mirror of
https://github.com/rust-lang/rust.git
synced 2025-12-01 03:18:04 +00:00
1714 lines
67 KiB
Rust
1714 lines
67 KiB
Rust
use std::cell::{Cell, RefCell};
|
|
use std::fmt;
|
|
|
|
pub use at::DefineOpaqueTypes;
|
|
use free_regions::RegionRelations;
|
|
pub use freshen::TypeFreshener;
|
|
use lexical_region_resolve::LexicalRegionResolutions;
|
|
pub use lexical_region_resolve::RegionResolutionError;
|
|
pub use opaque_types::{OpaqueTypeStorage, OpaqueTypeStorageEntries, OpaqueTypeTable};
|
|
use region_constraints::{
|
|
GenericKind, RegionConstraintCollector, RegionConstraintStorage, VarInfos, VerifyBound,
|
|
};
|
|
pub use relate::StructurallyRelateAliases;
|
|
pub use relate::combine::PredicateEmittingRelation;
|
|
use rustc_data_structures::fx::{FxHashSet, FxIndexMap};
|
|
use rustc_data_structures::undo_log::{Rollback, UndoLogs};
|
|
use rustc_data_structures::unify as ut;
|
|
use rustc_errors::{DiagCtxtHandle, ErrorGuaranteed};
|
|
use rustc_hir as hir;
|
|
use rustc_hir::def_id::{DefId, LocalDefId};
|
|
use rustc_macros::extension;
|
|
pub use rustc_macros::{TypeFoldable, TypeVisitable};
|
|
use rustc_middle::bug;
|
|
use rustc_middle::infer::canonical::{CanonicalQueryInput, CanonicalVarValues};
|
|
use rustc_middle::mir::ConstraintCategory;
|
|
use rustc_middle::traits::select;
|
|
use rustc_middle::traits::solve::Goal;
|
|
use rustc_middle::ty::error::{ExpectedFound, TypeError};
|
|
use rustc_middle::ty::{
|
|
self, BoundVarReplacerDelegate, ConstVid, FloatVid, GenericArg, GenericArgKind, GenericArgs,
|
|
GenericArgsRef, GenericParamDefKind, InferConst, IntVid, OpaqueHiddenType, OpaqueTypeKey,
|
|
PseudoCanonicalInput, Term, TermKind, Ty, TyCtxt, TyVid, TypeFoldable, TypeFolder,
|
|
TypeSuperFoldable, TypeVisitable, TypeVisitableExt, TypingEnv, TypingMode, fold_regions,
|
|
};
|
|
use rustc_span::{DUMMY_SP, Span, Symbol};
|
|
use snapshot::undo_log::InferCtxtUndoLogs;
|
|
use tracing::{debug, instrument};
|
|
use type_variable::TypeVariableOrigin;
|
|
|
|
use crate::infer::snapshot::undo_log::UndoLog;
|
|
use crate::infer::unify_key::{ConstVariableOrigin, ConstVariableValue, ConstVidKey};
|
|
use crate::traits::{
|
|
self, ObligationCause, ObligationInspector, PredicateObligation, PredicateObligations,
|
|
TraitEngine,
|
|
};
|
|
|
|
pub mod at;
|
|
pub mod canonical;
|
|
mod context;
|
|
mod free_regions;
|
|
mod freshen;
|
|
mod lexical_region_resolve;
|
|
mod opaque_types;
|
|
pub mod outlives;
|
|
mod projection;
|
|
pub mod region_constraints;
|
|
pub mod relate;
|
|
pub mod resolve;
|
|
pub(crate) mod snapshot;
|
|
mod type_variable;
|
|
mod unify_key;
|
|
|
|
/// `InferOk<'tcx, ()>` is used a lot. It may seem like a useless wrapper
|
|
/// around `PredicateObligations<'tcx>`, but it has one important property:
|
|
/// because `InferOk` is marked with `#[must_use]`, if you have a method
|
|
/// `InferCtxt::f` that returns `InferResult<'tcx, ()>` and you call it with
|
|
/// `infcx.f()?;` you'll get a warning about the obligations being discarded
|
|
/// without use, which is probably unintentional and has been a source of bugs
|
|
/// in the past.
|
|
#[must_use]
|
|
#[derive(Debug)]
|
|
pub struct InferOk<'tcx, T> {
|
|
pub value: T,
|
|
pub obligations: PredicateObligations<'tcx>,
|
|
}
|
|
pub type InferResult<'tcx, T> = Result<InferOk<'tcx, T>, TypeError<'tcx>>;
|
|
|
|
pub(crate) type FixupResult<T> = Result<T, FixupError>; // "fixup result"
|
|
|
|
pub(crate) type UnificationTable<'a, 'tcx, T> = ut::UnificationTable<
|
|
ut::InPlace<T, &'a mut ut::UnificationStorage<T>, &'a mut InferCtxtUndoLogs<'tcx>>,
|
|
>;
|
|
|
|
/// This type contains all the things within `InferCtxt` that sit within a
|
|
/// `RefCell` and are involved with taking/rolling back snapshots. Snapshot
|
|
/// operations are hot enough that we want only one call to `borrow_mut` per
|
|
/// call to `start_snapshot` and `rollback_to`.
|
|
#[derive(Clone)]
|
|
pub struct InferCtxtInner<'tcx> {
|
|
undo_log: InferCtxtUndoLogs<'tcx>,
|
|
|
|
/// Cache for projections.
|
|
///
|
|
/// This cache is snapshotted along with the infcx.
|
|
projection_cache: traits::ProjectionCacheStorage<'tcx>,
|
|
|
|
/// We instantiate `UnificationTable` with `bounds<Ty>` because the types
|
|
/// that might instantiate a general type variable have an order,
|
|
/// represented by its upper and lower bounds.
|
|
type_variable_storage: type_variable::TypeVariableStorage<'tcx>,
|
|
|
|
/// Map from const parameter variable to the kind of const it represents.
|
|
const_unification_storage: ut::UnificationTableStorage<ConstVidKey<'tcx>>,
|
|
|
|
/// Map from integral variable to the kind of integer it represents.
|
|
int_unification_storage: ut::UnificationTableStorage<ty::IntVid>,
|
|
|
|
/// Map from floating variable to the kind of float it represents.
|
|
float_unification_storage: ut::UnificationTableStorage<ty::FloatVid>,
|
|
|
|
/// Tracks the set of region variables and the constraints between them.
|
|
///
|
|
/// This is initially `Some(_)` but when
|
|
/// `resolve_regions_and_report_errors` is invoked, this gets set to `None`
|
|
/// -- further attempts to perform unification, etc., may fail if new
|
|
/// region constraints would've been added.
|
|
region_constraint_storage: Option<RegionConstraintStorage<'tcx>>,
|
|
|
|
/// A set of constraints that regionck must validate.
|
|
///
|
|
/// Each constraint has the form `T:'a`, meaning "some type `T` must
|
|
/// outlive the lifetime 'a". These constraints derive from
|
|
/// instantiated type parameters. So if you had a struct defined
|
|
/// like the following:
|
|
/// ```ignore (illustrative)
|
|
/// struct Foo<T: 'static> { ... }
|
|
/// ```
|
|
/// In some expression `let x = Foo { ... }`, it will
|
|
/// instantiate the type parameter `T` with a fresh type `$0`. At
|
|
/// the same time, it will record a region obligation of
|
|
/// `$0: 'static`. This will get checked later by regionck. (We
|
|
/// can't generally check these things right away because we have
|
|
/// to wait until types are resolved.)
|
|
///
|
|
/// These are stored in a map keyed to the id of the innermost
|
|
/// enclosing fn body / static initializer expression. This is
|
|
/// because the location where the obligation was incurred can be
|
|
/// relevant with respect to which sublifetime assumptions are in
|
|
/// place. The reason that we store under the fn-id, and not
|
|
/// something more fine-grained, is so that it is easier for
|
|
/// regionck to be sure that it has found *all* the region
|
|
/// obligations (otherwise, it's easy to fail to walk to a
|
|
/// particular node-id).
|
|
///
|
|
/// Before running `resolve_regions_and_report_errors`, the creator
|
|
/// of the inference context is expected to invoke
|
|
/// [`InferCtxt::process_registered_region_obligations`]
|
|
/// for each body-id in this map, which will process the
|
|
/// obligations within. This is expected to be done 'late enough'
|
|
/// that all type inference variables have been bound and so forth.
|
|
region_obligations: Vec<TypeOutlivesConstraint<'tcx>>,
|
|
|
|
/// The outlives bounds that we assume must hold about placeholders that
|
|
/// come from instantiating the binder of coroutine-witnesses. These bounds
|
|
/// are deduced from the well-formedness of the witness's types, and are
|
|
/// necessary because of the way we anonymize the regions in a coroutine,
|
|
/// which may cause types to no longer be considered well-formed.
|
|
region_assumptions: Vec<ty::ArgOutlivesPredicate<'tcx>>,
|
|
|
|
/// `-Znext-solver`: Successfully proven goals during HIR typeck which
|
|
/// reference inference variables and get reproven in case MIR type check
|
|
/// fails to prove something.
|
|
///
|
|
/// See the documentation of `InferCtxt::in_hir_typeck` for more details.
|
|
hir_typeck_potentially_region_dependent_goals: Vec<PredicateObligation<'tcx>>,
|
|
|
|
/// Caches for opaque type inference.
|
|
opaque_type_storage: OpaqueTypeStorage<'tcx>,
|
|
}
|
|
|
|
impl<'tcx> InferCtxtInner<'tcx> {
|
|
fn new() -> InferCtxtInner<'tcx> {
|
|
InferCtxtInner {
|
|
undo_log: InferCtxtUndoLogs::default(),
|
|
|
|
projection_cache: Default::default(),
|
|
type_variable_storage: Default::default(),
|
|
const_unification_storage: Default::default(),
|
|
int_unification_storage: Default::default(),
|
|
float_unification_storage: Default::default(),
|
|
region_constraint_storage: Some(Default::default()),
|
|
region_obligations: Default::default(),
|
|
region_assumptions: Default::default(),
|
|
hir_typeck_potentially_region_dependent_goals: Default::default(),
|
|
opaque_type_storage: Default::default(),
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
pub fn region_obligations(&self) -> &[TypeOutlivesConstraint<'tcx>] {
|
|
&self.region_obligations
|
|
}
|
|
|
|
#[inline]
|
|
pub fn region_assumptions(&self) -> &[ty::ArgOutlivesPredicate<'tcx>] {
|
|
&self.region_assumptions
|
|
}
|
|
|
|
#[inline]
|
|
pub fn projection_cache(&mut self) -> traits::ProjectionCache<'_, 'tcx> {
|
|
self.projection_cache.with_log(&mut self.undo_log)
|
|
}
|
|
|
|
#[inline]
|
|
fn try_type_variables_probe_ref(
|
|
&self,
|
|
vid: ty::TyVid,
|
|
) -> Option<&type_variable::TypeVariableValue<'tcx>> {
|
|
// Uses a read-only view of the unification table, this way we don't
|
|
// need an undo log.
|
|
self.type_variable_storage.eq_relations_ref().try_probe_value(vid)
|
|
}
|
|
|
|
#[inline]
|
|
fn type_variables(&mut self) -> type_variable::TypeVariableTable<'_, 'tcx> {
|
|
self.type_variable_storage.with_log(&mut self.undo_log)
|
|
}
|
|
|
|
#[inline]
|
|
pub fn opaque_types(&mut self) -> opaque_types::OpaqueTypeTable<'_, 'tcx> {
|
|
self.opaque_type_storage.with_log(&mut self.undo_log)
|
|
}
|
|
|
|
#[inline]
|
|
fn int_unification_table(&mut self) -> UnificationTable<'_, 'tcx, ty::IntVid> {
|
|
self.int_unification_storage.with_log(&mut self.undo_log)
|
|
}
|
|
|
|
#[inline]
|
|
fn float_unification_table(&mut self) -> UnificationTable<'_, 'tcx, ty::FloatVid> {
|
|
self.float_unification_storage.with_log(&mut self.undo_log)
|
|
}
|
|
|
|
#[inline]
|
|
fn const_unification_table(&mut self) -> UnificationTable<'_, 'tcx, ConstVidKey<'tcx>> {
|
|
self.const_unification_storage.with_log(&mut self.undo_log)
|
|
}
|
|
|
|
#[inline]
|
|
pub fn unwrap_region_constraints(&mut self) -> RegionConstraintCollector<'_, 'tcx> {
|
|
self.region_constraint_storage
|
|
.as_mut()
|
|
.expect("region constraints already solved")
|
|
.with_log(&mut self.undo_log)
|
|
}
|
|
}
|
|
|
|
pub struct InferCtxt<'tcx> {
|
|
pub tcx: TyCtxt<'tcx>,
|
|
|
|
/// The mode of this inference context, see the struct documentation
|
|
/// for more details.
|
|
typing_mode: TypingMode<'tcx>,
|
|
|
|
/// Whether this inference context should care about region obligations in
|
|
/// the root universe. Most notably, this is used during HIR typeck as region
|
|
/// solving is left to borrowck instead.
|
|
pub considering_regions: bool,
|
|
/// `-Znext-solver`: Whether this inference context is used by HIR typeck. If so, we
|
|
/// need to make sure we don't rely on region identity in the trait solver or when
|
|
/// relating types. This is necessary as borrowck starts by replacing each occurrence of a
|
|
/// free region with a unique inference variable. If HIR typeck ends up depending on two
|
|
/// regions being equal we'd get unexpected mismatches between HIR typeck and MIR typeck,
|
|
/// resulting in an ICE.
|
|
///
|
|
/// The trait solver sometimes depends on regions being identical. As a concrete example
|
|
/// the trait solver ignores other candidates if one candidate exists without any constraints.
|
|
/// The goal `&'a u32: Equals<&'a u32>` has no constraints right now. If we replace each
|
|
/// occurrence of `'a` with a unique region the goal now equates these regions. See
|
|
/// the tests in trait-system-refactor-initiative#27 for concrete examples.
|
|
///
|
|
/// We handle this by *uniquifying* region when canonicalizing root goals during HIR typeck.
|
|
/// This is still insufficient as inference variables may *hide* region variables, so e.g.
|
|
/// `dyn TwoSuper<?x, ?x>: Super<?x>` may hold but MIR typeck could end up having to prove
|
|
/// `dyn TwoSuper<&'0 (), &'1 ()>: Super<&'2 ()>` which is now ambiguous. Because of this we
|
|
/// stash all successfully proven goals which reference inference variables and then reprove
|
|
/// them after writeback.
|
|
pub in_hir_typeck: bool,
|
|
|
|
/// If set, this flag causes us to skip the 'leak check' during
|
|
/// higher-ranked subtyping operations. This flag is a temporary one used
|
|
/// to manage the removal of the leak-check: for the time being, we still run the
|
|
/// leak-check, but we issue warnings.
|
|
skip_leak_check: bool,
|
|
|
|
pub inner: RefCell<InferCtxtInner<'tcx>>,
|
|
|
|
/// Once region inference is done, the values for each variable.
|
|
lexical_region_resolutions: RefCell<Option<LexicalRegionResolutions<'tcx>>>,
|
|
|
|
/// Caches the results of trait selection. This cache is used
|
|
/// for things that depends on inference variables or placeholders.
|
|
pub selection_cache: select::SelectionCache<'tcx, ty::ParamEnv<'tcx>>,
|
|
|
|
/// Caches the results of trait evaluation. This cache is used
|
|
/// for things that depends on inference variables or placeholders.
|
|
pub evaluation_cache: select::EvaluationCache<'tcx, ty::ParamEnv<'tcx>>,
|
|
|
|
/// The set of predicates on which errors have been reported, to
|
|
/// avoid reporting the same error twice.
|
|
pub reported_trait_errors:
|
|
RefCell<FxIndexMap<Span, (Vec<Goal<'tcx, ty::Predicate<'tcx>>>, ErrorGuaranteed)>>,
|
|
|
|
pub reported_signature_mismatch: RefCell<FxHashSet<(Span, Option<Span>)>>,
|
|
|
|
/// When an error occurs, we want to avoid reporting "derived"
|
|
/// errors that are due to this original failure. We have this
|
|
/// flag that one can set whenever one creates a type-error that
|
|
/// is due to an error in a prior pass.
|
|
///
|
|
/// Don't read this flag directly, call `is_tainted_by_errors()`
|
|
/// and `set_tainted_by_errors()`.
|
|
tainted_by_errors: Cell<Option<ErrorGuaranteed>>,
|
|
|
|
/// What is the innermost universe we have created? Starts out as
|
|
/// `UniverseIndex::root()` but grows from there as we enter
|
|
/// universal quantifiers.
|
|
///
|
|
/// N.B., at present, we exclude the universal quantifiers on the
|
|
/// item we are type-checking, and just consider those names as
|
|
/// part of the root universe. So this would only get incremented
|
|
/// when we enter into a higher-ranked (`for<..>`) type or trait
|
|
/// bound.
|
|
universe: Cell<ty::UniverseIndex>,
|
|
|
|
next_trait_solver: bool,
|
|
|
|
pub obligation_inspector: Cell<Option<ObligationInspector<'tcx>>>,
|
|
}
|
|
|
|
/// See the `error_reporting` module for more details.
|
|
#[derive(Clone, Copy, Debug, PartialEq, Eq, TypeFoldable, TypeVisitable)]
|
|
pub enum ValuePairs<'tcx> {
|
|
Regions(ExpectedFound<ty::Region<'tcx>>),
|
|
Terms(ExpectedFound<ty::Term<'tcx>>),
|
|
Aliases(ExpectedFound<ty::AliasTerm<'tcx>>),
|
|
TraitRefs(ExpectedFound<ty::TraitRef<'tcx>>),
|
|
PolySigs(ExpectedFound<ty::PolyFnSig<'tcx>>),
|
|
ExistentialTraitRef(ExpectedFound<ty::PolyExistentialTraitRef<'tcx>>),
|
|
ExistentialProjection(ExpectedFound<ty::PolyExistentialProjection<'tcx>>),
|
|
}
|
|
|
|
impl<'tcx> ValuePairs<'tcx> {
|
|
pub fn ty(&self) -> Option<(Ty<'tcx>, Ty<'tcx>)> {
|
|
if let ValuePairs::Terms(ExpectedFound { expected, found }) = self
|
|
&& let Some(expected) = expected.as_type()
|
|
&& let Some(found) = found.as_type()
|
|
{
|
|
Some((expected, found))
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
}
|
|
|
|
/// The trace designates the path through inference that we took to
|
|
/// encounter an error or subtyping constraint.
|
|
///
|
|
/// See the `error_reporting` module for more details.
|
|
#[derive(Clone, Debug)]
|
|
pub struct TypeTrace<'tcx> {
|
|
pub cause: ObligationCause<'tcx>,
|
|
pub values: ValuePairs<'tcx>,
|
|
}
|
|
|
|
/// The origin of a `r1 <= r2` constraint.
|
|
///
|
|
/// See `error_reporting` module for more details
|
|
#[derive(Clone, Debug)]
|
|
pub enum SubregionOrigin<'tcx> {
|
|
/// Arose from a subtyping relation
|
|
Subtype(Box<TypeTrace<'tcx>>),
|
|
|
|
/// When casting `&'a T` to an `&'b Trait` object,
|
|
/// relating `'a` to `'b`.
|
|
RelateObjectBound(Span),
|
|
|
|
/// Some type parameter was instantiated with the given type,
|
|
/// and that type must outlive some region.
|
|
RelateParamBound(Span, Ty<'tcx>, Option<Span>),
|
|
|
|
/// The given region parameter was instantiated with a region
|
|
/// that must outlive some other region.
|
|
RelateRegionParamBound(Span, Option<Ty<'tcx>>),
|
|
|
|
/// Creating a pointer `b` to contents of another reference.
|
|
Reborrow(Span),
|
|
|
|
/// (&'a &'b T) where a >= b
|
|
ReferenceOutlivesReferent(Ty<'tcx>, Span),
|
|
|
|
/// Comparing the signature and requirements of an impl method against
|
|
/// the containing trait.
|
|
CompareImplItemObligation {
|
|
span: Span,
|
|
impl_item_def_id: LocalDefId,
|
|
trait_item_def_id: DefId,
|
|
},
|
|
|
|
/// Checking that the bounds of a trait's associated type hold for a given impl.
|
|
CheckAssociatedTypeBounds {
|
|
parent: Box<SubregionOrigin<'tcx>>,
|
|
impl_item_def_id: LocalDefId,
|
|
trait_item_def_id: DefId,
|
|
},
|
|
|
|
AscribeUserTypeProvePredicate(Span),
|
|
}
|
|
|
|
// `SubregionOrigin` is used a lot. Make sure it doesn't unintentionally get bigger.
|
|
#[cfg(target_pointer_width = "64")]
|
|
rustc_data_structures::static_assert_size!(SubregionOrigin<'_>, 32);
|
|
|
|
impl<'tcx> SubregionOrigin<'tcx> {
|
|
pub fn to_constraint_category(&self) -> ConstraintCategory<'tcx> {
|
|
match self {
|
|
Self::Subtype(type_trace) => type_trace.cause.to_constraint_category(),
|
|
Self::AscribeUserTypeProvePredicate(span) => ConstraintCategory::Predicate(*span),
|
|
_ => ConstraintCategory::BoringNoLocation,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Times when we replace bound regions with existentials:
|
|
#[derive(Clone, Copy, Debug)]
|
|
pub enum BoundRegionConversionTime {
|
|
/// when a fn is called
|
|
FnCall,
|
|
|
|
/// when two higher-ranked types are compared
|
|
HigherRankedType,
|
|
|
|
/// when projecting an associated type
|
|
AssocTypeProjection(DefId),
|
|
}
|
|
|
|
/// Reasons to create a region inference variable.
|
|
///
|
|
/// See `error_reporting` module for more details.
|
|
#[derive(Copy, Clone, Debug)]
|
|
pub enum RegionVariableOrigin {
|
|
/// Region variables created for ill-categorized reasons.
|
|
///
|
|
/// They mostly indicate places in need of refactoring.
|
|
Misc(Span),
|
|
|
|
/// Regions created by a `&P` or `[...]` pattern.
|
|
PatternRegion(Span),
|
|
|
|
/// Regions created by `&` operator.
|
|
BorrowRegion(Span),
|
|
|
|
/// Regions created as part of an autoref of a method receiver.
|
|
Autoref(Span),
|
|
|
|
/// Regions created as part of an automatic coercion.
|
|
Coercion(Span),
|
|
|
|
/// Region variables created as the values for early-bound regions.
|
|
///
|
|
/// FIXME(@lcnr): This should also store a `DefId`, similar to
|
|
/// `TypeVariableOrigin`.
|
|
RegionParameterDefinition(Span, Symbol),
|
|
|
|
/// Region variables created when instantiating a binder with
|
|
/// existential variables, e.g. when calling a function or method.
|
|
BoundRegion(Span, ty::BoundRegionKind, BoundRegionConversionTime),
|
|
|
|
UpvarRegion(ty::UpvarId, Span),
|
|
|
|
/// This origin is used for the inference variables that we create
|
|
/// during NLL region processing.
|
|
Nll(NllRegionVariableOrigin),
|
|
}
|
|
|
|
#[derive(Copy, Clone, Debug)]
|
|
pub enum NllRegionVariableOrigin {
|
|
/// During NLL region processing, we create variables for free
|
|
/// regions that we encounter in the function signature and
|
|
/// elsewhere. This origin indices we've got one of those.
|
|
FreeRegion,
|
|
|
|
/// "Universal" instantiation of a higher-ranked region (e.g.,
|
|
/// from a `for<'a> T` binder). Meant to represent "any region".
|
|
Placeholder(ty::PlaceholderRegion),
|
|
|
|
Existential {
|
|
name: Option<Symbol>,
|
|
},
|
|
}
|
|
|
|
#[derive(Copy, Clone, Debug)]
|
|
pub struct FixupError {
|
|
unresolved: TyOrConstInferVar,
|
|
}
|
|
|
|
impl fmt::Display for FixupError {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
match self.unresolved {
|
|
TyOrConstInferVar::TyInt(_) => write!(
|
|
f,
|
|
"cannot determine the type of this integer; \
|
|
add a suffix to specify the type explicitly"
|
|
),
|
|
TyOrConstInferVar::TyFloat(_) => write!(
|
|
f,
|
|
"cannot determine the type of this number; \
|
|
add a suffix to specify the type explicitly"
|
|
),
|
|
TyOrConstInferVar::Ty(_) => write!(f, "unconstrained type"),
|
|
TyOrConstInferVar::Const(_) => write!(f, "unconstrained const value"),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// See the `region_obligations` field for more information.
|
|
#[derive(Clone, Debug)]
|
|
pub struct TypeOutlivesConstraint<'tcx> {
|
|
pub sub_region: ty::Region<'tcx>,
|
|
pub sup_type: Ty<'tcx>,
|
|
pub origin: SubregionOrigin<'tcx>,
|
|
}
|
|
|
|
/// Used to configure inference contexts before their creation.
|
|
pub struct InferCtxtBuilder<'tcx> {
|
|
tcx: TyCtxt<'tcx>,
|
|
considering_regions: bool,
|
|
in_hir_typeck: bool,
|
|
skip_leak_check: bool,
|
|
/// Whether we should use the new trait solver in the local inference context,
|
|
/// which affects things like which solver is used in `predicate_may_hold`.
|
|
next_trait_solver: bool,
|
|
}
|
|
|
|
#[extension(pub trait TyCtxtInferExt<'tcx>)]
|
|
impl<'tcx> TyCtxt<'tcx> {
|
|
fn infer_ctxt(self) -> InferCtxtBuilder<'tcx> {
|
|
InferCtxtBuilder {
|
|
tcx: self,
|
|
considering_regions: true,
|
|
in_hir_typeck: false,
|
|
skip_leak_check: false,
|
|
next_trait_solver: self.next_trait_solver_globally(),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'tcx> InferCtxtBuilder<'tcx> {
|
|
pub fn with_next_trait_solver(mut self, next_trait_solver: bool) -> Self {
|
|
self.next_trait_solver = next_trait_solver;
|
|
self
|
|
}
|
|
|
|
pub fn ignoring_regions(mut self) -> Self {
|
|
self.considering_regions = false;
|
|
self
|
|
}
|
|
|
|
pub fn in_hir_typeck(mut self) -> Self {
|
|
self.in_hir_typeck = true;
|
|
self
|
|
}
|
|
|
|
pub fn skip_leak_check(mut self, skip_leak_check: bool) -> Self {
|
|
self.skip_leak_check = skip_leak_check;
|
|
self
|
|
}
|
|
|
|
/// Given a canonical value `C` as a starting point, create an
|
|
/// inference context that contains each of the bound values
|
|
/// within instantiated as a fresh variable. The `f` closure is
|
|
/// invoked with the new infcx, along with the instantiated value
|
|
/// `V` and a instantiation `S`. This instantiation `S` maps from
|
|
/// the bound values in `C` to their instantiated values in `V`
|
|
/// (in other words, `S(C) = V`).
|
|
pub fn build_with_canonical<T>(
|
|
mut self,
|
|
span: Span,
|
|
input: &CanonicalQueryInput<'tcx, T>,
|
|
) -> (InferCtxt<'tcx>, T, CanonicalVarValues<'tcx>)
|
|
where
|
|
T: TypeFoldable<TyCtxt<'tcx>>,
|
|
{
|
|
let infcx = self.build(input.typing_mode);
|
|
let (value, args) = infcx.instantiate_canonical(span, &input.canonical);
|
|
(infcx, value, args)
|
|
}
|
|
|
|
pub fn build_with_typing_env(
|
|
mut self,
|
|
TypingEnv { typing_mode, param_env }: TypingEnv<'tcx>,
|
|
) -> (InferCtxt<'tcx>, ty::ParamEnv<'tcx>) {
|
|
(self.build(typing_mode), param_env)
|
|
}
|
|
|
|
pub fn build(&mut self, typing_mode: TypingMode<'tcx>) -> InferCtxt<'tcx> {
|
|
let InferCtxtBuilder {
|
|
tcx,
|
|
considering_regions,
|
|
in_hir_typeck,
|
|
skip_leak_check,
|
|
next_trait_solver,
|
|
} = *self;
|
|
InferCtxt {
|
|
tcx,
|
|
typing_mode,
|
|
considering_regions,
|
|
in_hir_typeck,
|
|
skip_leak_check,
|
|
inner: RefCell::new(InferCtxtInner::new()),
|
|
lexical_region_resolutions: RefCell::new(None),
|
|
selection_cache: Default::default(),
|
|
evaluation_cache: Default::default(),
|
|
reported_trait_errors: Default::default(),
|
|
reported_signature_mismatch: Default::default(),
|
|
tainted_by_errors: Cell::new(None),
|
|
universe: Cell::new(ty::UniverseIndex::ROOT),
|
|
next_trait_solver,
|
|
obligation_inspector: Cell::new(None),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'tcx, T> InferOk<'tcx, T> {
|
|
/// Extracts `value`, registering any obligations into `fulfill_cx`.
|
|
pub fn into_value_registering_obligations<E: 'tcx>(
|
|
self,
|
|
infcx: &InferCtxt<'tcx>,
|
|
fulfill_cx: &mut dyn TraitEngine<'tcx, E>,
|
|
) -> T {
|
|
let InferOk { value, obligations } = self;
|
|
fulfill_cx.register_predicate_obligations(infcx, obligations);
|
|
value
|
|
}
|
|
}
|
|
|
|
impl<'tcx> InferOk<'tcx, ()> {
|
|
pub fn into_obligations(self) -> PredicateObligations<'tcx> {
|
|
self.obligations
|
|
}
|
|
}
|
|
|
|
impl<'tcx> InferCtxt<'tcx> {
|
|
pub fn dcx(&self) -> DiagCtxtHandle<'_> {
|
|
self.tcx.dcx().taintable_handle(&self.tainted_by_errors)
|
|
}
|
|
|
|
pub fn next_trait_solver(&self) -> bool {
|
|
self.next_trait_solver
|
|
}
|
|
|
|
#[inline(always)]
|
|
pub fn typing_mode(&self) -> TypingMode<'tcx> {
|
|
self.typing_mode
|
|
}
|
|
|
|
pub fn freshen<T: TypeFoldable<TyCtxt<'tcx>>>(&self, t: T) -> T {
|
|
t.fold_with(&mut self.freshener())
|
|
}
|
|
|
|
/// Returns the origin of the type variable identified by `vid`.
|
|
///
|
|
/// No attempt is made to resolve `vid` to its root variable.
|
|
pub fn type_var_origin(&self, vid: TyVid) -> TypeVariableOrigin {
|
|
self.inner.borrow_mut().type_variables().var_origin(vid)
|
|
}
|
|
|
|
/// Returns the origin of the const variable identified by `vid`
|
|
// FIXME: We should store origins separately from the unification table
|
|
// so this doesn't need to be optional.
|
|
pub fn const_var_origin(&self, vid: ConstVid) -> Option<ConstVariableOrigin> {
|
|
match self.inner.borrow_mut().const_unification_table().probe_value(vid) {
|
|
ConstVariableValue::Known { .. } => None,
|
|
ConstVariableValue::Unknown { origin, .. } => Some(origin),
|
|
}
|
|
}
|
|
|
|
pub fn freshener<'b>(&'b self) -> TypeFreshener<'b, 'tcx> {
|
|
freshen::TypeFreshener::new(self)
|
|
}
|
|
|
|
pub fn unresolved_variables(&self) -> Vec<Ty<'tcx>> {
|
|
let mut inner = self.inner.borrow_mut();
|
|
let mut vars: Vec<Ty<'_>> = inner
|
|
.type_variables()
|
|
.unresolved_variables()
|
|
.into_iter()
|
|
.map(|t| Ty::new_var(self.tcx, t))
|
|
.collect();
|
|
vars.extend(
|
|
(0..inner.int_unification_table().len())
|
|
.map(|i| ty::IntVid::from_usize(i))
|
|
.filter(|&vid| inner.int_unification_table().probe_value(vid).is_unknown())
|
|
.map(|v| Ty::new_int_var(self.tcx, v)),
|
|
);
|
|
vars.extend(
|
|
(0..inner.float_unification_table().len())
|
|
.map(|i| ty::FloatVid::from_usize(i))
|
|
.filter(|&vid| inner.float_unification_table().probe_value(vid).is_unknown())
|
|
.map(|v| Ty::new_float_var(self.tcx, v)),
|
|
);
|
|
vars
|
|
}
|
|
|
|
#[instrument(skip(self), level = "debug")]
|
|
pub fn sub_regions(
|
|
&self,
|
|
origin: SubregionOrigin<'tcx>,
|
|
a: ty::Region<'tcx>,
|
|
b: ty::Region<'tcx>,
|
|
) {
|
|
self.inner.borrow_mut().unwrap_region_constraints().make_subregion(origin, a, b);
|
|
}
|
|
|
|
/// Processes a `Coerce` predicate from the fulfillment context.
|
|
/// This is NOT the preferred way to handle coercion, which is to
|
|
/// invoke `FnCtxt::coerce` or a similar method (see `coercion.rs`).
|
|
///
|
|
/// This method here is actually a fallback that winds up being
|
|
/// invoked when `FnCtxt::coerce` encounters unresolved type variables
|
|
/// and records a coercion predicate. Presently, this method is equivalent
|
|
/// to `subtype_predicate` -- that is, "coercing" `a` to `b` winds up
|
|
/// actually requiring `a <: b`. This is of course a valid coercion,
|
|
/// but it's not as flexible as `FnCtxt::coerce` would be.
|
|
///
|
|
/// (We may refactor this in the future, but there are a number of
|
|
/// practical obstacles. Among other things, `FnCtxt::coerce` presently
|
|
/// records adjustments that are required on the HIR in order to perform
|
|
/// the coercion, and we don't currently have a way to manage that.)
|
|
pub fn coerce_predicate(
|
|
&self,
|
|
cause: &ObligationCause<'tcx>,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
predicate: ty::PolyCoercePredicate<'tcx>,
|
|
) -> Result<InferResult<'tcx, ()>, (TyVid, TyVid)> {
|
|
let subtype_predicate = predicate.map_bound(|p| ty::SubtypePredicate {
|
|
a_is_expected: false, // when coercing from `a` to `b`, `b` is expected
|
|
a: p.a,
|
|
b: p.b,
|
|
});
|
|
self.subtype_predicate(cause, param_env, subtype_predicate)
|
|
}
|
|
|
|
pub fn subtype_predicate(
|
|
&self,
|
|
cause: &ObligationCause<'tcx>,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
predicate: ty::PolySubtypePredicate<'tcx>,
|
|
) -> Result<InferResult<'tcx, ()>, (TyVid, TyVid)> {
|
|
// Check for two unresolved inference variables, in which case we can
|
|
// make no progress. This is partly a micro-optimization, but it's
|
|
// also an opportunity to "sub-unify" the variables. This isn't
|
|
// *necessary* to prevent cycles, because they would eventually be sub-unified
|
|
// anyhow during generalization, but it helps with diagnostics (we can detect
|
|
// earlier that they are sub-unified).
|
|
//
|
|
// Note that we can just skip the binders here because
|
|
// type variables can't (at present, at
|
|
// least) capture any of the things bound by this binder.
|
|
//
|
|
// Note that this sub here is not just for diagnostics - it has semantic
|
|
// effects as well.
|
|
let r_a = self.shallow_resolve(predicate.skip_binder().a);
|
|
let r_b = self.shallow_resolve(predicate.skip_binder().b);
|
|
match (r_a.kind(), r_b.kind()) {
|
|
(&ty::Infer(ty::TyVar(a_vid)), &ty::Infer(ty::TyVar(b_vid))) => {
|
|
self.sub_unify_ty_vids_raw(a_vid, b_vid);
|
|
return Err((a_vid, b_vid));
|
|
}
|
|
_ => {}
|
|
}
|
|
|
|
self.enter_forall(predicate, |ty::SubtypePredicate { a_is_expected, a, b }| {
|
|
if a_is_expected {
|
|
Ok(self.at(cause, param_env).sub(DefineOpaqueTypes::Yes, a, b))
|
|
} else {
|
|
Ok(self.at(cause, param_env).sup(DefineOpaqueTypes::Yes, b, a))
|
|
}
|
|
})
|
|
}
|
|
|
|
/// Number of type variables created so far.
|
|
pub fn num_ty_vars(&self) -> usize {
|
|
self.inner.borrow_mut().type_variables().num_vars()
|
|
}
|
|
|
|
pub fn next_ty_vid(&self, span: Span) -> TyVid {
|
|
self.next_ty_vid_with_origin(TypeVariableOrigin { span, param_def_id: None })
|
|
}
|
|
|
|
pub fn next_ty_vid_with_origin(&self, origin: TypeVariableOrigin) -> TyVid {
|
|
self.inner.borrow_mut().type_variables().new_var(self.universe(), origin)
|
|
}
|
|
|
|
pub fn next_ty_vid_in_universe(&self, span: Span, universe: ty::UniverseIndex) -> TyVid {
|
|
let origin = TypeVariableOrigin { span, param_def_id: None };
|
|
self.inner.borrow_mut().type_variables().new_var(universe, origin)
|
|
}
|
|
|
|
pub fn next_ty_var(&self, span: Span) -> Ty<'tcx> {
|
|
self.next_ty_var_with_origin(TypeVariableOrigin { span, param_def_id: None })
|
|
}
|
|
|
|
pub fn next_ty_var_with_origin(&self, origin: TypeVariableOrigin) -> Ty<'tcx> {
|
|
let vid = self.next_ty_vid_with_origin(origin);
|
|
Ty::new_var(self.tcx, vid)
|
|
}
|
|
|
|
pub fn next_ty_var_in_universe(&self, span: Span, universe: ty::UniverseIndex) -> Ty<'tcx> {
|
|
let vid = self.next_ty_vid_in_universe(span, universe);
|
|
Ty::new_var(self.tcx, vid)
|
|
}
|
|
|
|
pub fn next_const_var(&self, span: Span) -> ty::Const<'tcx> {
|
|
self.next_const_var_with_origin(ConstVariableOrigin { span, param_def_id: None })
|
|
}
|
|
|
|
pub fn next_const_var_with_origin(&self, origin: ConstVariableOrigin) -> ty::Const<'tcx> {
|
|
let vid = self
|
|
.inner
|
|
.borrow_mut()
|
|
.const_unification_table()
|
|
.new_key(ConstVariableValue::Unknown { origin, universe: self.universe() })
|
|
.vid;
|
|
ty::Const::new_var(self.tcx, vid)
|
|
}
|
|
|
|
pub fn next_const_var_in_universe(
|
|
&self,
|
|
span: Span,
|
|
universe: ty::UniverseIndex,
|
|
) -> ty::Const<'tcx> {
|
|
let origin = ConstVariableOrigin { span, param_def_id: None };
|
|
let vid = self
|
|
.inner
|
|
.borrow_mut()
|
|
.const_unification_table()
|
|
.new_key(ConstVariableValue::Unknown { origin, universe })
|
|
.vid;
|
|
ty::Const::new_var(self.tcx, vid)
|
|
}
|
|
|
|
pub fn next_int_var(&self) -> Ty<'tcx> {
|
|
let next_int_var_id =
|
|
self.inner.borrow_mut().int_unification_table().new_key(ty::IntVarValue::Unknown);
|
|
Ty::new_int_var(self.tcx, next_int_var_id)
|
|
}
|
|
|
|
pub fn next_float_var(&self) -> Ty<'tcx> {
|
|
let next_float_var_id =
|
|
self.inner.borrow_mut().float_unification_table().new_key(ty::FloatVarValue::Unknown);
|
|
Ty::new_float_var(self.tcx, next_float_var_id)
|
|
}
|
|
|
|
/// Creates a fresh region variable with the next available index.
|
|
/// The variable will be created in the maximum universe created
|
|
/// thus far, allowing it to name any region created thus far.
|
|
pub fn next_region_var(&self, origin: RegionVariableOrigin) -> ty::Region<'tcx> {
|
|
self.next_region_var_in_universe(origin, self.universe())
|
|
}
|
|
|
|
/// Creates a fresh region variable with the next available index
|
|
/// in the given universe; typically, you can use
|
|
/// `next_region_var` and just use the maximal universe.
|
|
pub fn next_region_var_in_universe(
|
|
&self,
|
|
origin: RegionVariableOrigin,
|
|
universe: ty::UniverseIndex,
|
|
) -> ty::Region<'tcx> {
|
|
let region_var =
|
|
self.inner.borrow_mut().unwrap_region_constraints().new_region_var(universe, origin);
|
|
ty::Region::new_var(self.tcx, region_var)
|
|
}
|
|
|
|
pub fn next_term_var_of_kind(&self, term: ty::Term<'tcx>, span: Span) -> ty::Term<'tcx> {
|
|
match term.kind() {
|
|
ty::TermKind::Ty(_) => self.next_ty_var(span).into(),
|
|
ty::TermKind::Const(_) => self.next_const_var(span).into(),
|
|
}
|
|
}
|
|
|
|
/// Return the universe that the region `r` was created in. For
|
|
/// most regions (e.g., `'static`, named regions from the user,
|
|
/// etc) this is the root universe U0. For inference variables or
|
|
/// placeholders, however, it will return the universe which they
|
|
/// are associated.
|
|
pub fn universe_of_region(&self, r: ty::Region<'tcx>) -> ty::UniverseIndex {
|
|
self.inner.borrow_mut().unwrap_region_constraints().universe(r)
|
|
}
|
|
|
|
/// Number of region variables created so far.
|
|
pub fn num_region_vars(&self) -> usize {
|
|
self.inner.borrow_mut().unwrap_region_constraints().num_region_vars()
|
|
}
|
|
|
|
/// Just a convenient wrapper of `next_region_var` for using during NLL.
|
|
#[instrument(skip(self), level = "debug")]
|
|
pub fn next_nll_region_var(&self, origin: NllRegionVariableOrigin) -> ty::Region<'tcx> {
|
|
self.next_region_var(RegionVariableOrigin::Nll(origin))
|
|
}
|
|
|
|
/// Just a convenient wrapper of `next_region_var` for using during NLL.
|
|
#[instrument(skip(self), level = "debug")]
|
|
pub fn next_nll_region_var_in_universe(
|
|
&self,
|
|
origin: NllRegionVariableOrigin,
|
|
universe: ty::UniverseIndex,
|
|
) -> ty::Region<'tcx> {
|
|
self.next_region_var_in_universe(RegionVariableOrigin::Nll(origin), universe)
|
|
}
|
|
|
|
pub fn var_for_def(&self, span: Span, param: &ty::GenericParamDef) -> GenericArg<'tcx> {
|
|
match param.kind {
|
|
GenericParamDefKind::Lifetime => {
|
|
// Create a region inference variable for the given
|
|
// region parameter definition.
|
|
self.next_region_var(RegionVariableOrigin::RegionParameterDefinition(
|
|
span, param.name,
|
|
))
|
|
.into()
|
|
}
|
|
GenericParamDefKind::Type { .. } => {
|
|
// Create a type inference variable for the given
|
|
// type parameter definition. The generic parameters are
|
|
// for actual parameters that may be referred to by
|
|
// the default of this type parameter, if it exists.
|
|
// e.g., `struct Foo<A, B, C = (A, B)>(...);` when
|
|
// used in a path such as `Foo::<T, U>::new()` will
|
|
// use an inference variable for `C` with `[T, U]`
|
|
// as the generic parameters for the default, `(T, U)`.
|
|
let ty_var_id = self.inner.borrow_mut().type_variables().new_var(
|
|
self.universe(),
|
|
TypeVariableOrigin { param_def_id: Some(param.def_id), span },
|
|
);
|
|
|
|
Ty::new_var(self.tcx, ty_var_id).into()
|
|
}
|
|
GenericParamDefKind::Const { .. } => {
|
|
let origin = ConstVariableOrigin { param_def_id: Some(param.def_id), span };
|
|
let const_var_id = self
|
|
.inner
|
|
.borrow_mut()
|
|
.const_unification_table()
|
|
.new_key(ConstVariableValue::Unknown { origin, universe: self.universe() })
|
|
.vid;
|
|
ty::Const::new_var(self.tcx, const_var_id).into()
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Given a set of generics defined on a type or impl, returns the generic parameters mapping
|
|
/// each type/region parameter to a fresh inference variable.
|
|
pub fn fresh_args_for_item(&self, span: Span, def_id: DefId) -> GenericArgsRef<'tcx> {
|
|
GenericArgs::for_item(self.tcx, def_id, |param, _| self.var_for_def(span, param))
|
|
}
|
|
|
|
/// Returns `true` if errors have been reported since this infcx was
|
|
/// created. This is sometimes used as a heuristic to skip
|
|
/// reporting errors that often occur as a result of earlier
|
|
/// errors, but where it's hard to be 100% sure (e.g., unresolved
|
|
/// inference variables, regionck errors).
|
|
#[must_use = "this method does not have any side effects"]
|
|
pub fn tainted_by_errors(&self) -> Option<ErrorGuaranteed> {
|
|
self.tainted_by_errors.get()
|
|
}
|
|
|
|
/// Set the "tainted by errors" flag to true. We call this when we
|
|
/// observe an error from a prior pass.
|
|
pub fn set_tainted_by_errors(&self, e: ErrorGuaranteed) {
|
|
debug!("set_tainted_by_errors(ErrorGuaranteed)");
|
|
self.tainted_by_errors.set(Some(e));
|
|
}
|
|
|
|
pub fn region_var_origin(&self, vid: ty::RegionVid) -> RegionVariableOrigin {
|
|
let mut inner = self.inner.borrow_mut();
|
|
let inner = &mut *inner;
|
|
inner.unwrap_region_constraints().var_origin(vid)
|
|
}
|
|
|
|
/// Clone the list of variable regions. This is used only during NLL processing
|
|
/// to put the set of region variables into the NLL region context.
|
|
pub fn get_region_var_infos(&self) -> VarInfos {
|
|
let inner = self.inner.borrow();
|
|
assert!(!UndoLogs::<UndoLog<'_>>::in_snapshot(&inner.undo_log));
|
|
let storage = inner.region_constraint_storage.as_ref().expect("regions already resolved");
|
|
assert!(storage.data.is_empty(), "{:#?}", storage.data);
|
|
// We clone instead of taking because borrowck still wants to use the
|
|
// inference context after calling this for diagnostics and the new
|
|
// trait solver.
|
|
storage.var_infos.clone()
|
|
}
|
|
|
|
pub fn has_opaque_types_in_storage(&self) -> bool {
|
|
!self.inner.borrow().opaque_type_storage.is_empty()
|
|
}
|
|
|
|
#[instrument(level = "debug", skip(self), ret)]
|
|
pub fn take_opaque_types(&self) -> Vec<(OpaqueTypeKey<'tcx>, OpaqueHiddenType<'tcx>)> {
|
|
self.inner.borrow_mut().opaque_type_storage.take_opaque_types().collect()
|
|
}
|
|
|
|
#[instrument(level = "debug", skip(self), ret)]
|
|
pub fn clone_opaque_types(&self) -> Vec<(OpaqueTypeKey<'tcx>, OpaqueHiddenType<'tcx>)> {
|
|
self.inner.borrow_mut().opaque_type_storage.iter_opaque_types().collect()
|
|
}
|
|
|
|
pub fn has_opaques_with_sub_unified_hidden_type(&self, ty_vid: TyVid) -> bool {
|
|
if !self.next_trait_solver() {
|
|
return false;
|
|
}
|
|
|
|
let ty_sub_vid = self.sub_unification_table_root_var(ty_vid);
|
|
let inner = &mut *self.inner.borrow_mut();
|
|
let mut type_variables = inner.type_variable_storage.with_log(&mut inner.undo_log);
|
|
inner.opaque_type_storage.iter_opaque_types().any(|(_, hidden_ty)| {
|
|
if let ty::Infer(ty::TyVar(hidden_vid)) = *hidden_ty.ty.kind() {
|
|
let opaque_sub_vid = type_variables.sub_unification_table_root_var(hidden_vid);
|
|
if opaque_sub_vid == ty_sub_vid {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
false
|
|
})
|
|
}
|
|
|
|
/// Searches for an opaque type key whose hidden type is related to `ty_vid`.
|
|
///
|
|
/// This only checks for a subtype relation, it does not require equality.
|
|
pub fn opaques_with_sub_unified_hidden_type(&self, ty_vid: TyVid) -> Vec<ty::AliasTy<'tcx>> {
|
|
// Avoid accidentally allowing more code to compile with the old solver.
|
|
if !self.next_trait_solver() {
|
|
return vec![];
|
|
}
|
|
|
|
let ty_sub_vid = self.sub_unification_table_root_var(ty_vid);
|
|
let inner = &mut *self.inner.borrow_mut();
|
|
// This is iffy, can't call `type_variables()` as we're already
|
|
// borrowing the `opaque_type_storage` here.
|
|
let mut type_variables = inner.type_variable_storage.with_log(&mut inner.undo_log);
|
|
inner
|
|
.opaque_type_storage
|
|
.iter_opaque_types()
|
|
.filter_map(|(key, hidden_ty)| {
|
|
if let ty::Infer(ty::TyVar(hidden_vid)) = *hidden_ty.ty.kind() {
|
|
let opaque_sub_vid = type_variables.sub_unification_table_root_var(hidden_vid);
|
|
if opaque_sub_vid == ty_sub_vid {
|
|
return Some(ty::AliasTy::new_from_args(
|
|
self.tcx,
|
|
key.def_id.into(),
|
|
key.args,
|
|
));
|
|
}
|
|
}
|
|
|
|
None
|
|
})
|
|
.collect()
|
|
}
|
|
|
|
#[inline(always)]
|
|
pub fn can_define_opaque_ty(&self, id: impl Into<DefId>) -> bool {
|
|
debug_assert!(!self.next_trait_solver());
|
|
match self.typing_mode() {
|
|
TypingMode::Analysis {
|
|
defining_opaque_types_and_generators: defining_opaque_types,
|
|
}
|
|
| TypingMode::Borrowck { defining_opaque_types } => {
|
|
id.into().as_local().is_some_and(|def_id| defining_opaque_types.contains(&def_id))
|
|
}
|
|
// FIXME(#132279): This function is quite weird in post-analysis
|
|
// and post-borrowck analysis mode. We may need to modify its uses
|
|
// to support PostBorrowckAnalysis in the old solver as well.
|
|
TypingMode::Coherence
|
|
| TypingMode::PostBorrowckAnalysis { .. }
|
|
| TypingMode::PostAnalysis => false,
|
|
}
|
|
}
|
|
|
|
pub fn push_hir_typeck_potentially_region_dependent_goal(
|
|
&self,
|
|
goal: PredicateObligation<'tcx>,
|
|
) {
|
|
let mut inner = self.inner.borrow_mut();
|
|
inner.undo_log.push(UndoLog::PushHirTypeckPotentiallyRegionDependentGoal);
|
|
inner.hir_typeck_potentially_region_dependent_goals.push(goal);
|
|
}
|
|
|
|
pub fn take_hir_typeck_potentially_region_dependent_goals(
|
|
&self,
|
|
) -> Vec<PredicateObligation<'tcx>> {
|
|
assert!(!self.in_snapshot(), "cannot take goals in a snapshot");
|
|
std::mem::take(&mut self.inner.borrow_mut().hir_typeck_potentially_region_dependent_goals)
|
|
}
|
|
|
|
pub fn ty_to_string(&self, t: Ty<'tcx>) -> String {
|
|
self.resolve_vars_if_possible(t).to_string()
|
|
}
|
|
|
|
/// If `TyVar(vid)` resolves to a type, return that type. Else, return the
|
|
/// universe index of `TyVar(vid)`.
|
|
pub fn probe_ty_var(&self, vid: TyVid) -> Result<Ty<'tcx>, ty::UniverseIndex> {
|
|
use self::type_variable::TypeVariableValue;
|
|
|
|
match self.inner.borrow_mut().type_variables().probe(vid) {
|
|
TypeVariableValue::Known { value } => Ok(value),
|
|
TypeVariableValue::Unknown { universe } => Err(universe),
|
|
}
|
|
}
|
|
|
|
pub fn shallow_resolve(&self, ty: Ty<'tcx>) -> Ty<'tcx> {
|
|
if let ty::Infer(v) = *ty.kind() {
|
|
match v {
|
|
ty::TyVar(v) => {
|
|
// Not entirely obvious: if `typ` is a type variable,
|
|
// it can be resolved to an int/float variable, which
|
|
// can then be recursively resolved, hence the
|
|
// recursion. Note though that we prevent type
|
|
// variables from unifying to other type variables
|
|
// directly (though they may be embedded
|
|
// structurally), and we prevent cycles in any case,
|
|
// so this recursion should always be of very limited
|
|
// depth.
|
|
//
|
|
// Note: if these two lines are combined into one we get
|
|
// dynamic borrow errors on `self.inner`.
|
|
let known = self.inner.borrow_mut().type_variables().probe(v).known();
|
|
known.map_or(ty, |t| self.shallow_resolve(t))
|
|
}
|
|
|
|
ty::IntVar(v) => {
|
|
match self.inner.borrow_mut().int_unification_table().probe_value(v) {
|
|
ty::IntVarValue::IntType(ty) => Ty::new_int(self.tcx, ty),
|
|
ty::IntVarValue::UintType(ty) => Ty::new_uint(self.tcx, ty),
|
|
ty::IntVarValue::Unknown => ty,
|
|
}
|
|
}
|
|
|
|
ty::FloatVar(v) => {
|
|
match self.inner.borrow_mut().float_unification_table().probe_value(v) {
|
|
ty::FloatVarValue::Known(ty) => Ty::new_float(self.tcx, ty),
|
|
ty::FloatVarValue::Unknown => ty,
|
|
}
|
|
}
|
|
|
|
ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_) => ty,
|
|
}
|
|
} else {
|
|
ty
|
|
}
|
|
}
|
|
|
|
pub fn shallow_resolve_const(&self, ct: ty::Const<'tcx>) -> ty::Const<'tcx> {
|
|
match ct.kind() {
|
|
ty::ConstKind::Infer(infer_ct) => match infer_ct {
|
|
InferConst::Var(vid) => self
|
|
.inner
|
|
.borrow_mut()
|
|
.const_unification_table()
|
|
.probe_value(vid)
|
|
.known()
|
|
.unwrap_or(ct),
|
|
InferConst::Fresh(_) => ct,
|
|
},
|
|
ty::ConstKind::Param(_)
|
|
| ty::ConstKind::Bound(_, _)
|
|
| ty::ConstKind::Placeholder(_)
|
|
| ty::ConstKind::Unevaluated(_)
|
|
| ty::ConstKind::Value(_)
|
|
| ty::ConstKind::Error(_)
|
|
| ty::ConstKind::Expr(_) => ct,
|
|
}
|
|
}
|
|
|
|
pub fn shallow_resolve_term(&self, term: ty::Term<'tcx>) -> ty::Term<'tcx> {
|
|
match term.kind() {
|
|
ty::TermKind::Ty(ty) => self.shallow_resolve(ty).into(),
|
|
ty::TermKind::Const(ct) => self.shallow_resolve_const(ct).into(),
|
|
}
|
|
}
|
|
|
|
pub fn root_var(&self, var: ty::TyVid) -> ty::TyVid {
|
|
self.inner.borrow_mut().type_variables().root_var(var)
|
|
}
|
|
|
|
pub fn sub_unify_ty_vids_raw(&self, a: ty::TyVid, b: ty::TyVid) {
|
|
self.inner.borrow_mut().type_variables().sub_unify(a, b);
|
|
}
|
|
|
|
pub fn sub_unification_table_root_var(&self, var: ty::TyVid) -> ty::TyVid {
|
|
self.inner.borrow_mut().type_variables().sub_unification_table_root_var(var)
|
|
}
|
|
|
|
pub fn root_const_var(&self, var: ty::ConstVid) -> ty::ConstVid {
|
|
self.inner.borrow_mut().const_unification_table().find(var).vid
|
|
}
|
|
|
|
/// Resolves an int var to a rigid int type, if it was constrained to one,
|
|
/// or else the root int var in the unification table.
|
|
pub fn opportunistic_resolve_int_var(&self, vid: ty::IntVid) -> Ty<'tcx> {
|
|
let mut inner = self.inner.borrow_mut();
|
|
let value = inner.int_unification_table().probe_value(vid);
|
|
match value {
|
|
ty::IntVarValue::IntType(ty) => Ty::new_int(self.tcx, ty),
|
|
ty::IntVarValue::UintType(ty) => Ty::new_uint(self.tcx, ty),
|
|
ty::IntVarValue::Unknown => {
|
|
Ty::new_int_var(self.tcx, inner.int_unification_table().find(vid))
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Resolves a float var to a rigid int type, if it was constrained to one,
|
|
/// or else the root float var in the unification table.
|
|
pub fn opportunistic_resolve_float_var(&self, vid: ty::FloatVid) -> Ty<'tcx> {
|
|
let mut inner = self.inner.borrow_mut();
|
|
let value = inner.float_unification_table().probe_value(vid);
|
|
match value {
|
|
ty::FloatVarValue::Known(ty) => Ty::new_float(self.tcx, ty),
|
|
ty::FloatVarValue::Unknown => {
|
|
Ty::new_float_var(self.tcx, inner.float_unification_table().find(vid))
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Where possible, replaces type/const variables in
|
|
/// `value` with their final value. Note that region variables
|
|
/// are unaffected. If a type/const variable has not been unified, it
|
|
/// is left as is. This is an idempotent operation that does
|
|
/// not affect inference state in any way and so you can do it
|
|
/// at will.
|
|
pub fn resolve_vars_if_possible<T>(&self, value: T) -> T
|
|
where
|
|
T: TypeFoldable<TyCtxt<'tcx>>,
|
|
{
|
|
if let Err(guar) = value.error_reported() {
|
|
self.set_tainted_by_errors(guar);
|
|
}
|
|
if !value.has_non_region_infer() {
|
|
return value;
|
|
}
|
|
let mut r = resolve::OpportunisticVarResolver::new(self);
|
|
value.fold_with(&mut r)
|
|
}
|
|
|
|
pub fn resolve_numeric_literals_with_default<T>(&self, value: T) -> T
|
|
where
|
|
T: TypeFoldable<TyCtxt<'tcx>>,
|
|
{
|
|
if !value.has_infer() {
|
|
return value; // Avoid duplicated type-folding.
|
|
}
|
|
let mut r = InferenceLiteralEraser { tcx: self.tcx };
|
|
value.fold_with(&mut r)
|
|
}
|
|
|
|
pub fn probe_const_var(&self, vid: ty::ConstVid) -> Result<ty::Const<'tcx>, ty::UniverseIndex> {
|
|
match self.inner.borrow_mut().const_unification_table().probe_value(vid) {
|
|
ConstVariableValue::Known { value } => Ok(value),
|
|
ConstVariableValue::Unknown { origin: _, universe } => Err(universe),
|
|
}
|
|
}
|
|
|
|
/// Attempts to resolve all type/region/const variables in
|
|
/// `value`. Region inference must have been run already (e.g.,
|
|
/// by calling `resolve_regions_and_report_errors`). If some
|
|
/// variable was never unified, an `Err` results.
|
|
///
|
|
/// This method is idempotent, but it not typically not invoked
|
|
/// except during the writeback phase.
|
|
pub fn fully_resolve<T: TypeFoldable<TyCtxt<'tcx>>>(&self, value: T) -> FixupResult<T> {
|
|
match resolve::fully_resolve(self, value) {
|
|
Ok(value) => {
|
|
if value.has_non_region_infer() {
|
|
bug!("`{value:?}` is not fully resolved");
|
|
}
|
|
if value.has_infer_regions() {
|
|
let guar = self.dcx().delayed_bug(format!("`{value:?}` is not fully resolved"));
|
|
Ok(fold_regions(self.tcx, value, |re, _| {
|
|
if re.is_var() { ty::Region::new_error(self.tcx, guar) } else { re }
|
|
}))
|
|
} else {
|
|
Ok(value)
|
|
}
|
|
}
|
|
Err(e) => Err(e),
|
|
}
|
|
}
|
|
|
|
// Instantiates the bound variables in a given binder with fresh inference
|
|
// variables in the current universe.
|
|
//
|
|
// Use this method if you'd like to find some generic parameters of the binder's
|
|
// variables (e.g. during a method call). If there isn't a [`BoundRegionConversionTime`]
|
|
// that corresponds to your use case, consider whether or not you should
|
|
// use [`InferCtxt::enter_forall`] instead.
|
|
pub fn instantiate_binder_with_fresh_vars<T>(
|
|
&self,
|
|
span: Span,
|
|
lbrct: BoundRegionConversionTime,
|
|
value: ty::Binder<'tcx, T>,
|
|
) -> T
|
|
where
|
|
T: TypeFoldable<TyCtxt<'tcx>> + Copy,
|
|
{
|
|
if let Some(inner) = value.no_bound_vars() {
|
|
return inner;
|
|
}
|
|
|
|
let bound_vars = value.bound_vars();
|
|
let mut args = Vec::with_capacity(bound_vars.len());
|
|
|
|
for bound_var_kind in bound_vars {
|
|
let arg: ty::GenericArg<'_> = match bound_var_kind {
|
|
ty::BoundVariableKind::Ty(_) => self.next_ty_var(span).into(),
|
|
ty::BoundVariableKind::Region(br) => {
|
|
self.next_region_var(RegionVariableOrigin::BoundRegion(span, br, lbrct)).into()
|
|
}
|
|
ty::BoundVariableKind::Const => self.next_const_var(span).into(),
|
|
};
|
|
args.push(arg);
|
|
}
|
|
|
|
struct ToFreshVars<'tcx> {
|
|
args: Vec<ty::GenericArg<'tcx>>,
|
|
}
|
|
|
|
impl<'tcx> BoundVarReplacerDelegate<'tcx> for ToFreshVars<'tcx> {
|
|
fn replace_region(&mut self, br: ty::BoundRegion) -> ty::Region<'tcx> {
|
|
self.args[br.var.index()].expect_region()
|
|
}
|
|
fn replace_ty(&mut self, bt: ty::BoundTy) -> Ty<'tcx> {
|
|
self.args[bt.var.index()].expect_ty()
|
|
}
|
|
fn replace_const(&mut self, bc: ty::BoundConst) -> ty::Const<'tcx> {
|
|
self.args[bc.var.index()].expect_const()
|
|
}
|
|
}
|
|
let delegate = ToFreshVars { args };
|
|
self.tcx.replace_bound_vars_uncached(value, delegate)
|
|
}
|
|
|
|
/// See the [`region_constraints::RegionConstraintCollector::verify_generic_bound`] method.
|
|
pub(crate) fn verify_generic_bound(
|
|
&self,
|
|
origin: SubregionOrigin<'tcx>,
|
|
kind: GenericKind<'tcx>,
|
|
a: ty::Region<'tcx>,
|
|
bound: VerifyBound<'tcx>,
|
|
) {
|
|
debug!("verify_generic_bound({:?}, {:?} <: {:?})", kind, a, bound);
|
|
|
|
self.inner
|
|
.borrow_mut()
|
|
.unwrap_region_constraints()
|
|
.verify_generic_bound(origin, kind, a, bound);
|
|
}
|
|
|
|
/// Obtains the latest type of the given closure; this may be a
|
|
/// closure in the current function, in which case its
|
|
/// `ClosureKind` may not yet be known.
|
|
pub fn closure_kind(&self, closure_ty: Ty<'tcx>) -> Option<ty::ClosureKind> {
|
|
let unresolved_kind_ty = match *closure_ty.kind() {
|
|
ty::Closure(_, args) => args.as_closure().kind_ty(),
|
|
ty::CoroutineClosure(_, args) => args.as_coroutine_closure().kind_ty(),
|
|
_ => bug!("unexpected type {closure_ty}"),
|
|
};
|
|
let closure_kind_ty = self.shallow_resolve(unresolved_kind_ty);
|
|
closure_kind_ty.to_opt_closure_kind()
|
|
}
|
|
|
|
pub fn universe(&self) -> ty::UniverseIndex {
|
|
self.universe.get()
|
|
}
|
|
|
|
/// Creates and return a fresh universe that extends all previous
|
|
/// universes. Updates `self.universe` to that new universe.
|
|
pub fn create_next_universe(&self) -> ty::UniverseIndex {
|
|
let u = self.universe.get().next_universe();
|
|
debug!("create_next_universe {u:?}");
|
|
self.universe.set(u);
|
|
u
|
|
}
|
|
|
|
/// Extract [`ty::TypingMode`] of this inference context to get a `TypingEnv`
|
|
/// which contains the necessary information to use the trait system without
|
|
/// using canonicalization or carrying this inference context around.
|
|
pub fn typing_env(&self, param_env: ty::ParamEnv<'tcx>) -> ty::TypingEnv<'tcx> {
|
|
let typing_mode = match self.typing_mode() {
|
|
// FIXME(#132279): This erases the `defining_opaque_types` as it isn't possible
|
|
// to handle them without proper canonicalization. This means we may cause cycle
|
|
// errors and fail to reveal opaques while inside of bodies. We should rename this
|
|
// function and require explicit comments on all use-sites in the future.
|
|
ty::TypingMode::Analysis { defining_opaque_types_and_generators: _ }
|
|
| ty::TypingMode::Borrowck { defining_opaque_types: _ } => {
|
|
TypingMode::non_body_analysis()
|
|
}
|
|
mode @ (ty::TypingMode::Coherence
|
|
| ty::TypingMode::PostBorrowckAnalysis { .. }
|
|
| ty::TypingMode::PostAnalysis) => mode,
|
|
};
|
|
ty::TypingEnv { typing_mode, param_env }
|
|
}
|
|
|
|
/// Similar to [`Self::canonicalize_query`], except that it returns
|
|
/// a [`PseudoCanonicalInput`] and requires both the `value` and the
|
|
/// `param_env` to not contain any inference variables or placeholders.
|
|
pub fn pseudo_canonicalize_query<V>(
|
|
&self,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
value: V,
|
|
) -> PseudoCanonicalInput<'tcx, V>
|
|
where
|
|
V: TypeVisitable<TyCtxt<'tcx>>,
|
|
{
|
|
debug_assert!(!value.has_infer());
|
|
debug_assert!(!value.has_placeholders());
|
|
debug_assert!(!param_env.has_infer());
|
|
debug_assert!(!param_env.has_placeholders());
|
|
self.typing_env(param_env).as_query_input(value)
|
|
}
|
|
|
|
/// The returned function is used in a fast path. If it returns `true` the variable is
|
|
/// unchanged, `false` indicates that the status is unknown.
|
|
#[inline]
|
|
pub fn is_ty_infer_var_definitely_unchanged(&self) -> impl Fn(TyOrConstInferVar) -> bool {
|
|
// This hoists the borrow/release out of the loop body.
|
|
let inner = self.inner.try_borrow();
|
|
|
|
move |infer_var: TyOrConstInferVar| match (infer_var, &inner) {
|
|
(TyOrConstInferVar::Ty(ty_var), Ok(inner)) => {
|
|
use self::type_variable::TypeVariableValue;
|
|
|
|
matches!(
|
|
inner.try_type_variables_probe_ref(ty_var),
|
|
Some(TypeVariableValue::Unknown { .. })
|
|
)
|
|
}
|
|
_ => false,
|
|
}
|
|
}
|
|
|
|
/// `ty_or_const_infer_var_changed` is equivalent to one of these two:
|
|
/// * `shallow_resolve(ty) != ty` (where `ty.kind = ty::Infer(_)`)
|
|
/// * `shallow_resolve(ct) != ct` (where `ct.kind = ty::ConstKind::Infer(_)`)
|
|
///
|
|
/// However, `ty_or_const_infer_var_changed` is more efficient. It's always
|
|
/// inlined, despite being large, because it has only two call sites that
|
|
/// are extremely hot (both in `traits::fulfill`'s checking of `stalled_on`
|
|
/// inference variables), and it handles both `Ty` and `ty::Const` without
|
|
/// having to resort to storing full `GenericArg`s in `stalled_on`.
|
|
#[inline(always)]
|
|
pub fn ty_or_const_infer_var_changed(&self, infer_var: TyOrConstInferVar) -> bool {
|
|
match infer_var {
|
|
TyOrConstInferVar::Ty(v) => {
|
|
use self::type_variable::TypeVariableValue;
|
|
|
|
// If `inlined_probe` returns a `Known` value, it never equals
|
|
// `ty::Infer(ty::TyVar(v))`.
|
|
match self.inner.borrow_mut().type_variables().inlined_probe(v) {
|
|
TypeVariableValue::Unknown { .. } => false,
|
|
TypeVariableValue::Known { .. } => true,
|
|
}
|
|
}
|
|
|
|
TyOrConstInferVar::TyInt(v) => {
|
|
// If `inlined_probe_value` returns a value it's always a
|
|
// `ty::Int(_)` or `ty::UInt(_)`, which never matches a
|
|
// `ty::Infer(_)`.
|
|
self.inner.borrow_mut().int_unification_table().inlined_probe_value(v).is_known()
|
|
}
|
|
|
|
TyOrConstInferVar::TyFloat(v) => {
|
|
// If `probe_value` returns a value it's always a
|
|
// `ty::Float(_)`, which never matches a `ty::Infer(_)`.
|
|
//
|
|
// Not `inlined_probe_value(v)` because this call site is colder.
|
|
self.inner.borrow_mut().float_unification_table().probe_value(v).is_known()
|
|
}
|
|
|
|
TyOrConstInferVar::Const(v) => {
|
|
// If `probe_value` returns a `Known` value, it never equals
|
|
// `ty::ConstKind::Infer(ty::InferConst::Var(v))`.
|
|
//
|
|
// Not `inlined_probe_value(v)` because this call site is colder.
|
|
match self.inner.borrow_mut().const_unification_table().probe_value(v) {
|
|
ConstVariableValue::Unknown { .. } => false,
|
|
ConstVariableValue::Known { .. } => true,
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Attach a callback to be invoked on each root obligation evaluated in the new trait solver.
|
|
pub fn attach_obligation_inspector(&self, inspector: ObligationInspector<'tcx>) {
|
|
debug_assert!(
|
|
self.obligation_inspector.get().is_none(),
|
|
"shouldn't override a set obligation inspector"
|
|
);
|
|
self.obligation_inspector.set(Some(inspector));
|
|
}
|
|
}
|
|
|
|
/// Helper for [InferCtxt::ty_or_const_infer_var_changed] (see comment on that), currently
|
|
/// used only for `traits::fulfill`'s list of `stalled_on` inference variables.
|
|
#[derive(Copy, Clone, Debug)]
|
|
pub enum TyOrConstInferVar {
|
|
/// Equivalent to `ty::Infer(ty::TyVar(_))`.
|
|
Ty(TyVid),
|
|
/// Equivalent to `ty::Infer(ty::IntVar(_))`.
|
|
TyInt(IntVid),
|
|
/// Equivalent to `ty::Infer(ty::FloatVar(_))`.
|
|
TyFloat(FloatVid),
|
|
|
|
/// Equivalent to `ty::ConstKind::Infer(ty::InferConst::Var(_))`.
|
|
Const(ConstVid),
|
|
}
|
|
|
|
impl<'tcx> TyOrConstInferVar {
|
|
/// Tries to extract an inference variable from a type or a constant, returns `None`
|
|
/// for types other than `ty::Infer(_)` (or `InferTy::Fresh*`) and
|
|
/// for constants other than `ty::ConstKind::Infer(_)` (or `InferConst::Fresh`).
|
|
pub fn maybe_from_generic_arg(arg: GenericArg<'tcx>) -> Option<Self> {
|
|
match arg.kind() {
|
|
GenericArgKind::Type(ty) => Self::maybe_from_ty(ty),
|
|
GenericArgKind::Const(ct) => Self::maybe_from_const(ct),
|
|
GenericArgKind::Lifetime(_) => None,
|
|
}
|
|
}
|
|
|
|
/// Tries to extract an inference variable from a type or a constant, returns `None`
|
|
/// for types other than `ty::Infer(_)` (or `InferTy::Fresh*`) and
|
|
/// for constants other than `ty::ConstKind::Infer(_)` (or `InferConst::Fresh`).
|
|
pub fn maybe_from_term(term: Term<'tcx>) -> Option<Self> {
|
|
match term.kind() {
|
|
TermKind::Ty(ty) => Self::maybe_from_ty(ty),
|
|
TermKind::Const(ct) => Self::maybe_from_const(ct),
|
|
}
|
|
}
|
|
|
|
/// Tries to extract an inference variable from a type, returns `None`
|
|
/// for types other than `ty::Infer(_)` (or `InferTy::Fresh*`).
|
|
fn maybe_from_ty(ty: Ty<'tcx>) -> Option<Self> {
|
|
match *ty.kind() {
|
|
ty::Infer(ty::TyVar(v)) => Some(TyOrConstInferVar::Ty(v)),
|
|
ty::Infer(ty::IntVar(v)) => Some(TyOrConstInferVar::TyInt(v)),
|
|
ty::Infer(ty::FloatVar(v)) => Some(TyOrConstInferVar::TyFloat(v)),
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
/// Tries to extract an inference variable from a constant, returns `None`
|
|
/// for constants other than `ty::ConstKind::Infer(_)` (or `InferConst::Fresh`).
|
|
fn maybe_from_const(ct: ty::Const<'tcx>) -> Option<Self> {
|
|
match ct.kind() {
|
|
ty::ConstKind::Infer(InferConst::Var(v)) => Some(TyOrConstInferVar::Const(v)),
|
|
_ => None,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Replace `{integer}` with `i32` and `{float}` with `f64`.
|
|
/// Used only for diagnostics.
|
|
struct InferenceLiteralEraser<'tcx> {
|
|
tcx: TyCtxt<'tcx>,
|
|
}
|
|
|
|
impl<'tcx> TypeFolder<TyCtxt<'tcx>> for InferenceLiteralEraser<'tcx> {
|
|
fn cx(&self) -> TyCtxt<'tcx> {
|
|
self.tcx
|
|
}
|
|
|
|
fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
|
|
match ty.kind() {
|
|
ty::Infer(ty::IntVar(_) | ty::FreshIntTy(_)) => self.tcx.types.i32,
|
|
ty::Infer(ty::FloatVar(_) | ty::FreshFloatTy(_)) => self.tcx.types.f64,
|
|
_ => ty.super_fold_with(self),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'tcx> TypeTrace<'tcx> {
|
|
pub fn span(&self) -> Span {
|
|
self.cause.span
|
|
}
|
|
|
|
pub fn types(cause: &ObligationCause<'tcx>, a: Ty<'tcx>, b: Ty<'tcx>) -> TypeTrace<'tcx> {
|
|
TypeTrace {
|
|
cause: cause.clone(),
|
|
values: ValuePairs::Terms(ExpectedFound::new(a.into(), b.into())),
|
|
}
|
|
}
|
|
|
|
pub fn trait_refs(
|
|
cause: &ObligationCause<'tcx>,
|
|
a: ty::TraitRef<'tcx>,
|
|
b: ty::TraitRef<'tcx>,
|
|
) -> TypeTrace<'tcx> {
|
|
TypeTrace { cause: cause.clone(), values: ValuePairs::TraitRefs(ExpectedFound::new(a, b)) }
|
|
}
|
|
|
|
pub fn consts(
|
|
cause: &ObligationCause<'tcx>,
|
|
a: ty::Const<'tcx>,
|
|
b: ty::Const<'tcx>,
|
|
) -> TypeTrace<'tcx> {
|
|
TypeTrace {
|
|
cause: cause.clone(),
|
|
values: ValuePairs::Terms(ExpectedFound::new(a.into(), b.into())),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'tcx> SubregionOrigin<'tcx> {
|
|
pub fn span(&self) -> Span {
|
|
match *self {
|
|
SubregionOrigin::Subtype(ref a) => a.span(),
|
|
SubregionOrigin::RelateObjectBound(a) => a,
|
|
SubregionOrigin::RelateParamBound(a, ..) => a,
|
|
SubregionOrigin::RelateRegionParamBound(a, _) => a,
|
|
SubregionOrigin::Reborrow(a) => a,
|
|
SubregionOrigin::ReferenceOutlivesReferent(_, a) => a,
|
|
SubregionOrigin::CompareImplItemObligation { span, .. } => span,
|
|
SubregionOrigin::AscribeUserTypeProvePredicate(span) => span,
|
|
SubregionOrigin::CheckAssociatedTypeBounds { ref parent, .. } => parent.span(),
|
|
}
|
|
}
|
|
|
|
pub fn from_obligation_cause<F>(cause: &traits::ObligationCause<'tcx>, default: F) -> Self
|
|
where
|
|
F: FnOnce() -> Self,
|
|
{
|
|
match *cause.code() {
|
|
traits::ObligationCauseCode::ReferenceOutlivesReferent(ref_type) => {
|
|
SubregionOrigin::ReferenceOutlivesReferent(ref_type, cause.span)
|
|
}
|
|
|
|
traits::ObligationCauseCode::CompareImplItem {
|
|
impl_item_def_id,
|
|
trait_item_def_id,
|
|
kind: _,
|
|
} => SubregionOrigin::CompareImplItemObligation {
|
|
span: cause.span,
|
|
impl_item_def_id,
|
|
trait_item_def_id,
|
|
},
|
|
|
|
traits::ObligationCauseCode::CheckAssociatedTypeBounds {
|
|
impl_item_def_id,
|
|
trait_item_def_id,
|
|
} => SubregionOrigin::CheckAssociatedTypeBounds {
|
|
impl_item_def_id,
|
|
trait_item_def_id,
|
|
parent: Box::new(default()),
|
|
},
|
|
|
|
traits::ObligationCauseCode::AscribeUserTypeProvePredicate(span) => {
|
|
SubregionOrigin::AscribeUserTypeProvePredicate(span)
|
|
}
|
|
|
|
traits::ObligationCauseCode::ObjectTypeBound(ty, _reg) => {
|
|
SubregionOrigin::RelateRegionParamBound(cause.span, Some(ty))
|
|
}
|
|
|
|
_ => default(),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl RegionVariableOrigin {
|
|
pub fn span(&self) -> Span {
|
|
match *self {
|
|
RegionVariableOrigin::Misc(a)
|
|
| RegionVariableOrigin::PatternRegion(a)
|
|
| RegionVariableOrigin::BorrowRegion(a)
|
|
| RegionVariableOrigin::Autoref(a)
|
|
| RegionVariableOrigin::Coercion(a)
|
|
| RegionVariableOrigin::RegionParameterDefinition(a, ..)
|
|
| RegionVariableOrigin::BoundRegion(a, ..)
|
|
| RegionVariableOrigin::UpvarRegion(_, a) => a,
|
|
RegionVariableOrigin::Nll(..) => bug!("NLL variable used with `span`"),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'tcx> InferCtxt<'tcx> {
|
|
/// Given a [`hir::Block`], get the span of its last expression or
|
|
/// statement, peeling off any inner blocks.
|
|
pub fn find_block_span(&self, block: &'tcx hir::Block<'tcx>) -> Span {
|
|
let block = block.innermost_block();
|
|
if let Some(expr) = &block.expr {
|
|
expr.span
|
|
} else if let Some(stmt) = block.stmts.last() {
|
|
// possibly incorrect trailing `;` in the else arm
|
|
stmt.span
|
|
} else {
|
|
// empty block; point at its entirety
|
|
block.span
|
|
}
|
|
}
|
|
|
|
/// Given a [`hir::HirId`] for a block (or an expr of a block), get the span
|
|
/// of its last expression or statement, peeling off any inner blocks.
|
|
pub fn find_block_span_from_hir_id(&self, hir_id: hir::HirId) -> Span {
|
|
match self.tcx.hir_node(hir_id) {
|
|
hir::Node::Block(blk)
|
|
| hir::Node::Expr(&hir::Expr { kind: hir::ExprKind::Block(blk, _), .. }) => {
|
|
self.find_block_span(blk)
|
|
}
|
|
hir::Node::Expr(e) => e.span,
|
|
_ => DUMMY_SP,
|
|
}
|
|
}
|
|
}
|