_op != Neg {
|
|
span_bug!(self.cur_span(), "Invalid float op {:?}", un_op);
|
|
}
|
|
|
|
// No NaN adjustment here, `-` is a bitwise operation!
|
|
let res = match fty {
|
|
FloatTy::F16 => Scalar::from_f16(-val.to_f16()?),
|
|
FloatTy::F32 => Scalar::from_f32(-val.to_f32()?),
|
|
FloatTy::F64 => Scalar::from_f64(-val.to_f64()?),
|
|
FloatTy::F128 => Scalar::from_f128(-val.to_f128()?),
|
|
};
|
|
interp_ok(ImmTy::from_scalar(res, layout))
|
|
}
|
|
ty::Int(..) => {
|
|
let val = val.to_scalar().to_int(layout.size)?;
|
|
let res = match un_op {
|
|
Not => !val,
|
|
Neg => val.wrapping_neg(),
|
|
_ => span_bug!(self.cur_span(), "Invalid integer op {:?}", un_op),
|
|
};
|
|
let res = ScalarInt::truncate_from_int(res, layout.size).0;
|
|
interp_ok(ImmTy::from_scalar(res.into(), layout))
|
|
}
|
|
ty::Uint(..) => {
|
|
let val = val.to_scalar().to_uint(layout.size)?;
|
|
let res = match un_op {
|
|
Not => !val,
|
|
_ => span_bug!(self.cur_span(), "Invalid unsigned integer op {:?}", un_op),
|
|
};
|
|
let res = ScalarInt::truncate_from_uint(res, layout.size).0;
|
|
interp_ok(ImmTy::from_scalar(res.into(), layout))
|
|
}
|
|
ty::RawPtr(..) | ty::Ref(..) => {
|
|
assert_eq!(un_op, PtrMetadata);
|
|
let (_, meta) = val.to_scalar_and_meta();
|
|
interp_ok(match meta {
|
|
MemPlaceMeta::Meta(scalar) => {
|
|
let ty = un_op.ty(*self.tcx, val.layout.ty);
|
|
let layout = self.layout_of(ty)?;
|
|
ImmTy::from_scalar(scalar, layout)
|
|
}
|
|
MemPlaceMeta::None => {
|
|
let unit_layout = self.layout_of(self.tcx.types.unit)?;
|
|
ImmTy::uninit(unit_layout)
|
|
}
|
|
})
|
|
}
|
|
_ => {
|
|
bug!("Unexpected unary op argument {val:?}")
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn nullary_op(
|
|
&self,
|
|
null_op: NullOp<'tcx>,
|
|
arg_ty: Ty<'tcx>,
|
|
) -> InterpResult<'tcx, ImmTy<'tcx, M::Provenance>> {
|
|
use rustc_middle::mir::NullOp::*;
|
|
|
|
let layout = self.layout_of(arg_ty)?;
|
|
let usize_layout = || self.layout_of(self.tcx.types.usize).unwrap();
|
|
|
|
interp_ok(match null_op {
|
|
SizeOf => {
|
|
if !layout.is_sized() {
|
|
span_bug!(self.cur_span(), "unsized type for `NullaryOp::SizeOf`");
|
|
}
|
|
let val = layout.size.bytes();
|
|
ImmTy::from_uint(val, usize_layout())
|
|
}
|
|
AlignOf => {
|
|
if !layout.is_sized() {
|
|
span_bug!(self.cur_span(), "unsized type for `NullaryOp::AlignOf`");
|
|
}
|
|
let val = layout.align.abi.bytes();
|
|
ImmTy::from_uint(val, usize_layout())
|
|
}
|
|
OffsetOf(fields) => {
|
|
let val =
|
|
self.tcx.offset_of_subfield(self.typing_env, layout, fields.iter()).bytes();
|
|
ImmTy::from_uint(val, usize_layout())
|
|
}
|
|
UbChecks => ImmTy::from_bool(M::ub_checks(self)?, *self.tcx),
|
|
ContractChecks => ImmTy::from_bool(M::contract_checks(self)?, *self.tcx),
|
|
})
|
|
}
|
|
}
|