Samuel Tardieu 323e23005a Fix ICE when validating transmuting ZST to inhabited enum
MIR validation attempts to determine the number of bytes needed to
represent the size of the source type to compute the discriminant for
the inhabited target enum. For a ZST source, there is no source data to
use as a discriminant so no proper runtime check can be generated.

Since that should never be possible, insert a delayed bug to ensure the
problem has been properly reported to the user by the type checker.
2025-08-23 19:25:58 +02:00

538 lines
20 KiB
Rust

use rustc_abi::{Scalar, Size, TagEncoding, Variants, WrappingRange};
use rustc_hir::LangItem;
use rustc_index::IndexVec;
use rustc_middle::bug;
use rustc_middle::mir::visit::Visitor;
use rustc_middle::mir::*;
use rustc_middle::ty::layout::PrimitiveExt;
use rustc_middle::ty::{self, Ty, TyCtxt, TypingEnv};
use rustc_session::Session;
use tracing::debug;
/// This pass inserts checks for a valid enum discriminant where they are most
/// likely to find UB, because checking everywhere like Miri would generate too
/// much MIR.
pub(super) struct CheckEnums;
impl<'tcx> crate::MirPass<'tcx> for CheckEnums {
fn is_enabled(&self, sess: &Session) -> bool {
sess.ub_checks()
}
fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
// This pass emits new panics. If for whatever reason we do not have a panic
// implementation, running this pass may cause otherwise-valid code to not compile.
if tcx.lang_items().get(LangItem::PanicImpl).is_none() {
return;
}
let typing_env = body.typing_env(tcx);
let basic_blocks = body.basic_blocks.as_mut();
let local_decls = &mut body.local_decls;
// This operation inserts new blocks. Each insertion changes the Location for all
// statements/blocks after. Iterating or visiting the MIR in order would require updating
// our current location after every insertion. By iterating backwards, we dodge this issue:
// The only Locations that an insertion changes have already been handled.
for block in basic_blocks.indices().rev() {
for statement_index in (0..basic_blocks[block].statements.len()).rev() {
let location = Location { block, statement_index };
let statement = &basic_blocks[block].statements[statement_index];
let source_info = statement.source_info;
let mut finder = EnumFinder::new(tcx, local_decls, typing_env);
finder.visit_statement(statement, location);
for check in finder.into_found_enums() {
debug!("Inserting enum check");
let new_block = split_block(basic_blocks, location);
match check {
EnumCheckType::Direct { op_size, .. }
| EnumCheckType::WithNiche { op_size, .. }
if op_size.bytes() == 0 =>
{
// It is never valid to use a ZST as a discriminant for an inhabited enum, but that will
// have been caught by the type checker. Do nothing but ensure that a bug has been signaled.
tcx.dcx().span_delayed_bug(
source_info.span,
"cannot build enum discriminant from zero-sized type",
);
basic_blocks[block].terminator = Some(Terminator {
source_info,
kind: TerminatorKind::Goto { target: new_block },
});
}
EnumCheckType::Direct { source_op, discr, op_size, valid_discrs } => {
insert_direct_enum_check(
tcx,
local_decls,
basic_blocks,
block,
source_op,
discr,
op_size,
valid_discrs,
source_info,
new_block,
)
}
EnumCheckType::Uninhabited => insert_uninhabited_enum_check(
tcx,
local_decls,
&mut basic_blocks[block],
source_info,
new_block,
),
EnumCheckType::WithNiche {
source_op,
discr,
op_size,
offset,
valid_range,
} => insert_niche_check(
tcx,
local_decls,
&mut basic_blocks[block],
source_op,
valid_range,
discr,
op_size,
offset,
source_info,
new_block,
),
}
}
}
}
}
fn is_required(&self) -> bool {
true
}
}
/// Represent the different kind of enum checks we can insert.
enum EnumCheckType<'tcx> {
/// We know we try to create an uninhabited enum from an inhabited variant.
Uninhabited,
/// We know the enum does no niche optimizations and can thus easily compute
/// the valid discriminants.
Direct {
source_op: Operand<'tcx>,
discr: TyAndSize<'tcx>,
op_size: Size,
valid_discrs: Vec<u128>,
},
/// We try to construct an enum that has a niche.
WithNiche {
source_op: Operand<'tcx>,
discr: TyAndSize<'tcx>,
op_size: Size,
offset: Size,
valid_range: WrappingRange,
},
}
#[derive(Debug, Copy, Clone)]
struct TyAndSize<'tcx> {
pub ty: Ty<'tcx>,
pub size: Size,
}
/// A [Visitor] that finds the construction of enums and evaluates which checks
/// we should apply.
struct EnumFinder<'a, 'tcx> {
tcx: TyCtxt<'tcx>,
local_decls: &'a mut LocalDecls<'tcx>,
typing_env: TypingEnv<'tcx>,
enums: Vec<EnumCheckType<'tcx>>,
}
impl<'a, 'tcx> EnumFinder<'a, 'tcx> {
fn new(
tcx: TyCtxt<'tcx>,
local_decls: &'a mut LocalDecls<'tcx>,
typing_env: TypingEnv<'tcx>,
) -> Self {
EnumFinder { tcx, local_decls, typing_env, enums: Vec::new() }
}
/// Returns the found enum creations and which checks should be inserted.
fn into_found_enums(self) -> Vec<EnumCheckType<'tcx>> {
self.enums
}
}
impl<'a, 'tcx> Visitor<'tcx> for EnumFinder<'a, 'tcx> {
fn visit_rvalue(&mut self, rvalue: &Rvalue<'tcx>, location: Location) {
if let Rvalue::Cast(CastKind::Transmute, op, ty) = rvalue {
let ty::Adt(adt_def, _) = ty.kind() else {
return;
};
if !adt_def.is_enum() {
return;
}
let Ok(enum_layout) = self.tcx.layout_of(self.typing_env.as_query_input(*ty)) else {
return;
};
let Ok(op_layout) = self
.tcx
.layout_of(self.typing_env.as_query_input(op.ty(self.local_decls, self.tcx)))
else {
return;
};
match enum_layout.variants {
Variants::Empty if op_layout.is_uninhabited() => return,
// An empty enum that tries to be constructed from an inhabited value, this
// is never correct.
Variants::Empty => {
// The enum layout is uninhabited but we construct it from sth inhabited.
// This is always UB.
self.enums.push(EnumCheckType::Uninhabited);
}
// Construction of Single value enums is always fine.
Variants::Single { .. } => {}
// Construction of an enum with multiple variants but no niche optimizations.
Variants::Multiple {
tag_encoding: TagEncoding::Direct,
tag: Scalar::Initialized { value, .. },
..
} => {
let valid_discrs =
adt_def.discriminants(self.tcx).map(|(_, discr)| discr.val).collect();
let discr =
TyAndSize { ty: value.to_int_ty(self.tcx), size: value.size(&self.tcx) };
self.enums.push(EnumCheckType::Direct {
source_op: op.to_copy(),
discr,
op_size: op_layout.size,
valid_discrs,
});
}
// Construction of an enum with multiple variants and niche optimizations.
Variants::Multiple {
tag_encoding: TagEncoding::Niche { .. },
tag: Scalar::Initialized { value, valid_range, .. },
tag_field,
..
} => {
let discr =
TyAndSize { ty: value.to_int_ty(self.tcx), size: value.size(&self.tcx) };
self.enums.push(EnumCheckType::WithNiche {
source_op: op.to_copy(),
discr,
op_size: op_layout.size,
offset: enum_layout.fields.offset(tag_field.as_usize()),
valid_range,
});
}
_ => return,
}
self.super_rvalue(rvalue, location);
}
}
}
fn split_block(
basic_blocks: &mut IndexVec<BasicBlock, BasicBlockData<'_>>,
location: Location,
) -> BasicBlock {
let block_data = &mut basic_blocks[location.block];
// Drain every statement after this one and move the current terminator to a new basic block.
let new_block = BasicBlockData::new_stmts(
block_data.statements.split_off(location.statement_index),
block_data.terminator.take(),
block_data.is_cleanup,
);
basic_blocks.push(new_block)
}
/// Inserts the cast of an operand (any type) to a u128 value that holds the discriminant value.
fn insert_discr_cast_to_u128<'tcx>(
tcx: TyCtxt<'tcx>,
local_decls: &mut IndexVec<Local, LocalDecl<'tcx>>,
block_data: &mut BasicBlockData<'tcx>,
source_op: Operand<'tcx>,
discr: TyAndSize<'tcx>,
op_size: Size,
offset: Option<Size>,
source_info: SourceInfo,
) -> Place<'tcx> {
let get_ty_for_size = |tcx: TyCtxt<'tcx>, size: Size| -> Ty<'tcx> {
match size.bytes() {
1 => tcx.types.u8,
2 => tcx.types.u16,
4 => tcx.types.u32,
8 => tcx.types.u64,
16 => tcx.types.u128,
invalid => bug!("Found discriminant with invalid size, has {} bytes", invalid),
}
};
let (cast_kind, discr_ty_bits) = if discr.size.bytes() < op_size.bytes() {
// The discriminant is less wide than the operand, cast the operand into
// [MaybeUninit; N] and then index into it.
let mu = Ty::new_maybe_uninit(tcx, tcx.types.u8);
let array_len = op_size.bytes();
let mu_array_ty = Ty::new_array(tcx, mu, array_len);
let mu_array =
local_decls.push(LocalDecl::with_source_info(mu_array_ty, source_info)).into();
let rvalue = Rvalue::Cast(CastKind::Transmute, source_op, mu_array_ty);
block_data
.statements
.push(Statement::new(source_info, StatementKind::Assign(Box::new((mu_array, rvalue)))));
// Index into the array of MaybeUninit to get something that is actually
// as wide as the discriminant.
let offset = offset.unwrap_or(Size::ZERO);
let smaller_mu_array = mu_array.project_deeper(
&[ProjectionElem::Subslice {
from: offset.bytes(),
to: offset.bytes() + discr.size.bytes(),
from_end: false,
}],
tcx,
);
(CastKind::Transmute, Operand::Copy(smaller_mu_array))
} else {
let operand_int_ty = get_ty_for_size(tcx, op_size);
let op_as_int =
local_decls.push(LocalDecl::with_source_info(operand_int_ty, source_info)).into();
let rvalue = Rvalue::Cast(CastKind::Transmute, source_op, operand_int_ty);
block_data.statements.push(Statement::new(
source_info,
StatementKind::Assign(Box::new((op_as_int, rvalue))),
));
(CastKind::IntToInt, Operand::Copy(op_as_int))
};
// Cast the resulting value to the actual discriminant integer type.
let rvalue = Rvalue::Cast(cast_kind, discr_ty_bits, discr.ty);
let discr_in_discr_ty =
local_decls.push(LocalDecl::with_source_info(discr.ty, source_info)).into();
block_data.statements.push(Statement::new(
source_info,
StatementKind::Assign(Box::new((discr_in_discr_ty, rvalue))),
));
// Cast the discriminant to a u128 (base for comparisons of enum discriminants).
let const_u128 = Ty::new_uint(tcx, ty::UintTy::U128);
let rvalue = Rvalue::Cast(CastKind::IntToInt, Operand::Copy(discr_in_discr_ty), const_u128);
let discr = local_decls.push(LocalDecl::with_source_info(const_u128, source_info)).into();
block_data
.statements
.push(Statement::new(source_info, StatementKind::Assign(Box::new((discr, rvalue)))));
discr
}
fn insert_direct_enum_check<'tcx>(
tcx: TyCtxt<'tcx>,
local_decls: &mut IndexVec<Local, LocalDecl<'tcx>>,
basic_blocks: &mut IndexVec<BasicBlock, BasicBlockData<'tcx>>,
current_block: BasicBlock,
source_op: Operand<'tcx>,
discr: TyAndSize<'tcx>,
op_size: Size,
discriminants: Vec<u128>,
source_info: SourceInfo,
new_block: BasicBlock,
) {
// Insert a new target block that is branched to in case of an invalid discriminant.
let invalid_discr_block_data = BasicBlockData::new(None, false);
let invalid_discr_block = basic_blocks.push(invalid_discr_block_data);
let block_data = &mut basic_blocks[current_block];
let discr_place = insert_discr_cast_to_u128(
tcx,
local_decls,
block_data,
source_op,
discr,
op_size,
None,
source_info,
);
// Mask out the bits of the discriminant type.
let mask = discr.size.unsigned_int_max();
let discr_masked =
local_decls.push(LocalDecl::with_source_info(tcx.types.u128, source_info)).into();
let rvalue = Rvalue::BinaryOp(
BinOp::BitAnd,
Box::new((
Operand::Copy(discr_place),
Operand::Constant(Box::new(ConstOperand {
span: source_info.span,
user_ty: None,
const_: Const::Val(ConstValue::from_u128(mask), tcx.types.u128),
})),
)),
);
block_data
.statements
.push(Statement::new(source_info, StatementKind::Assign(Box::new((discr_masked, rvalue)))));
// Branch based on the discriminant value.
block_data.terminator = Some(Terminator {
source_info,
kind: TerminatorKind::SwitchInt {
discr: Operand::Copy(discr_masked),
targets: SwitchTargets::new(
discriminants
.into_iter()
.map(|discr_val| (discr.size.truncate(discr_val), new_block)),
invalid_discr_block,
),
},
});
// Abort in case of an invalid enum discriminant.
basic_blocks[invalid_discr_block].terminator = Some(Terminator {
source_info,
kind: TerminatorKind::Assert {
cond: Operand::Constant(Box::new(ConstOperand {
span: source_info.span,
user_ty: None,
const_: Const::Val(ConstValue::from_bool(false), tcx.types.bool),
})),
expected: true,
target: new_block,
msg: Box::new(AssertKind::InvalidEnumConstruction(Operand::Copy(discr_masked))),
// This calls panic_invalid_enum_construction, which is #[rustc_nounwind].
// We never want to insert an unwind into unsafe code, because unwinding could
// make a failing UB check turn into much worse UB when we start unwinding.
unwind: UnwindAction::Unreachable,
},
});
}
fn insert_uninhabited_enum_check<'tcx>(
tcx: TyCtxt<'tcx>,
local_decls: &mut IndexVec<Local, LocalDecl<'tcx>>,
block_data: &mut BasicBlockData<'tcx>,
source_info: SourceInfo,
new_block: BasicBlock,
) {
let is_ok: Place<'_> =
local_decls.push(LocalDecl::with_source_info(tcx.types.bool, source_info)).into();
block_data.statements.push(Statement::new(
source_info,
StatementKind::Assign(Box::new((
is_ok,
Rvalue::Use(Operand::Constant(Box::new(ConstOperand {
span: source_info.span,
user_ty: None,
const_: Const::Val(ConstValue::from_bool(false), tcx.types.bool),
}))),
))),
));
block_data.terminator = Some(Terminator {
source_info,
kind: TerminatorKind::Assert {
cond: Operand::Copy(is_ok),
expected: true,
target: new_block,
msg: Box::new(AssertKind::InvalidEnumConstruction(Operand::Constant(Box::new(
ConstOperand {
span: source_info.span,
user_ty: None,
const_: Const::Val(ConstValue::from_u128(0), tcx.types.u128),
},
)))),
// This calls panic_invalid_enum_construction, which is #[rustc_nounwind].
// We never want to insert an unwind into unsafe code, because unwinding could
// make a failing UB check turn into much worse UB when we start unwinding.
unwind: UnwindAction::Unreachable,
},
});
}
fn insert_niche_check<'tcx>(
tcx: TyCtxt<'tcx>,
local_decls: &mut IndexVec<Local, LocalDecl<'tcx>>,
block_data: &mut BasicBlockData<'tcx>,
source_op: Operand<'tcx>,
valid_range: WrappingRange,
discr: TyAndSize<'tcx>,
op_size: Size,
offset: Size,
source_info: SourceInfo,
new_block: BasicBlock,
) {
let discr = insert_discr_cast_to_u128(
tcx,
local_decls,
block_data,
source_op,
discr,
op_size,
Some(offset),
source_info,
);
// Compare the discriminant against the valid_range.
let start_const = Operand::Constant(Box::new(ConstOperand {
span: source_info.span,
user_ty: None,
const_: Const::Val(ConstValue::from_u128(valid_range.start), tcx.types.u128),
}));
let end_start_diff_const = Operand::Constant(Box::new(ConstOperand {
span: source_info.span,
user_ty: None,
const_: Const::Val(
ConstValue::from_u128(u128::wrapping_sub(valid_range.end, valid_range.start)),
tcx.types.u128,
),
}));
let discr_diff: Place<'_> =
local_decls.push(LocalDecl::with_source_info(tcx.types.u128, source_info)).into();
block_data.statements.push(Statement::new(
source_info,
StatementKind::Assign(Box::new((
discr_diff,
Rvalue::BinaryOp(BinOp::Sub, Box::new((Operand::Copy(discr), start_const))),
))),
));
let is_ok: Place<'_> =
local_decls.push(LocalDecl::with_source_info(tcx.types.bool, source_info)).into();
block_data.statements.push(Statement::new(
source_info,
StatementKind::Assign(Box::new((
is_ok,
Rvalue::BinaryOp(
// This is a `WrappingRange`, so make sure to get the wrapping right.
BinOp::Le,
Box::new((Operand::Copy(discr_diff), end_start_diff_const)),
),
))),
));
block_data.terminator = Some(Terminator {
source_info,
kind: TerminatorKind::Assert {
cond: Operand::Copy(is_ok),
expected: true,
target: new_block,
msg: Box::new(AssertKind::InvalidEnumConstruction(Operand::Copy(discr))),
// This calls panic_invalid_enum_construction, which is #[rustc_nounwind].
// We never want to insert an unwind into unsafe code, because unwinding could
// make a failing UB check turn into much worse UB when we start unwinding.
unwind: UnwindAction::Unreachable,
},
});
}