mirror of
				https://github.com/rust-lang/rust.git
				synced 2025-10-31 04:57:19 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			844 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			844 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
| use std::collections::VecDeque;
 | |
| use std::ffi::{CStr, CString};
 | |
| use std::fmt::Write;
 | |
| use std::path::Path;
 | |
| use std::sync::Once;
 | |
| use std::{ptr, slice, str};
 | |
| 
 | |
| use libc::c_int;
 | |
| use rustc_codegen_ssa::base::wants_wasm_eh;
 | |
| use rustc_codegen_ssa::codegen_attrs::check_tied_features;
 | |
| use rustc_data_structures::fx::{FxHashMap, FxHashSet};
 | |
| use rustc_data_structures::small_c_str::SmallCStr;
 | |
| use rustc_data_structures::unord::UnordSet;
 | |
| use rustc_fs_util::path_to_c_string;
 | |
| use rustc_middle::bug;
 | |
| use rustc_session::Session;
 | |
| use rustc_session::config::{PrintKind, PrintRequest};
 | |
| use rustc_span::Symbol;
 | |
| use rustc_target::spec::{MergeFunctions, PanicStrategy, SmallDataThresholdSupport};
 | |
| use rustc_target::target_features::{RUSTC_SPECIAL_FEATURES, RUSTC_SPECIFIC_FEATURES};
 | |
| 
 | |
| use crate::back::write::create_informational_target_machine;
 | |
| use crate::errors::{
 | |
|     FixedX18InvalidArch, ForbiddenCTargetFeature, PossibleFeature, UnknownCTargetFeature,
 | |
|     UnknownCTargetFeaturePrefix, UnstableCTargetFeature,
 | |
| };
 | |
| use crate::llvm;
 | |
| 
 | |
| static INIT: Once = Once::new();
 | |
| 
 | |
| pub(crate) fn init(sess: &Session) {
 | |
|     unsafe {
 | |
|         // Before we touch LLVM, make sure that multithreading is enabled.
 | |
|         if llvm::LLVMIsMultithreaded() != 1 {
 | |
|             bug!("LLVM compiled without support for threads");
 | |
|         }
 | |
|         INIT.call_once(|| {
 | |
|             configure_llvm(sess);
 | |
|         });
 | |
|     }
 | |
| }
 | |
| 
 | |
| fn require_inited() {
 | |
|     if !INIT.is_completed() {
 | |
|         bug!("LLVM is not initialized");
 | |
|     }
 | |
| }
 | |
| 
 | |
| unsafe fn configure_llvm(sess: &Session) {
 | |
|     let n_args = sess.opts.cg.llvm_args.len() + sess.target.llvm_args.len();
 | |
|     let mut llvm_c_strs = Vec::with_capacity(n_args + 1);
 | |
|     let mut llvm_args = Vec::with_capacity(n_args + 1);
 | |
| 
 | |
|     unsafe {
 | |
|         llvm::LLVMRustInstallErrorHandlers();
 | |
|     }
 | |
|     // On Windows, an LLVM assertion will open an Abort/Retry/Ignore dialog
 | |
|     // box for the purpose of launching a debugger. However, on CI this will
 | |
|     // cause it to hang until it times out, which can take several hours.
 | |
|     if std::env::var_os("CI").is_some() {
 | |
|         unsafe {
 | |
|             llvm::LLVMRustDisableSystemDialogsOnCrash();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fn llvm_arg_to_arg_name(full_arg: &str) -> &str {
 | |
|         full_arg.trim().split(|c: char| c == '=' || c.is_whitespace()).next().unwrap_or("")
 | |
|     }
 | |
| 
 | |
|     let cg_opts = sess.opts.cg.llvm_args.iter().map(AsRef::as_ref);
 | |
|     let tg_opts = sess.target.llvm_args.iter().map(AsRef::as_ref);
 | |
|     let sess_args = cg_opts.chain(tg_opts);
 | |
| 
 | |
|     let user_specified_args: FxHashSet<_> =
 | |
|         sess_args.clone().map(|s| llvm_arg_to_arg_name(s)).filter(|s| !s.is_empty()).collect();
 | |
| 
 | |
|     {
 | |
|         // This adds the given argument to LLVM. Unless `force` is true
 | |
|         // user specified arguments are *not* overridden.
 | |
|         let mut add = |arg: &str, force: bool| {
 | |
|             if force || !user_specified_args.contains(llvm_arg_to_arg_name(arg)) {
 | |
|                 let s = CString::new(arg).unwrap();
 | |
|                 llvm_args.push(s.as_ptr());
 | |
|                 llvm_c_strs.push(s);
 | |
|             }
 | |
|         };
 | |
|         // Set the llvm "program name" to make usage and invalid argument messages more clear.
 | |
|         add("rustc -Cllvm-args=\"...\" with", true);
 | |
|         if sess.opts.unstable_opts.time_llvm_passes {
 | |
|             add("-time-passes", false);
 | |
|         }
 | |
|         if sess.opts.unstable_opts.print_llvm_passes {
 | |
|             add("-debug-pass=Structure", false);
 | |
|         }
 | |
|         if sess.target.generate_arange_section
 | |
|             && !sess.opts.unstable_opts.no_generate_arange_section
 | |
|         {
 | |
|             add("-generate-arange-section", false);
 | |
|         }
 | |
| 
 | |
|         match sess.opts.unstable_opts.merge_functions.unwrap_or(sess.target.merge_functions) {
 | |
|             MergeFunctions::Disabled | MergeFunctions::Trampolines => {}
 | |
|             MergeFunctions::Aliases => {
 | |
|                 add("-mergefunc-use-aliases", false);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if wants_wasm_eh(sess) {
 | |
|             add("-wasm-enable-eh", false);
 | |
|         }
 | |
| 
 | |
|         if sess.target.os == "emscripten" && sess.panic_strategy() == PanicStrategy::Unwind {
 | |
|             add("-enable-emscripten-cxx-exceptions", false);
 | |
|         }
 | |
| 
 | |
|         // HACK(eddyb) LLVM inserts `llvm.assume` calls to preserve align attributes
 | |
|         // during inlining. Unfortunately these may block other optimizations.
 | |
|         add("-preserve-alignment-assumptions-during-inlining=false", false);
 | |
| 
 | |
|         // Use non-zero `import-instr-limit` multiplier for cold callsites.
 | |
|         add("-import-cold-multiplier=0.1", false);
 | |
| 
 | |
|         if sess.print_llvm_stats() {
 | |
|             add("-stats", false);
 | |
|         }
 | |
| 
 | |
|         for arg in sess_args {
 | |
|             add(&(*arg), true);
 | |
|         }
 | |
| 
 | |
|         match (
 | |
|             sess.opts.unstable_opts.small_data_threshold,
 | |
|             sess.target.small_data_threshold_support(),
 | |
|         ) {
 | |
|             // Set up the small-data optimization limit for architectures that use
 | |
|             // an LLVM argument to control this.
 | |
|             (Some(threshold), SmallDataThresholdSupport::LlvmArg(arg)) => {
 | |
|                 add(&format!("--{arg}={threshold}"), false)
 | |
|             }
 | |
|             _ => (),
 | |
|         };
 | |
|     }
 | |
| 
 | |
|     if sess.opts.unstable_opts.llvm_time_trace {
 | |
|         unsafe { llvm::LLVMRustTimeTraceProfilerInitialize() };
 | |
|     }
 | |
| 
 | |
|     rustc_llvm::initialize_available_targets();
 | |
| 
 | |
|     unsafe { llvm::LLVMRustSetLLVMOptions(llvm_args.len() as c_int, llvm_args.as_ptr()) };
 | |
| }
 | |
| 
 | |
| pub(crate) fn time_trace_profiler_finish(file_name: &Path) {
 | |
|     unsafe {
 | |
|         let file_name = path_to_c_string(file_name);
 | |
|         llvm::LLVMRustTimeTraceProfilerFinish(file_name.as_ptr());
 | |
|     }
 | |
| }
 | |
| 
 | |
| enum TargetFeatureFoldStrength<'a> {
 | |
|     // The feature is only tied when enabling the feature, disabling
 | |
|     // this feature shouldn't disable the tied feature.
 | |
|     EnableOnly(&'a str),
 | |
|     // The feature is tied for both enabling and disabling this feature.
 | |
|     Both(&'a str),
 | |
| }
 | |
| 
 | |
| impl<'a> TargetFeatureFoldStrength<'a> {
 | |
|     fn as_str(&self) -> &'a str {
 | |
|         match self {
 | |
|             TargetFeatureFoldStrength::EnableOnly(feat) => feat,
 | |
|             TargetFeatureFoldStrength::Both(feat) => feat,
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| pub(crate) struct LLVMFeature<'a> {
 | |
|     llvm_feature_name: &'a str,
 | |
|     dependency: Option<TargetFeatureFoldStrength<'a>>,
 | |
| }
 | |
| 
 | |
| impl<'a> LLVMFeature<'a> {
 | |
|     fn new(llvm_feature_name: &'a str) -> Self {
 | |
|         Self { llvm_feature_name, dependency: None }
 | |
|     }
 | |
| 
 | |
|     fn with_dependency(
 | |
|         llvm_feature_name: &'a str,
 | |
|         dependency: TargetFeatureFoldStrength<'a>,
 | |
|     ) -> Self {
 | |
|         Self { llvm_feature_name, dependency: Some(dependency) }
 | |
|     }
 | |
| 
 | |
|     fn contains(&self, feat: &str) -> bool {
 | |
|         self.iter().any(|dep| dep == feat)
 | |
|     }
 | |
| 
 | |
|     fn iter(&'a self) -> impl Iterator<Item = &'a str> {
 | |
|         let dependencies = self.dependency.iter().map(|feat| feat.as_str());
 | |
|         std::iter::once(self.llvm_feature_name).chain(dependencies)
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<'a> IntoIterator for LLVMFeature<'a> {
 | |
|     type Item = &'a str;
 | |
|     type IntoIter = impl Iterator<Item = &'a str>;
 | |
| 
 | |
|     fn into_iter(self) -> Self::IntoIter {
 | |
|         let dependencies = self.dependency.into_iter().map(|feat| feat.as_str());
 | |
|         std::iter::once(self.llvm_feature_name).chain(dependencies)
 | |
|     }
 | |
| }
 | |
| 
 | |
| // WARNING: the features after applying `to_llvm_features` must be known
 | |
| // to LLVM or the feature detection code will walk past the end of the feature
 | |
| // array, leading to crashes.
 | |
| //
 | |
| // To find a list of LLVM's names, see llvm-project/llvm/lib/Target/{ARCH}/*.td
 | |
| // where `{ARCH}` is the architecture name. Look for instances of `SubtargetFeature`.
 | |
| //
 | |
| // Check the current rustc fork of LLVM in the repo at https://github.com/rust-lang/llvm-project/.
 | |
| // The commit in use can be found via the `llvm-project` submodule in
 | |
| // https://github.com/rust-lang/rust/tree/master/src Though note that Rust can also be build with
 | |
| // an external precompiled version of LLVM which might lead to failures if the oldest tested /
 | |
| // supported LLVM version doesn't yet support the relevant intrinsics.
 | |
| pub(crate) fn to_llvm_features<'a>(sess: &Session, s: &'a str) -> Option<LLVMFeature<'a>> {
 | |
|     let arch = if sess.target.arch == "x86_64" {
 | |
|         "x86"
 | |
|     } else if sess.target.arch == "arm64ec" {
 | |
|         "aarch64"
 | |
|     } else if sess.target.arch == "sparc64" {
 | |
|         "sparc"
 | |
|     } else if sess.target.arch == "powerpc64" {
 | |
|         "powerpc"
 | |
|     } else {
 | |
|         &*sess.target.arch
 | |
|     };
 | |
|     match (arch, s) {
 | |
|         ("x86", "sse4.2") => Some(LLVMFeature::with_dependency(
 | |
|             "sse4.2",
 | |
|             TargetFeatureFoldStrength::EnableOnly("crc32"),
 | |
|         )),
 | |
|         ("x86", "pclmulqdq") => Some(LLVMFeature::new("pclmul")),
 | |
|         ("x86", "rdrand") => Some(LLVMFeature::new("rdrnd")),
 | |
|         ("x86", "bmi1") => Some(LLVMFeature::new("bmi")),
 | |
|         ("x86", "cmpxchg16b") => Some(LLVMFeature::new("cx16")),
 | |
|         ("x86", "lahfsahf") => Some(LLVMFeature::new("sahf")),
 | |
|         ("aarch64", "rcpc2") => Some(LLVMFeature::new("rcpc-immo")),
 | |
|         ("aarch64", "dpb") => Some(LLVMFeature::new("ccpp")),
 | |
|         ("aarch64", "dpb2") => Some(LLVMFeature::new("ccdp")),
 | |
|         ("aarch64", "frintts") => Some(LLVMFeature::new("fptoint")),
 | |
|         ("aarch64", "fcma") => Some(LLVMFeature::new("complxnum")),
 | |
|         ("aarch64", "pmuv3") => Some(LLVMFeature::new("perfmon")),
 | |
|         ("aarch64", "paca") => Some(LLVMFeature::new("pauth")),
 | |
|         ("aarch64", "pacg") => Some(LLVMFeature::new("pauth")),
 | |
|         ("aarch64", "pauth-lr") if get_version().0 < 19 => None,
 | |
|         // Before LLVM 20 those two features were packaged together as b16b16
 | |
|         ("aarch64", "sve-b16b16") if get_version().0 < 20 => Some(LLVMFeature::new("b16b16")),
 | |
|         ("aarch64", "sme-b16b16") if get_version().0 < 20 => Some(LLVMFeature::new("b16b16")),
 | |
|         ("aarch64", "flagm2") => Some(LLVMFeature::new("altnzcv")),
 | |
|         // Rust ties fp and neon together.
 | |
|         ("aarch64", "neon") => {
 | |
|             Some(LLVMFeature::with_dependency("neon", TargetFeatureFoldStrength::Both("fp-armv8")))
 | |
|         }
 | |
|         // In LLVM neon implicitly enables fp, but we manually enable
 | |
|         // neon when a feature only implicitly enables fp
 | |
|         ("aarch64", "fhm") => Some(LLVMFeature::new("fp16fml")),
 | |
|         ("aarch64", "fp16") => Some(LLVMFeature::new("fullfp16")),
 | |
|         // Filter out features that are not supported by the current LLVM version
 | |
|         ("aarch64", "fpmr") if get_version().0 != 18 => None,
 | |
|         // In LLVM 18, `unaligned-scalar-mem` was merged with `unaligned-vector-mem` into a single
 | |
|         // feature called `fast-unaligned-access`. In LLVM 19, it was split back out.
 | |
|         ("riscv32" | "riscv64", "unaligned-scalar-mem") if get_version().0 == 18 => {
 | |
|             Some(LLVMFeature::new("fast-unaligned-access"))
 | |
|         }
 | |
|         // Filter out features that are not supported by the current LLVM version
 | |
|         ("riscv32" | "riscv64", "zaamo") if get_version().0 < 19 => None,
 | |
|         ("riscv32" | "riscv64", "zabha") if get_version().0 < 19 => None,
 | |
|         ("riscv32" | "riscv64", "zalrsc") if get_version().0 < 19 => None,
 | |
|         // Enable the evex512 target feature if an avx512 target feature is enabled.
 | |
|         ("x86", s) if s.starts_with("avx512") => {
 | |
|             Some(LLVMFeature::with_dependency(s, TargetFeatureFoldStrength::EnableOnly("evex512")))
 | |
|         }
 | |
|         // Support for `wide-arithmetic` will first land in LLVM 20 as part of
 | |
|         // llvm/llvm-project#111598
 | |
|         ("wasm32" | "wasm64", "wide-arithmetic") if get_version() < (20, 0, 0) => None,
 | |
|         ("sparc", "leoncasa") => Some(LLVMFeature::new("hasleoncasa")),
 | |
|         // In LLVM 19, there is no `v8plus` feature and `v9` means "SPARC-V9 instruction available and SPARC-V8+ ABI used".
 | |
|         // https://github.com/llvm/llvm-project/blob/llvmorg-19.1.0/llvm/lib/Target/Sparc/MCTargetDesc/SparcELFObjectWriter.cpp#L27-L28
 | |
|         // Before LLVM 19, there is no `v8plus` feature and `v9` means "SPARC-V9 instruction available".
 | |
|         // https://github.com/llvm/llvm-project/blob/llvmorg-18.1.0/llvm/lib/Target/Sparc/MCTargetDesc/SparcELFObjectWriter.cpp#L26
 | |
|         ("sparc", "v8plus") if get_version().0 == 19 => Some(LLVMFeature::new("v9")),
 | |
|         ("sparc", "v8plus") if get_version().0 < 19 => None,
 | |
|         ("powerpc", "power8-crypto") => Some(LLVMFeature::new("crypto")),
 | |
|         (_, s) => Some(LLVMFeature::new(s)),
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// Used to generate cfg variables and apply features.
 | |
| /// Must express features in the way Rust understands them.
 | |
| ///
 | |
| /// We do not have to worry about RUSTC_SPECIFIC_FEATURES here, those are handled outside codegen.
 | |
| pub fn target_features_cfg(sess: &Session, allow_unstable: bool) -> Vec<Symbol> {
 | |
|     let mut features: FxHashSet<Symbol> = Default::default();
 | |
| 
 | |
|     // Add base features for the target.
 | |
|     // We do *not* add the -Ctarget-features there, and instead duplicate the logic for that below.
 | |
|     // The reason is that if LLVM considers a feature implied but we do not, we don't want that to
 | |
|     // show up in `cfg`. That way, `cfg` is entirely under our control -- except for the handling of
 | |
|     // the target CPU, that is still expanded to target features (with all their implied features) by
 | |
|     // LLVM.
 | |
|     let target_machine = create_informational_target_machine(sess, true);
 | |
|     // Compute which of the known target features are enabled in the 'base' target machine.
 | |
|     // We only consider "supported" features; "forbidden" features are not reflected in `cfg` as of now.
 | |
|     features.extend(
 | |
|         sess.target
 | |
|             .rust_target_features()
 | |
|             .iter()
 | |
|             .filter(|(_, gate, _)| gate.in_cfg())
 | |
|             .filter(|(feature, _, _)| {
 | |
|                 // skip checking special features, as LLVM may not understand them
 | |
|                 if RUSTC_SPECIAL_FEATURES.contains(feature) {
 | |
|                     return true;
 | |
|                 }
 | |
|                 // check that all features in a given smallvec are enabled
 | |
|                 if let Some(feat) = to_llvm_features(sess, feature) {
 | |
|                     for llvm_feature in feat {
 | |
|                         let cstr = SmallCStr::new(llvm_feature);
 | |
|                         if !unsafe { llvm::LLVMRustHasFeature(&target_machine, cstr.as_ptr()) } {
 | |
|                             return false;
 | |
|                         }
 | |
|                     }
 | |
|                     true
 | |
|                 } else {
 | |
|                     false
 | |
|                 }
 | |
|             })
 | |
|             .map(|(feature, _, _)| Symbol::intern(feature)),
 | |
|     );
 | |
| 
 | |
|     // Add enabled features
 | |
|     for (enabled, feature) in
 | |
|         sess.opts.cg.target_feature.split(',').filter_map(|s| match s.chars().next() {
 | |
|             Some('+') => Some((true, Symbol::intern(&s[1..]))),
 | |
|             Some('-') => Some((false, Symbol::intern(&s[1..]))),
 | |
|             _ => None,
 | |
|         })
 | |
|     {
 | |
|         if enabled {
 | |
|             // Also add all transitively implied features.
 | |
| 
 | |
|             // We don't care about the order in `features` since the only thing we use it for is the
 | |
|             // `features.contains` below.
 | |
|             #[allow(rustc::potential_query_instability)]
 | |
|             features.extend(
 | |
|                 sess.target
 | |
|                     .implied_target_features(std::iter::once(feature.as_str()))
 | |
|                     .iter()
 | |
|                     .map(|s| Symbol::intern(s)),
 | |
|             );
 | |
|         } else {
 | |
|             // Remove transitively reverse-implied features.
 | |
| 
 | |
|             // We don't care about the order in `features` since the only thing we use it for is the
 | |
|             // `features.contains` below.
 | |
|             #[allow(rustc::potential_query_instability)]
 | |
|             features.retain(|f| {
 | |
|                 if sess
 | |
|                     .target
 | |
|                     .implied_target_features(std::iter::once(f.as_str()))
 | |
|                     .contains(&feature.as_str())
 | |
|                 {
 | |
|                     // If `f` if implies `feature`, then `!feature` implies `!f`, so we have to
 | |
|                     // remove `f`. (This is the standard logical contraposition principle.)
 | |
|                     false
 | |
|                 } else {
 | |
|                     // We can keep `f`.
 | |
|                     true
 | |
|                 }
 | |
|             });
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Filter enabled features based on feature gates
 | |
|     sess.target
 | |
|         .rust_target_features()
 | |
|         .iter()
 | |
|         .filter(|(_, gate, _)| gate.in_cfg())
 | |
|         .filter_map(|(feature, gate, _)| {
 | |
|             if sess.is_nightly_build() || allow_unstable || gate.requires_nightly().is_none() {
 | |
|                 Some(*feature)
 | |
|             } else {
 | |
|                 None
 | |
|             }
 | |
|         })
 | |
|         .filter(|feature| features.contains(&Symbol::intern(feature)))
 | |
|         .map(|feature| Symbol::intern(feature))
 | |
|         .collect()
 | |
| }
 | |
| 
 | |
| pub(crate) fn print_version() {
 | |
|     let (major, minor, patch) = get_version();
 | |
|     println!("LLVM version: {major}.{minor}.{patch}");
 | |
| }
 | |
| 
 | |
| pub(crate) fn get_version() -> (u32, u32, u32) {
 | |
|     // Can be called without initializing LLVM
 | |
|     unsafe {
 | |
|         (llvm::LLVMRustVersionMajor(), llvm::LLVMRustVersionMinor(), llvm::LLVMRustVersionPatch())
 | |
|     }
 | |
| }
 | |
| 
 | |
| pub(crate) fn print_passes() {
 | |
|     // Can be called without initializing LLVM
 | |
|     unsafe {
 | |
|         llvm::LLVMRustPrintPasses();
 | |
|     }
 | |
| }
 | |
| 
 | |
| fn llvm_target_features(tm: &llvm::TargetMachine) -> Vec<(&str, &str)> {
 | |
|     let len = unsafe { llvm::LLVMRustGetTargetFeaturesCount(tm) };
 | |
|     let mut ret = Vec::with_capacity(len);
 | |
|     for i in 0..len {
 | |
|         unsafe {
 | |
|             let mut feature = ptr::null();
 | |
|             let mut desc = ptr::null();
 | |
|             llvm::LLVMRustGetTargetFeature(tm, i, &mut feature, &mut desc);
 | |
|             if feature.is_null() || desc.is_null() {
 | |
|                 bug!("LLVM returned a `null` target feature string");
 | |
|             }
 | |
|             let feature = CStr::from_ptr(feature).to_str().unwrap_or_else(|e| {
 | |
|                 bug!("LLVM returned a non-utf8 feature string: {}", e);
 | |
|             });
 | |
|             let desc = CStr::from_ptr(desc).to_str().unwrap_or_else(|e| {
 | |
|                 bug!("LLVM returned a non-utf8 feature string: {}", e);
 | |
|             });
 | |
|             ret.push((feature, desc));
 | |
|         }
 | |
|     }
 | |
|     ret
 | |
| }
 | |
| 
 | |
| pub(crate) fn print(req: &PrintRequest, out: &mut String, sess: &Session) {
 | |
|     require_inited();
 | |
|     let tm = create_informational_target_machine(sess, false);
 | |
|     match req.kind {
 | |
|         PrintKind::TargetCPUs => print_target_cpus(sess, &tm, out),
 | |
|         PrintKind::TargetFeatures => print_target_features(sess, &tm, out),
 | |
|         _ => bug!("rustc_codegen_llvm can't handle print request: {:?}", req),
 | |
|     }
 | |
| }
 | |
| 
 | |
| fn print_target_cpus(sess: &Session, tm: &llvm::TargetMachine, out: &mut String) {
 | |
|     let cpu_names = llvm::build_string(|s| unsafe {
 | |
|         llvm::LLVMRustPrintTargetCPUs(&tm, s);
 | |
|     })
 | |
|     .unwrap();
 | |
| 
 | |
|     struct Cpu<'a> {
 | |
|         cpu_name: &'a str,
 | |
|         remark: String,
 | |
|     }
 | |
|     // Compare CPU against current target to label the default.
 | |
|     let target_cpu = handle_native(&sess.target.cpu);
 | |
|     let make_remark = |cpu_name| {
 | |
|         if cpu_name == target_cpu {
 | |
|             // FIXME(#132514): This prints the LLVM target string, which can be
 | |
|             // different from the Rust target string. Is that intended?
 | |
|             let target = &sess.target.llvm_target;
 | |
|             format!(
 | |
|                 " - This is the default target CPU for the current build target (currently {target})."
 | |
|             )
 | |
|         } else {
 | |
|             "".to_owned()
 | |
|         }
 | |
|     };
 | |
|     let mut cpus = cpu_names
 | |
|         .lines()
 | |
|         .map(|cpu_name| Cpu { cpu_name, remark: make_remark(cpu_name) })
 | |
|         .collect::<VecDeque<_>>();
 | |
| 
 | |
|     // Only print the "native" entry when host and target are the same arch,
 | |
|     // since otherwise it could be wrong or misleading.
 | |
|     if sess.host.arch == sess.target.arch {
 | |
|         let host = get_host_cpu_name();
 | |
|         cpus.push_front(Cpu {
 | |
|             cpu_name: "native",
 | |
|             remark: format!(" - Select the CPU of the current host (currently {host})."),
 | |
|         });
 | |
|     }
 | |
| 
 | |
|     let max_name_width = cpus.iter().map(|cpu| cpu.cpu_name.len()).max().unwrap_or(0);
 | |
|     writeln!(out, "Available CPUs for this target:").unwrap();
 | |
|     for Cpu { cpu_name, remark } in cpus {
 | |
|         // Only pad the CPU name if there's a remark to print after it.
 | |
|         let width = if remark.is_empty() { 0 } else { max_name_width };
 | |
|         writeln!(out, "    {cpu_name:<width$}{remark}").unwrap();
 | |
|     }
 | |
| }
 | |
| 
 | |
| fn print_target_features(sess: &Session, tm: &llvm::TargetMachine, out: &mut String) {
 | |
|     let mut llvm_target_features = llvm_target_features(tm);
 | |
|     let mut known_llvm_target_features = FxHashSet::<&'static str>::default();
 | |
|     let mut rustc_target_features = sess
 | |
|         .target
 | |
|         .rust_target_features()
 | |
|         .iter()
 | |
|         .filter_map(|(feature, gate, _implied)| {
 | |
|             if !gate.in_cfg() {
 | |
|                 // Only list (experimentally) supported features.
 | |
|                 return None;
 | |
|             }
 | |
|             // LLVM asserts that these are sorted. LLVM and Rust both use byte comparison for these
 | |
|             // strings.
 | |
|             let llvm_feature = to_llvm_features(sess, *feature)?.llvm_feature_name;
 | |
|             let desc =
 | |
|                 match llvm_target_features.binary_search_by_key(&llvm_feature, |(f, _d)| f).ok() {
 | |
|                     Some(index) => {
 | |
|                         known_llvm_target_features.insert(llvm_feature);
 | |
|                         llvm_target_features[index].1
 | |
|                     }
 | |
|                     None => "",
 | |
|                 };
 | |
| 
 | |
|             Some((*feature, desc))
 | |
|         })
 | |
|         .collect::<Vec<_>>();
 | |
| 
 | |
|     // Since we add this at the end ...
 | |
|     rustc_target_features.extend_from_slice(&[(
 | |
|         "crt-static",
 | |
|         "Enables C Run-time Libraries to be statically linked",
 | |
|     )]);
 | |
|     // ... we need to sort the list again.
 | |
|     rustc_target_features.sort();
 | |
| 
 | |
|     llvm_target_features.retain(|(f, _d)| !known_llvm_target_features.contains(f));
 | |
| 
 | |
|     let max_feature_len = llvm_target_features
 | |
|         .iter()
 | |
|         .chain(rustc_target_features.iter())
 | |
|         .map(|(feature, _desc)| feature.len())
 | |
|         .max()
 | |
|         .unwrap_or(0);
 | |
| 
 | |
|     writeln!(out, "Features supported by rustc for this target:").unwrap();
 | |
|     for (feature, desc) in &rustc_target_features {
 | |
|         writeln!(out, "    {feature:max_feature_len$} - {desc}.").unwrap();
 | |
|     }
 | |
|     writeln!(out, "\nCode-generation features supported by LLVM for this target:").unwrap();
 | |
|     for (feature, desc) in &llvm_target_features {
 | |
|         writeln!(out, "    {feature:max_feature_len$} - {desc}.").unwrap();
 | |
|     }
 | |
|     if llvm_target_features.is_empty() {
 | |
|         writeln!(out, "    Target features listing is not supported by this LLVM version.")
 | |
|             .unwrap();
 | |
|     }
 | |
|     writeln!(out, "\nUse +feature to enable a feature, or -feature to disable it.").unwrap();
 | |
|     writeln!(out, "For example, rustc -C target-cpu=mycpu -C target-feature=+feature1,-feature2\n")
 | |
|         .unwrap();
 | |
|     writeln!(out, "Code-generation features cannot be used in cfg or #[target_feature],").unwrap();
 | |
|     writeln!(out, "and may be renamed or removed in a future version of LLVM or rustc.\n").unwrap();
 | |
| }
 | |
| 
 | |
| /// Returns the host CPU name, according to LLVM.
 | |
| fn get_host_cpu_name() -> &'static str {
 | |
|     let mut len = 0;
 | |
|     // SAFETY: The underlying C++ global function returns a `StringRef` that
 | |
|     // isn't tied to any particular backing buffer, so it must be 'static.
 | |
|     let slice: &'static [u8] = unsafe {
 | |
|         let ptr = llvm::LLVMRustGetHostCPUName(&mut len);
 | |
|         assert!(!ptr.is_null());
 | |
|         slice::from_raw_parts(ptr, len)
 | |
|     };
 | |
|     str::from_utf8(slice).expect("host CPU name should be UTF-8")
 | |
| }
 | |
| 
 | |
| /// If the given string is `"native"`, returns the host CPU name according to
 | |
| /// LLVM. Otherwise, the string is returned as-is.
 | |
| fn handle_native(cpu_name: &str) -> &str {
 | |
|     match cpu_name {
 | |
|         "native" => get_host_cpu_name(),
 | |
|         _ => cpu_name,
 | |
|     }
 | |
| }
 | |
| 
 | |
| pub(crate) fn target_cpu(sess: &Session) -> &str {
 | |
|     let cpu_name = sess.opts.cg.target_cpu.as_deref().unwrap_or_else(|| &sess.target.cpu);
 | |
|     handle_native(cpu_name)
 | |
| }
 | |
| 
 | |
| /// The list of LLVM features computed from CLI flags (`-Ctarget-cpu`, `-Ctarget-feature`,
 | |
| /// `--target` and similar).
 | |
| pub(crate) fn global_llvm_features(
 | |
|     sess: &Session,
 | |
|     diagnostics: bool,
 | |
|     only_base_features: bool,
 | |
| ) -> Vec<String> {
 | |
|     // Features that come earlier are overridden by conflicting features later in the string.
 | |
|     // Typically we'll want more explicit settings to override the implicit ones, so:
 | |
|     //
 | |
|     // * Features from -Ctarget-cpu=*; are overridden by [^1]
 | |
|     // * Features implied by --target; are overridden by
 | |
|     // * Features from -Ctarget-feature; are overridden by
 | |
|     // * function specific features.
 | |
|     //
 | |
|     // [^1]: target-cpu=native is handled here, other target-cpu values are handled implicitly
 | |
|     // through LLVM TargetMachine implementation.
 | |
|     //
 | |
|     // FIXME(nagisa): it isn't clear what's the best interaction between features implied by
 | |
|     // `-Ctarget-cpu` and `--target` are. On one hand, you'd expect CLI arguments to always
 | |
|     // override anything that's implicit, so e.g. when there's no `--target` flag, features implied
 | |
|     // the host target are overridden by `-Ctarget-cpu=*`. On the other hand, what about when both
 | |
|     // `--target` and `-Ctarget-cpu=*` are specified? Both then imply some target features and both
 | |
|     // flags are specified by the user on the CLI. It isn't as clear-cut which order of precedence
 | |
|     // should be taken in cases like these.
 | |
|     let mut features = vec![];
 | |
| 
 | |
|     // -Ctarget-cpu=native
 | |
|     match sess.opts.cg.target_cpu {
 | |
|         Some(ref s) if s == "native" => {
 | |
|             // We have already figured out the actual CPU name with `LLVMRustGetHostCPUName` and set
 | |
|             // that for LLVM, so the features implied by that CPU name will be available everywhere.
 | |
|             // However, that is not sufficient: e.g. `skylake` alone is not sufficient to tell if
 | |
|             // some of the instructions are available or not. So we have to also explicitly ask for
 | |
|             // the exact set of features available on the host, and enable all of them.
 | |
|             let features_string = unsafe {
 | |
|                 let ptr = llvm::LLVMGetHostCPUFeatures();
 | |
|                 let features_string = if !ptr.is_null() {
 | |
|                     CStr::from_ptr(ptr)
 | |
|                         .to_str()
 | |
|                         .unwrap_or_else(|e| {
 | |
|                             bug!("LLVM returned a non-utf8 features string: {}", e);
 | |
|                         })
 | |
|                         .to_owned()
 | |
|                 } else {
 | |
|                     bug!("could not allocate host CPU features, LLVM returned a `null` string");
 | |
|                 };
 | |
| 
 | |
|                 llvm::LLVMDisposeMessage(ptr);
 | |
| 
 | |
|                 features_string
 | |
|             };
 | |
|             features.extend(features_string.split(',').map(String::from));
 | |
|         }
 | |
|         Some(_) | None => {}
 | |
|     };
 | |
| 
 | |
|     // Features implied by an implicit or explicit `--target`.
 | |
|     features.extend(
 | |
|         sess.target
 | |
|             .features
 | |
|             .split(',')
 | |
|             .filter(|v| !v.is_empty())
 | |
|             // Drop +v8plus feature introduced in LLVM 20.
 | |
|             .filter(|v| *v != "+v8plus" || get_version() >= (20, 0, 0))
 | |
|             .map(String::from),
 | |
|     );
 | |
| 
 | |
|     if wants_wasm_eh(sess) && sess.panic_strategy() == PanicStrategy::Unwind {
 | |
|         features.push("+exception-handling".into());
 | |
|     }
 | |
| 
 | |
|     // -Ctarget-features
 | |
|     if !only_base_features {
 | |
|         let known_features = sess.target.rust_target_features();
 | |
|         // Will only be filled when `diagnostics` is set!
 | |
|         let mut featsmap = FxHashMap::default();
 | |
| 
 | |
|         // Ensure that all ABI-required features are enabled, and the ABI-forbidden ones
 | |
|         // are disabled.
 | |
|         let (abi_enable, abi_disable) = sess.target.abi_required_features();
 | |
|         let abi_enable_set = FxHashSet::from_iter(abi_enable.iter().copied());
 | |
|         let abi_disable_set = FxHashSet::from_iter(abi_disable.iter().copied());
 | |
| 
 | |
|         // Compute implied features
 | |
|         let mut all_rust_features = vec![];
 | |
|         for feature in sess.opts.cg.target_feature.split(',') {
 | |
|             if let Some(feature) = feature.strip_prefix('+') {
 | |
|                 all_rust_features.extend(
 | |
|                     UnordSet::from(sess.target.implied_target_features(std::iter::once(feature)))
 | |
|                         .to_sorted_stable_ord()
 | |
|                         .iter()
 | |
|                         .map(|&&s| (true, s)),
 | |
|                 )
 | |
|             } else if let Some(feature) = feature.strip_prefix('-') {
 | |
|                 // FIXME: Why do we not remove implied features on "-" here?
 | |
|                 // We do the equivalent above in `target_features_cfg`.
 | |
|                 // See <https://github.com/rust-lang/rust/issues/134792>.
 | |
|                 all_rust_features.push((false, feature));
 | |
|             } else if !feature.is_empty() {
 | |
|                 if diagnostics {
 | |
|                     sess.dcx().emit_warn(UnknownCTargetFeaturePrefix { feature });
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         // Remove features that are meant for rustc, not LLVM.
 | |
|         all_rust_features.retain(|(_, feature)| {
 | |
|             // Retain if it is not a rustc feature
 | |
|             !RUSTC_SPECIFIC_FEATURES.contains(feature)
 | |
|         });
 | |
| 
 | |
|         // Check feature validity.
 | |
|         if diagnostics {
 | |
|             for &(enable, feature) in &all_rust_features {
 | |
|                 let feature_state = known_features.iter().find(|&&(v, _, _)| v == feature);
 | |
|                 match feature_state {
 | |
|                     None => {
 | |
|                         let rust_feature =
 | |
|                             known_features.iter().find_map(|&(rust_feature, _, _)| {
 | |
|                                 let llvm_features = to_llvm_features(sess, rust_feature)?;
 | |
|                                 if llvm_features.contains(feature)
 | |
|                                     && !llvm_features.contains(rust_feature)
 | |
|                                 {
 | |
|                                     Some(rust_feature)
 | |
|                                 } else {
 | |
|                                     None
 | |
|                                 }
 | |
|                             });
 | |
|                         let unknown_feature = if let Some(rust_feature) = rust_feature {
 | |
|                             UnknownCTargetFeature {
 | |
|                                 feature,
 | |
|                                 rust_feature: PossibleFeature::Some { rust_feature },
 | |
|                             }
 | |
|                         } else {
 | |
|                             UnknownCTargetFeature { feature, rust_feature: PossibleFeature::None }
 | |
|                         };
 | |
|                         sess.dcx().emit_warn(unknown_feature);
 | |
|                     }
 | |
|                     Some((_, stability, _)) => {
 | |
|                         if let Err(reason) = stability.toggle_allowed() {
 | |
|                             sess.dcx().emit_warn(ForbiddenCTargetFeature {
 | |
|                                 feature,
 | |
|                                 enabled: if enable { "enabled" } else { "disabled" },
 | |
|                                 reason,
 | |
|                             });
 | |
|                         } else if stability.requires_nightly().is_some() {
 | |
|                             // An unstable feature. Warn about using it. It makes little sense
 | |
|                             // to hard-error here since we just warn about fully unknown
 | |
|                             // features above.
 | |
|                             sess.dcx().emit_warn(UnstableCTargetFeature { feature });
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 // Ensure that the features we enable/disable are compatible with the ABI.
 | |
|                 if enable {
 | |
|                     if abi_disable_set.contains(feature) {
 | |
|                         sess.dcx().emit_warn(ForbiddenCTargetFeature {
 | |
|                             feature,
 | |
|                             enabled: "enabled",
 | |
|                             reason: "this feature is incompatible with the target ABI",
 | |
|                         });
 | |
|                     }
 | |
|                 } else {
 | |
|                     // FIXME: we have to request implied features here since
 | |
|                     // negative features do not handle implied features above.
 | |
|                     #[allow(rustc::potential_query_instability)] // order does not matter
 | |
|                     for &required in abi_enable_set.iter() {
 | |
|                         let implied =
 | |
|                             sess.target.implied_target_features(std::iter::once(required));
 | |
|                         if implied.contains(feature) {
 | |
|                             sess.dcx().emit_warn(ForbiddenCTargetFeature {
 | |
|                                 feature,
 | |
|                                 enabled: "disabled",
 | |
|                                 reason: "this feature is required by the target ABI",
 | |
|                             });
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 // FIXME(nagisa): figure out how to not allocate a full hashset here.
 | |
|                 featsmap.insert(feature, enable);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // To be sure the ABI-relevant features are all in the right state, we explicitly
 | |
|         // (un)set them here. This means if the target spec sets those features wrong,
 | |
|         // we will silently correct them rather than silently producing wrong code.
 | |
|         // (The target sanity check tries to catch this, but we can't know which features are
 | |
|         // enabled in LLVM by default so we can't be fully sure about that check.)
 | |
|         // We add these at the beginning of the list so that `-Ctarget-features` can
 | |
|         // still override it... that's unsound, but more compatible with past behavior.
 | |
|         all_rust_features.splice(
 | |
|             0..0,
 | |
|             abi_enable.iter().map(|&f| (true, f)).chain(abi_disable.iter().map(|&f| (false, f))),
 | |
|         );
 | |
| 
 | |
|         // Translate this into LLVM features.
 | |
|         let feats = all_rust_features
 | |
|             .iter()
 | |
|             .filter_map(|&(enable, feature)| {
 | |
|                 let enable_disable = if enable { '+' } else { '-' };
 | |
|                 // We run through `to_llvm_features` when
 | |
|                 // passing requests down to LLVM. This means that all in-language
 | |
|                 // features also work on the command line instead of having two
 | |
|                 // different names when the LLVM name and the Rust name differ.
 | |
|                 let llvm_feature = to_llvm_features(sess, feature)?;
 | |
| 
 | |
|                 Some(
 | |
|                     std::iter::once(format!(
 | |
|                         "{}{}",
 | |
|                         enable_disable, llvm_feature.llvm_feature_name
 | |
|                     ))
 | |
|                     .chain(llvm_feature.dependency.into_iter().filter_map(
 | |
|                         move |feat| match (enable, feat) {
 | |
|                             (_, TargetFeatureFoldStrength::Both(f))
 | |
|                             | (true, TargetFeatureFoldStrength::EnableOnly(f)) => {
 | |
|                                 Some(format!("{enable_disable}{f}"))
 | |
|                             }
 | |
|                             _ => None,
 | |
|                         },
 | |
|                     )),
 | |
|                 )
 | |
|             })
 | |
|             .flatten();
 | |
|         features.extend(feats);
 | |
| 
 | |
|         if diagnostics && let Some(f) = check_tied_features(sess, &featsmap) {
 | |
|             sess.dcx().emit_err(rustc_codegen_ssa::errors::TargetFeatureDisableOrEnable {
 | |
|                 features: f,
 | |
|                 span: None,
 | |
|                 missing_features: None,
 | |
|             });
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // -Zfixed-x18
 | |
|     if sess.opts.unstable_opts.fixed_x18 {
 | |
|         if sess.target.arch != "aarch64" {
 | |
|             sess.dcx().emit_fatal(FixedX18InvalidArch { arch: &sess.target.arch });
 | |
|         } else {
 | |
|             features.push("+reserve-x18".into());
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     features
 | |
| }
 | |
| 
 | |
| pub(crate) fn tune_cpu(sess: &Session) -> Option<&str> {
 | |
|     let name = sess.opts.unstable_opts.tune_cpu.as_ref()?;
 | |
|     Some(handle_native(name))
 | |
| }
 | 
