mirror of
				https://github.com/rust-lang/rust.git
				synced 2025-10-31 13:04:42 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			868 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			868 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
| //! Support code for rustdoc and external tools.
 | |
| //! You really don't want to be using this unless you need to.
 | |
| 
 | |
| use super::*;
 | |
| 
 | |
| use crate::errors::UnableToConstructConstantValue;
 | |
| use crate::infer::region_constraints::{Constraint, RegionConstraintData};
 | |
| use crate::infer::InferCtxt;
 | |
| use crate::traits::project::ProjectAndUnifyResult;
 | |
| use rustc_middle::mir::interpret::ErrorHandled;
 | |
| use rustc_middle::ty::fold::{TypeFolder, TypeSuperFoldable};
 | |
| use rustc_middle::ty::visit::TypeVisitable;
 | |
| use rustc_middle::ty::{PolyTraitRef, Region, RegionVid};
 | |
| 
 | |
| use rustc_data_structures::fx::{FxHashMap, FxHashSet};
 | |
| 
 | |
| use std::collections::hash_map::Entry;
 | |
| use std::collections::VecDeque;
 | |
| use std::iter;
 | |
| 
 | |
| // FIXME(twk): this is obviously not nice to duplicate like that
 | |
| #[derive(Eq, PartialEq, Hash, Copy, Clone, Debug)]
 | |
| pub enum RegionTarget<'tcx> {
 | |
|     Region(Region<'tcx>),
 | |
|     RegionVid(RegionVid),
 | |
| }
 | |
| 
 | |
| #[derive(Default, Debug, Clone)]
 | |
| pub struct RegionDeps<'tcx> {
 | |
|     larger: FxHashSet<RegionTarget<'tcx>>,
 | |
|     smaller: FxHashSet<RegionTarget<'tcx>>,
 | |
| }
 | |
| 
 | |
| pub enum AutoTraitResult<A> {
 | |
|     ExplicitImpl,
 | |
|     PositiveImpl(A),
 | |
|     NegativeImpl,
 | |
| }
 | |
| 
 | |
| #[allow(dead_code)]
 | |
| impl<A> AutoTraitResult<A> {
 | |
|     fn is_auto(&self) -> bool {
 | |
|         matches!(self, AutoTraitResult::PositiveImpl(_) | AutoTraitResult::NegativeImpl)
 | |
|     }
 | |
| }
 | |
| 
 | |
| pub struct AutoTraitInfo<'cx> {
 | |
|     pub full_user_env: ty::ParamEnv<'cx>,
 | |
|     pub region_data: RegionConstraintData<'cx>,
 | |
|     pub vid_to_region: FxHashMap<ty::RegionVid, ty::Region<'cx>>,
 | |
| }
 | |
| 
 | |
| pub struct AutoTraitFinder<'tcx> {
 | |
|     tcx: TyCtxt<'tcx>,
 | |
| }
 | |
| 
 | |
| impl<'tcx> AutoTraitFinder<'tcx> {
 | |
|     pub fn new(tcx: TyCtxt<'tcx>) -> Self {
 | |
|         AutoTraitFinder { tcx }
 | |
|     }
 | |
| 
 | |
|     /// Makes a best effort to determine whether and under which conditions an auto trait is
 | |
|     /// implemented for a type. For example, if you have
 | |
|     ///
 | |
|     /// ```
 | |
|     /// struct Foo<T> { data: Box<T> }
 | |
|     /// ```
 | |
|     ///
 | |
|     /// then this might return that `Foo<T>: Send` if `T: Send` (encoded in the AutoTraitResult
 | |
|     /// type). The analysis attempts to account for custom impls as well as other complex cases.
 | |
|     /// This result is intended for use by rustdoc and other such consumers.
 | |
|     ///
 | |
|     /// (Note that due to the coinductive nature of Send, the full and correct result is actually
 | |
|     /// quite simple to generate. That is, when a type has no custom impl, it is Send iff its field
 | |
|     /// types are all Send. So, in our example, we might have that `Foo<T>: Send` if `Box<T>: Send`.
 | |
|     /// But this is often not the best way to present to the user.)
 | |
|     ///
 | |
|     /// Warning: The API should be considered highly unstable, and it may be refactored or removed
 | |
|     /// in the future.
 | |
|     pub fn find_auto_trait_generics<A>(
 | |
|         &self,
 | |
|         ty: Ty<'tcx>,
 | |
|         orig_env: ty::ParamEnv<'tcx>,
 | |
|         trait_did: DefId,
 | |
|         mut auto_trait_callback: impl FnMut(AutoTraitInfo<'tcx>) -> A,
 | |
|     ) -> AutoTraitResult<A> {
 | |
|         let tcx = self.tcx;
 | |
| 
 | |
|         let trait_ref = ty::TraitRef { def_id: trait_did, substs: tcx.mk_substs_trait(ty, &[]) };
 | |
| 
 | |
|         let trait_pred = ty::Binder::dummy(trait_ref);
 | |
| 
 | |
|         let infcx = tcx.infer_ctxt().build();
 | |
|         let mut selcx = SelectionContext::new(&infcx);
 | |
|         for f in [
 | |
|             PolyTraitRef::to_poly_trait_predicate,
 | |
|             PolyTraitRef::to_poly_trait_predicate_negative_polarity,
 | |
|         ] {
 | |
|             let result =
 | |
|                 selcx.select(&Obligation::new(ObligationCause::dummy(), orig_env, f(&trait_pred)));
 | |
|             if let Ok(Some(ImplSource::UserDefined(_))) = result {
 | |
|                 debug!(
 | |
|                     "find_auto_trait_generics({:?}): \
 | |
|                  manual impl found, bailing out",
 | |
|                     trait_ref
 | |
|                 );
 | |
|                 // If an explicit impl exists, it always takes priority over an auto impl
 | |
|                 return AutoTraitResult::ExplicitImpl;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         let infcx = tcx.infer_ctxt().build();
 | |
|         let mut fresh_preds = FxHashSet::default();
 | |
| 
 | |
|         // Due to the way projections are handled by SelectionContext, we need to run
 | |
|         // evaluate_predicates twice: once on the original param env, and once on the result of
 | |
|         // the first evaluate_predicates call.
 | |
|         //
 | |
|         // The problem is this: most of rustc, including SelectionContext and traits::project,
 | |
|         // are designed to work with a concrete usage of a type (e.g., Vec<u8>
 | |
|         // fn<T>() { Vec<T> }. This information will generally never change - given
 | |
|         // the 'T' in fn<T>() { ... }, we'll never know anything else about 'T'.
 | |
|         // If we're unable to prove that 'T' implements a particular trait, we're done -
 | |
|         // there's nothing left to do but error out.
 | |
|         //
 | |
|         // However, synthesizing an auto trait impl works differently. Here, we start out with
 | |
|         // a set of initial conditions - the ParamEnv of the struct/enum/union we're dealing
 | |
|         // with - and progressively discover the conditions we need to fulfill for it to
 | |
|         // implement a certain auto trait. This ends up breaking two assumptions made by trait
 | |
|         // selection and projection:
 | |
|         //
 | |
|         // * We can always cache the result of a particular trait selection for the lifetime of
 | |
|         // an InfCtxt
 | |
|         // * Given a projection bound such as '<T as SomeTrait>::SomeItem = K', if 'T:
 | |
|         // SomeTrait' doesn't hold, then we don't need to care about the 'SomeItem = K'
 | |
|         //
 | |
|         // We fix the first assumption by manually clearing out all of the InferCtxt's caches
 | |
|         // in between calls to SelectionContext.select. This allows us to keep all of the
 | |
|         // intermediate types we create bound to the 'tcx lifetime, rather than needing to lift
 | |
|         // them between calls.
 | |
|         //
 | |
|         // We fix the second assumption by reprocessing the result of our first call to
 | |
|         // evaluate_predicates. Using the example of '<T as SomeTrait>::SomeItem = K', our first
 | |
|         // pass will pick up 'T: SomeTrait', but not 'SomeItem = K'. On our second pass,
 | |
|         // traits::project will see that 'T: SomeTrait' is in our ParamEnv, allowing
 | |
|         // SelectionContext to return it back to us.
 | |
| 
 | |
|         let Some((new_env, user_env)) = self.evaluate_predicates(
 | |
|             &infcx,
 | |
|             trait_did,
 | |
|             ty,
 | |
|             orig_env,
 | |
|             orig_env,
 | |
|             &mut fresh_preds,
 | |
|             false,
 | |
|         ) else {
 | |
|             return AutoTraitResult::NegativeImpl;
 | |
|         };
 | |
| 
 | |
|         let (full_env, full_user_env) = self
 | |
|             .evaluate_predicates(&infcx, trait_did, ty, new_env, user_env, &mut fresh_preds, true)
 | |
|             .unwrap_or_else(|| {
 | |
|                 panic!("Failed to fully process: {:?} {:?} {:?}", ty, trait_did, orig_env)
 | |
|             });
 | |
| 
 | |
|         debug!(
 | |
|             "find_auto_trait_generics({:?}): fulfilling \
 | |
|              with {:?}",
 | |
|             trait_ref, full_env
 | |
|         );
 | |
|         infcx.clear_caches();
 | |
| 
 | |
|         // At this point, we already have all of the bounds we need. FulfillmentContext is used
 | |
|         // to store all of the necessary region/lifetime bounds in the InferContext, as well as
 | |
|         // an additional sanity check.
 | |
|         let errors =
 | |
|             super::fully_solve_bound(&infcx, ObligationCause::dummy(), full_env, ty, trait_did);
 | |
|         if !errors.is_empty() {
 | |
|             panic!("Unable to fulfill trait {:?} for '{:?}': {:?}", trait_did, ty, errors);
 | |
|         }
 | |
| 
 | |
|         infcx.process_registered_region_obligations(&Default::default(), full_env);
 | |
| 
 | |
|         let region_data =
 | |
|             infcx.inner.borrow_mut().unwrap_region_constraints().region_constraint_data().clone();
 | |
| 
 | |
|         let vid_to_region = self.map_vid_to_region(®ion_data);
 | |
| 
 | |
|         let info = AutoTraitInfo { full_user_env, region_data, vid_to_region };
 | |
| 
 | |
|         AutoTraitResult::PositiveImpl(auto_trait_callback(info))
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<'tcx> AutoTraitFinder<'tcx> {
 | |
|     /// The core logic responsible for computing the bounds for our synthesized impl.
 | |
|     ///
 | |
|     /// To calculate the bounds, we call `SelectionContext.select` in a loop. Like
 | |
|     /// `FulfillmentContext`, we recursively select the nested obligations of predicates we
 | |
|     /// encounter. However, whenever we encounter an `UnimplementedError` involving a type
 | |
|     /// parameter, we add it to our `ParamEnv`. Since our goal is to determine when a particular
 | |
|     /// type implements an auto trait, Unimplemented errors tell us what conditions need to be met.
 | |
|     ///
 | |
|     /// This method ends up working somewhat similarly to `FulfillmentContext`, but with a few key
 | |
|     /// differences. `FulfillmentContext` works under the assumption that it's dealing with concrete
 | |
|     /// user code. According, it considers all possible ways that a `Predicate` could be met, which
 | |
|     /// isn't always what we want for a synthesized impl. For example, given the predicate `T:
 | |
|     /// Iterator`, `FulfillmentContext` can end up reporting an Unimplemented error for `T:
 | |
|     /// IntoIterator` -- since there's an implementation of `Iterator` where `T: IntoIterator`,
 | |
|     /// `FulfillmentContext` will drive `SelectionContext` to consider that impl before giving up.
 | |
|     /// If we were to rely on `FulfillmentContext`s decision, we might end up synthesizing an impl
 | |
|     /// like this:
 | |
|     /// ```ignore (illustrative)
 | |
|     /// impl<T> Send for Foo<T> where T: IntoIterator
 | |
|     /// ```
 | |
|     /// While it might be technically true that Foo implements Send where `T: IntoIterator`,
 | |
|     /// the bound is overly restrictive - it's really only necessary that `T: Iterator`.
 | |
|     ///
 | |
|     /// For this reason, `evaluate_predicates` handles predicates with type variables specially.
 | |
|     /// When we encounter an `Unimplemented` error for a bound such as `T: Iterator`, we immediately
 | |
|     /// add it to our `ParamEnv`, and add it to our stack for recursive evaluation. When we later
 | |
|     /// select it, we'll pick up any nested bounds, without ever inferring that `T: IntoIterator`
 | |
|     /// needs to hold.
 | |
|     ///
 | |
|     /// One additional consideration is supertrait bounds. Normally, a `ParamEnv` is only ever
 | |
|     /// constructed once for a given type. As part of the construction process, the `ParamEnv` will
 | |
|     /// have any supertrait bounds normalized -- e.g., if we have a type `struct Foo<T: Copy>`, the
 | |
|     /// `ParamEnv` will contain `T: Copy` and `T: Clone`, since `Copy: Clone`. When we construct our
 | |
|     /// own `ParamEnv`, we need to do this ourselves, through `traits::elaborate_predicates`, or
 | |
|     /// else `SelectionContext` will choke on the missing predicates. However, this should never
 | |
|     /// show up in the final synthesized generics: we don't want our generated docs page to contain
 | |
|     /// something like `T: Copy + Clone`, as that's redundant. Therefore, we keep track of a
 | |
|     /// separate `user_env`, which only holds the predicates that will actually be displayed to the
 | |
|     /// user.
 | |
|     fn evaluate_predicates(
 | |
|         &self,
 | |
|         infcx: &InferCtxt<'tcx>,
 | |
|         trait_did: DefId,
 | |
|         ty: Ty<'tcx>,
 | |
|         param_env: ty::ParamEnv<'tcx>,
 | |
|         user_env: ty::ParamEnv<'tcx>,
 | |
|         fresh_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
 | |
|         only_projections: bool,
 | |
|     ) -> Option<(ty::ParamEnv<'tcx>, ty::ParamEnv<'tcx>)> {
 | |
|         let tcx = infcx.tcx;
 | |
| 
 | |
|         // Don't try to process any nested obligations involving predicates
 | |
|         // that are already in the `ParamEnv` (modulo regions): we already
 | |
|         // know that they must hold.
 | |
|         for predicate in param_env.caller_bounds() {
 | |
|             fresh_preds.insert(self.clean_pred(infcx, predicate));
 | |
|         }
 | |
| 
 | |
|         let mut select = SelectionContext::new(&infcx);
 | |
| 
 | |
|         let mut already_visited = FxHashSet::default();
 | |
|         let mut predicates = VecDeque::new();
 | |
|         predicates.push_back(ty::Binder::dummy(ty::TraitPredicate {
 | |
|             trait_ref: ty::TraitRef {
 | |
|                 def_id: trait_did,
 | |
|                 substs: infcx.tcx.mk_substs_trait(ty, &[]),
 | |
|             },
 | |
|             constness: ty::BoundConstness::NotConst,
 | |
|             // Auto traits are positive
 | |
|             polarity: ty::ImplPolarity::Positive,
 | |
|         }));
 | |
| 
 | |
|         let computed_preds = param_env.caller_bounds().iter();
 | |
|         let mut user_computed_preds: FxHashSet<_> = user_env.caller_bounds().iter().collect();
 | |
| 
 | |
|         let mut new_env = param_env;
 | |
|         let dummy_cause = ObligationCause::dummy();
 | |
| 
 | |
|         while let Some(pred) = predicates.pop_front() {
 | |
|             infcx.clear_caches();
 | |
| 
 | |
|             if !already_visited.insert(pred) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             // Call `infcx.resolve_vars_if_possible` to see if we can
 | |
|             // get rid of any inference variables.
 | |
|             let obligation =
 | |
|                 infcx.resolve_vars_if_possible(Obligation::new(dummy_cause.clone(), new_env, pred));
 | |
|             let result = select.select(&obligation);
 | |
| 
 | |
|             match result {
 | |
|                 Ok(Some(ref impl_source)) => {
 | |
|                     // If we see an explicit negative impl (e.g., `impl !Send for MyStruct`),
 | |
|                     // we immediately bail out, since it's impossible for us to continue.
 | |
| 
 | |
|                     if let ImplSource::UserDefined(ImplSourceUserDefinedData {
 | |
|                         impl_def_id, ..
 | |
|                     }) = impl_source
 | |
|                     {
 | |
|                         // Blame 'tidy' for the weird bracket placement.
 | |
|                         if infcx.tcx.impl_polarity(*impl_def_id) == ty::ImplPolarity::Negative {
 | |
|                             debug!(
 | |
|                                 "evaluate_nested_obligations: found explicit negative impl\
 | |
|                                         {:?}, bailing out",
 | |
|                                 impl_def_id
 | |
|                             );
 | |
|                             return None;
 | |
|                         }
 | |
|                     }
 | |
| 
 | |
|                     let obligations = impl_source.borrow_nested_obligations().iter().cloned();
 | |
| 
 | |
|                     if !self.evaluate_nested_obligations(
 | |
|                         ty,
 | |
|                         obligations,
 | |
|                         &mut user_computed_preds,
 | |
|                         fresh_preds,
 | |
|                         &mut predicates,
 | |
|                         &mut select,
 | |
|                         only_projections,
 | |
|                     ) {
 | |
|                         return None;
 | |
|                     }
 | |
|                 }
 | |
|                 Ok(None) => {}
 | |
|                 Err(SelectionError::Unimplemented) => {
 | |
|                     if self.is_param_no_infer(pred.skip_binder().trait_ref.substs) {
 | |
|                         already_visited.remove(&pred);
 | |
|                         self.add_user_pred(&mut user_computed_preds, pred.to_predicate(self.tcx));
 | |
|                         predicates.push_back(pred);
 | |
|                     } else {
 | |
|                         debug!(
 | |
|                             "evaluate_nested_obligations: `Unimplemented` found, bailing: \
 | |
|                              {:?} {:?} {:?}",
 | |
|                             ty,
 | |
|                             pred,
 | |
|                             pred.skip_binder().trait_ref.substs
 | |
|                         );
 | |
|                         return None;
 | |
|                     }
 | |
|                 }
 | |
|                 _ => panic!("Unexpected error for '{:?}': {:?}", ty, result),
 | |
|             };
 | |
| 
 | |
|             let normalized_preds = elaborate_predicates(
 | |
|                 tcx,
 | |
|                 computed_preds.clone().chain(user_computed_preds.iter().cloned()),
 | |
|             )
 | |
|             .map(|o| o.predicate);
 | |
|             new_env = ty::ParamEnv::new(
 | |
|                 tcx.mk_predicates(normalized_preds),
 | |
|                 param_env.reveal(),
 | |
|                 param_env.constness(),
 | |
|             );
 | |
|         }
 | |
| 
 | |
|         let final_user_env = ty::ParamEnv::new(
 | |
|             tcx.mk_predicates(user_computed_preds.into_iter()),
 | |
|             user_env.reveal(),
 | |
|             user_env.constness(),
 | |
|         );
 | |
|         debug!(
 | |
|             "evaluate_nested_obligations(ty={:?}, trait_did={:?}): succeeded with '{:?}' \
 | |
|              '{:?}'",
 | |
|             ty, trait_did, new_env, final_user_env
 | |
|         );
 | |
| 
 | |
|         Some((new_env, final_user_env))
 | |
|     }
 | |
| 
 | |
|     /// This method is designed to work around the following issue:
 | |
|     /// When we compute auto trait bounds, we repeatedly call `SelectionContext.select`,
 | |
|     /// progressively building a `ParamEnv` based on the results we get.
 | |
|     /// However, our usage of `SelectionContext` differs from its normal use within the compiler,
 | |
|     /// in that we capture and re-reprocess predicates from `Unimplemented` errors.
 | |
|     ///
 | |
|     /// This can lead to a corner case when dealing with region parameters.
 | |
|     /// During our selection loop in `evaluate_predicates`, we might end up with
 | |
|     /// two trait predicates that differ only in their region parameters:
 | |
|     /// one containing a HRTB lifetime parameter, and one containing a 'normal'
 | |
|     /// lifetime parameter. For example:
 | |
|     /// ```ignore (illustrative)
 | |
|     /// T as MyTrait<'a>
 | |
|     /// T as MyTrait<'static>
 | |
|     /// ```
 | |
|     /// If we put both of these predicates in our computed `ParamEnv`, we'll
 | |
|     /// confuse `SelectionContext`, since it will (correctly) view both as being applicable.
 | |
|     ///
 | |
|     /// To solve this, we pick the 'more strict' lifetime bound -- i.e., the HRTB
 | |
|     /// Our end goal is to generate a user-visible description of the conditions
 | |
|     /// under which a type implements an auto trait. A trait predicate involving
 | |
|     /// a HRTB means that the type needs to work with any choice of lifetime,
 | |
|     /// not just one specific lifetime (e.g., `'static`).
 | |
|     fn add_user_pred(
 | |
|         &self,
 | |
|         user_computed_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
 | |
|         new_pred: ty::Predicate<'tcx>,
 | |
|     ) {
 | |
|         let mut should_add_new = true;
 | |
|         user_computed_preds.retain(|&old_pred| {
 | |
|             if let (ty::PredicateKind::Trait(new_trait), ty::PredicateKind::Trait(old_trait)) =
 | |
|                 (new_pred.kind().skip_binder(), old_pred.kind().skip_binder())
 | |
|             {
 | |
|                 if new_trait.def_id() == old_trait.def_id() {
 | |
|                     let new_substs = new_trait.trait_ref.substs;
 | |
|                     let old_substs = old_trait.trait_ref.substs;
 | |
| 
 | |
|                     if !new_substs.types().eq(old_substs.types()) {
 | |
|                         // We can't compare lifetimes if the types are different,
 | |
|                         // so skip checking `old_pred`.
 | |
|                         return true;
 | |
|                     }
 | |
| 
 | |
|                     for (new_region, old_region) in
 | |
|                         iter::zip(new_substs.regions(), old_substs.regions())
 | |
|                     {
 | |
|                         match (*new_region, *old_region) {
 | |
|                             // If both predicates have an `ReLateBound` (a HRTB) in the
 | |
|                             // same spot, we do nothing.
 | |
|                             (ty::ReLateBound(_, _), ty::ReLateBound(_, _)) => {}
 | |
| 
 | |
|                             (ty::ReLateBound(_, _), _) | (_, ty::ReVar(_)) => {
 | |
|                                 // One of these is true:
 | |
|                                 // The new predicate has a HRTB in a spot where the old
 | |
|                                 // predicate does not (if they both had a HRTB, the previous
 | |
|                                 // match arm would have executed). A HRBT is a 'stricter'
 | |
|                                 // bound than anything else, so we want to keep the newer
 | |
|                                 // predicate (with the HRBT) in place of the old predicate.
 | |
|                                 //
 | |
|                                 // OR
 | |
|                                 //
 | |
|                                 // The old predicate has a region variable where the new
 | |
|                                 // predicate has some other kind of region. An region
 | |
|                                 // variable isn't something we can actually display to a user,
 | |
|                                 // so we choose their new predicate (which doesn't have a region
 | |
|                                 // variable).
 | |
|                                 //
 | |
|                                 // In both cases, we want to remove the old predicate,
 | |
|                                 // from `user_computed_preds`, and replace it with the new
 | |
|                                 // one. Having both the old and the new
 | |
|                                 // predicate in a `ParamEnv` would confuse `SelectionContext`.
 | |
|                                 //
 | |
|                                 // We're currently in the predicate passed to 'retain',
 | |
|                                 // so we return `false` to remove the old predicate from
 | |
|                                 // `user_computed_preds`.
 | |
|                                 return false;
 | |
|                             }
 | |
|                             (_, ty::ReLateBound(_, _)) | (ty::ReVar(_), _) => {
 | |
|                                 // This is the opposite situation as the previous arm.
 | |
|                                 // One of these is true:
 | |
|                                 //
 | |
|                                 // The old predicate has a HRTB lifetime in a place where the
 | |
|                                 // new predicate does not.
 | |
|                                 //
 | |
|                                 // OR
 | |
|                                 //
 | |
|                                 // The new predicate has a region variable where the old
 | |
|                                 // predicate has some other type of region.
 | |
|                                 //
 | |
|                                 // We want to leave the old
 | |
|                                 // predicate in `user_computed_preds`, and skip adding
 | |
|                                 // new_pred to `user_computed_params`.
 | |
|                                 should_add_new = false
 | |
|                             }
 | |
|                             _ => {}
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             true
 | |
|         });
 | |
| 
 | |
|         if should_add_new {
 | |
|             user_computed_preds.insert(new_pred);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// This is very similar to `handle_lifetimes`. However, instead of matching `ty::Region`s
 | |
|     /// to each other, we match `ty::RegionVid`s to `ty::Region`s.
 | |
|     fn map_vid_to_region<'cx>(
 | |
|         &self,
 | |
|         regions: &RegionConstraintData<'cx>,
 | |
|     ) -> FxHashMap<ty::RegionVid, ty::Region<'cx>> {
 | |
|         let mut vid_map: FxHashMap<RegionTarget<'cx>, RegionDeps<'cx>> = FxHashMap::default();
 | |
|         let mut finished_map = FxHashMap::default();
 | |
| 
 | |
|         for constraint in regions.constraints.keys() {
 | |
|             match constraint {
 | |
|                 &Constraint::VarSubVar(r1, r2) => {
 | |
|                     {
 | |
|                         let deps1 = vid_map.entry(RegionTarget::RegionVid(r1)).or_default();
 | |
|                         deps1.larger.insert(RegionTarget::RegionVid(r2));
 | |
|                     }
 | |
| 
 | |
|                     let deps2 = vid_map.entry(RegionTarget::RegionVid(r2)).or_default();
 | |
|                     deps2.smaller.insert(RegionTarget::RegionVid(r1));
 | |
|                 }
 | |
|                 &Constraint::RegSubVar(region, vid) => {
 | |
|                     {
 | |
|                         let deps1 = vid_map.entry(RegionTarget::Region(region)).or_default();
 | |
|                         deps1.larger.insert(RegionTarget::RegionVid(vid));
 | |
|                     }
 | |
| 
 | |
|                     let deps2 = vid_map.entry(RegionTarget::RegionVid(vid)).or_default();
 | |
|                     deps2.smaller.insert(RegionTarget::Region(region));
 | |
|                 }
 | |
|                 &Constraint::VarSubReg(vid, region) => {
 | |
|                     finished_map.insert(vid, region);
 | |
|                 }
 | |
|                 &Constraint::RegSubReg(r1, r2) => {
 | |
|                     {
 | |
|                         let deps1 = vid_map.entry(RegionTarget::Region(r1)).or_default();
 | |
|                         deps1.larger.insert(RegionTarget::Region(r2));
 | |
|                     }
 | |
| 
 | |
|                     let deps2 = vid_map.entry(RegionTarget::Region(r2)).or_default();
 | |
|                     deps2.smaller.insert(RegionTarget::Region(r1));
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         while !vid_map.is_empty() {
 | |
|             let target = *vid_map.keys().next().expect("Keys somehow empty");
 | |
|             let deps = vid_map.remove(&target).expect("Entry somehow missing");
 | |
| 
 | |
|             for smaller in deps.smaller.iter() {
 | |
|                 for larger in deps.larger.iter() {
 | |
|                     match (smaller, larger) {
 | |
|                         (&RegionTarget::Region(_), &RegionTarget::Region(_)) => {
 | |
|                             if let Entry::Occupied(v) = vid_map.entry(*smaller) {
 | |
|                                 let smaller_deps = v.into_mut();
 | |
|                                 smaller_deps.larger.insert(*larger);
 | |
|                                 smaller_deps.larger.remove(&target);
 | |
|                             }
 | |
| 
 | |
|                             if let Entry::Occupied(v) = vid_map.entry(*larger) {
 | |
|                                 let larger_deps = v.into_mut();
 | |
|                                 larger_deps.smaller.insert(*smaller);
 | |
|                                 larger_deps.smaller.remove(&target);
 | |
|                             }
 | |
|                         }
 | |
|                         (&RegionTarget::RegionVid(v1), &RegionTarget::Region(r1)) => {
 | |
|                             finished_map.insert(v1, r1);
 | |
|                         }
 | |
|                         (&RegionTarget::Region(_), &RegionTarget::RegionVid(_)) => {
 | |
|                             // Do nothing; we don't care about regions that are smaller than vids.
 | |
|                         }
 | |
|                         (&RegionTarget::RegionVid(_), &RegionTarget::RegionVid(_)) => {
 | |
|                             if let Entry::Occupied(v) = vid_map.entry(*smaller) {
 | |
|                                 let smaller_deps = v.into_mut();
 | |
|                                 smaller_deps.larger.insert(*larger);
 | |
|                                 smaller_deps.larger.remove(&target);
 | |
|                             }
 | |
| 
 | |
|                             if let Entry::Occupied(v) = vid_map.entry(*larger) {
 | |
|                                 let larger_deps = v.into_mut();
 | |
|                                 larger_deps.smaller.insert(*smaller);
 | |
|                                 larger_deps.smaller.remove(&target);
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         finished_map
 | |
|     }
 | |
| 
 | |
|     fn is_param_no_infer(&self, substs: SubstsRef<'_>) -> bool {
 | |
|         self.is_of_param(substs.type_at(0)) && !substs.types().any(|t| t.has_infer_types())
 | |
|     }
 | |
| 
 | |
|     pub fn is_of_param(&self, ty: Ty<'_>) -> bool {
 | |
|         match ty.kind() {
 | |
|             ty::Param(_) => true,
 | |
|             ty::Projection(p) => self.is_of_param(p.self_ty()),
 | |
|             _ => false,
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fn is_self_referential_projection(&self, p: ty::PolyProjectionPredicate<'_>) -> bool {
 | |
|         if let Some(ty) = p.term().skip_binder().ty() {
 | |
|             matches!(ty.kind(), ty::Projection(proj) if proj == &p.skip_binder().projection_ty)
 | |
|         } else {
 | |
|             false
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fn evaluate_nested_obligations(
 | |
|         &self,
 | |
|         ty: Ty<'_>,
 | |
|         nested: impl Iterator<Item = Obligation<'tcx, ty::Predicate<'tcx>>>,
 | |
|         computed_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
 | |
|         fresh_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
 | |
|         predicates: &mut VecDeque<ty::PolyTraitPredicate<'tcx>>,
 | |
|         select: &mut SelectionContext<'_, 'tcx>,
 | |
|         only_projections: bool,
 | |
|     ) -> bool {
 | |
|         let dummy_cause = ObligationCause::dummy();
 | |
| 
 | |
|         for obligation in nested {
 | |
|             let is_new_pred =
 | |
|                 fresh_preds.insert(self.clean_pred(select.infcx(), obligation.predicate));
 | |
| 
 | |
|             // Resolve any inference variables that we can, to help selection succeed
 | |
|             let predicate = select.infcx().resolve_vars_if_possible(obligation.predicate);
 | |
| 
 | |
|             // We only add a predicate as a user-displayable bound if
 | |
|             // it involves a generic parameter, and doesn't contain
 | |
|             // any inference variables.
 | |
|             //
 | |
|             // Displaying a bound involving a concrete type (instead of a generic
 | |
|             // parameter) would be pointless, since it's always true
 | |
|             // (e.g. u8: Copy)
 | |
|             // Displaying an inference variable is impossible, since they're
 | |
|             // an internal compiler detail without a defined visual representation
 | |
|             //
 | |
|             // We check this by calling is_of_param on the relevant types
 | |
|             // from the various possible predicates
 | |
| 
 | |
|             let bound_predicate = predicate.kind();
 | |
|             match bound_predicate.skip_binder() {
 | |
|                 ty::PredicateKind::Trait(p) => {
 | |
|                     // Add this to `predicates` so that we end up calling `select`
 | |
|                     // with it. If this predicate ends up being unimplemented,
 | |
|                     // then `evaluate_predicates` will handle adding it the `ParamEnv`
 | |
|                     // if possible.
 | |
|                     predicates.push_back(bound_predicate.rebind(p));
 | |
|                 }
 | |
|                 ty::PredicateKind::Projection(p) => {
 | |
|                     let p = bound_predicate.rebind(p);
 | |
|                     debug!(
 | |
|                         "evaluate_nested_obligations: examining projection predicate {:?}",
 | |
|                         predicate
 | |
|                     );
 | |
| 
 | |
|                     // As described above, we only want to display
 | |
|                     // bounds which include a generic parameter but don't include
 | |
|                     // an inference variable.
 | |
|                     // Additionally, we check if we've seen this predicate before,
 | |
|                     // to avoid rendering duplicate bounds to the user.
 | |
|                     if self.is_param_no_infer(p.skip_binder().projection_ty.substs)
 | |
|                         && !p.term().skip_binder().has_infer_types()
 | |
|                         && is_new_pred
 | |
|                     {
 | |
|                         debug!(
 | |
|                             "evaluate_nested_obligations: adding projection predicate \
 | |
|                             to computed_preds: {:?}",
 | |
|                             predicate
 | |
|                         );
 | |
| 
 | |
|                         // Under unusual circumstances, we can end up with a self-referential
 | |
|                         // projection predicate. For example:
 | |
|                         // <T as MyType>::Value == <T as MyType>::Value
 | |
|                         // Not only is displaying this to the user pointless,
 | |
|                         // having it in the ParamEnv will cause an issue if we try to call
 | |
|                         // poly_project_and_unify_type on the predicate, since this kind of
 | |
|                         // predicate will normally never end up in a ParamEnv.
 | |
|                         //
 | |
|                         // For these reasons, we ignore these weird predicates,
 | |
|                         // ensuring that we're able to properly synthesize an auto trait impl
 | |
|                         if self.is_self_referential_projection(p) {
 | |
|                             debug!(
 | |
|                                 "evaluate_nested_obligations: encountered a projection
 | |
|                                  predicate equating a type with itself! Skipping"
 | |
|                             );
 | |
|                         } else {
 | |
|                             self.add_user_pred(computed_preds, predicate);
 | |
|                         }
 | |
|                     }
 | |
| 
 | |
|                     // There are three possible cases when we project a predicate:
 | |
|                     //
 | |
|                     // 1. We encounter an error. This means that it's impossible for
 | |
|                     // our current type to implement the auto trait - there's bound
 | |
|                     // that we could add to our ParamEnv that would 'fix' this kind
 | |
|                     // of error, as it's not caused by an unimplemented type.
 | |
|                     //
 | |
|                     // 2. We successfully project the predicate (Ok(Some(_))), generating
 | |
|                     //  some subobligations. We then process these subobligations
 | |
|                     //  like any other generated sub-obligations.
 | |
|                     //
 | |
|                     // 3. We receive an 'ambiguous' result (Ok(None))
 | |
|                     // If we were actually trying to compile a crate,
 | |
|                     // we would need to re-process this obligation later.
 | |
|                     // However, all we care about is finding out what bounds
 | |
|                     // are needed for our type to implement a particular auto trait.
 | |
|                     // We've already added this obligation to our computed ParamEnv
 | |
|                     // above (if it was necessary). Therefore, we don't need
 | |
|                     // to do any further processing of the obligation.
 | |
|                     //
 | |
|                     // Note that we *must* try to project *all* projection predicates
 | |
|                     // we encounter, even ones without inference variable.
 | |
|                     // This ensures that we detect any projection errors,
 | |
|                     // which indicate that our type can *never* implement the given
 | |
|                     // auto trait. In that case, we will generate an explicit negative
 | |
|                     // impl (e.g. 'impl !Send for MyType'). However, we don't
 | |
|                     // try to process any of the generated subobligations -
 | |
|                     // they contain no new information, since we already know
 | |
|                     // that our type implements the projected-through trait,
 | |
|                     // and can lead to weird region issues.
 | |
|                     //
 | |
|                     // Normally, we'll generate a negative impl as a result of encountering
 | |
|                     // a type with an explicit negative impl of an auto trait
 | |
|                     // (for example, raw pointers have !Send and !Sync impls)
 | |
|                     // However, through some **interesting** manipulations of the type
 | |
|                     // system, it's actually possible to write a type that never
 | |
|                     // implements an auto trait due to a projection error, not a normal
 | |
|                     // negative impl error. To properly handle this case, we need
 | |
|                     // to ensure that we catch any potential projection errors,
 | |
|                     // and turn them into an explicit negative impl for our type.
 | |
|                     debug!("Projecting and unifying projection predicate {:?}", predicate);
 | |
| 
 | |
|                     match project::poly_project_and_unify_type(select, &obligation.with(p)) {
 | |
|                         ProjectAndUnifyResult::MismatchedProjectionTypes(e) => {
 | |
|                             debug!(
 | |
|                                 "evaluate_nested_obligations: Unable to unify predicate \
 | |
|                                  '{:?}' '{:?}', bailing out",
 | |
|                                 ty, e
 | |
|                             );
 | |
|                             return false;
 | |
|                         }
 | |
|                         ProjectAndUnifyResult::Recursive => {
 | |
|                             debug!("evaluate_nested_obligations: recursive projection predicate");
 | |
|                             return false;
 | |
|                         }
 | |
|                         ProjectAndUnifyResult::Holds(v) => {
 | |
|                             // We only care about sub-obligations
 | |
|                             // when we started out trying to unify
 | |
|                             // some inference variables. See the comment above
 | |
|                             // for more information
 | |
|                             if p.term().skip_binder().has_infer_types() {
 | |
|                                 if !self.evaluate_nested_obligations(
 | |
|                                     ty,
 | |
|                                     v.into_iter(),
 | |
|                                     computed_preds,
 | |
|                                     fresh_preds,
 | |
|                                     predicates,
 | |
|                                     select,
 | |
|                                     only_projections,
 | |
|                                 ) {
 | |
|                                     return false;
 | |
|                                 }
 | |
|                             }
 | |
|                         }
 | |
|                         ProjectAndUnifyResult::FailedNormalization => {
 | |
|                             // It's ok not to make progress when have no inference variables -
 | |
|                             // in that case, we were only performing unification to check if an
 | |
|                             // error occurred (which would indicate that it's impossible for our
 | |
|                             // type to implement the auto trait).
 | |
|                             // However, we should always make progress (either by generating
 | |
|                             // subobligations or getting an error) when we started off with
 | |
|                             // inference variables
 | |
|                             if p.term().skip_binder().has_infer_types() {
 | |
|                                 panic!("Unexpected result when selecting {:?} {:?}", ty, obligation)
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|                 ty::PredicateKind::RegionOutlives(binder) => {
 | |
|                     let binder = bound_predicate.rebind(binder);
 | |
|                     select.infcx().region_outlives_predicate(&dummy_cause, binder)
 | |
|                 }
 | |
|                 ty::PredicateKind::TypeOutlives(binder) => {
 | |
|                     let binder = bound_predicate.rebind(binder);
 | |
|                     match (
 | |
|                         binder.no_bound_vars(),
 | |
|                         binder.map_bound_ref(|pred| pred.0).no_bound_vars(),
 | |
|                     ) {
 | |
|                         (None, Some(t_a)) => {
 | |
|                             select.infcx().register_region_obligation_with_cause(
 | |
|                                 t_a,
 | |
|                                 select.infcx().tcx.lifetimes.re_static,
 | |
|                                 &dummy_cause,
 | |
|                             );
 | |
|                         }
 | |
|                         (Some(ty::OutlivesPredicate(t_a, r_b)), _) => {
 | |
|                             select.infcx().register_region_obligation_with_cause(
 | |
|                                 t_a,
 | |
|                                 r_b,
 | |
|                                 &dummy_cause,
 | |
|                             );
 | |
|                         }
 | |
|                         _ => {}
 | |
|                     };
 | |
|                 }
 | |
|                 ty::PredicateKind::ConstEquate(c1, c2) => {
 | |
|                     let evaluate = |c: ty::Const<'tcx>| {
 | |
|                         if let ty::ConstKind::Unevaluated(unevaluated) = c.kind() {
 | |
|                             match select.infcx().const_eval_resolve(
 | |
|                                 obligation.param_env,
 | |
|                                 unevaluated,
 | |
|                                 Some(obligation.cause.span),
 | |
|                             ) {
 | |
|                                 Ok(Some(valtree)) => {
 | |
|                                     Ok(ty::Const::from_value(select.tcx(), valtree, c.ty()))
 | |
|                                 }
 | |
|                                 Ok(None) => {
 | |
|                                     let tcx = self.tcx;
 | |
|                                     let def_id = unevaluated.def.did;
 | |
|                                     let reported =
 | |
|                                         tcx.sess.emit_err(UnableToConstructConstantValue {
 | |
|                                             span: tcx.def_span(def_id),
 | |
|                                             unevaluated: unevaluated,
 | |
|                                         });
 | |
|                                     Err(ErrorHandled::Reported(reported))
 | |
|                                 }
 | |
|                                 Err(err) => Err(err),
 | |
|                             }
 | |
|                         } else {
 | |
|                             Ok(c)
 | |
|                         }
 | |
|                     };
 | |
| 
 | |
|                     match (evaluate(c1), evaluate(c2)) {
 | |
|                         (Ok(c1), Ok(c2)) => {
 | |
|                             match select
 | |
|                                 .infcx()
 | |
|                                 .at(&obligation.cause, obligation.param_env)
 | |
|                                 .eq(c1, c2)
 | |
|                             {
 | |
|                                 Ok(_) => (),
 | |
|                                 Err(_) => return false,
 | |
|                             }
 | |
|                         }
 | |
|                         _ => return false,
 | |
|                     }
 | |
|                 }
 | |
|                 // There's not really much we can do with these predicates -
 | |
|                 // we start out with a `ParamEnv` with no inference variables,
 | |
|                 // and these don't correspond to adding any new bounds to
 | |
|                 // the `ParamEnv`.
 | |
|                 ty::PredicateKind::WellFormed(..)
 | |
|                 | ty::PredicateKind::ObjectSafe(..)
 | |
|                 | ty::PredicateKind::ClosureKind(..)
 | |
|                 | ty::PredicateKind::Subtype(..)
 | |
|                 | ty::PredicateKind::ConstEvaluatable(..)
 | |
|                 | ty::PredicateKind::Coerce(..)
 | |
|                 | ty::PredicateKind::TypeWellFormedFromEnv(..) => {}
 | |
|             };
 | |
|         }
 | |
|         true
 | |
|     }
 | |
| 
 | |
|     pub fn clean_pred(
 | |
|         &self,
 | |
|         infcx: &InferCtxt<'tcx>,
 | |
|         p: ty::Predicate<'tcx>,
 | |
|     ) -> ty::Predicate<'tcx> {
 | |
|         infcx.freshen(p)
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Replaces all ReVars in a type with ty::Region's, using the provided map
 | |
| pub struct RegionReplacer<'a, 'tcx> {
 | |
|     vid_to_region: &'a FxHashMap<ty::RegionVid, ty::Region<'tcx>>,
 | |
|     tcx: TyCtxt<'tcx>,
 | |
| }
 | |
| 
 | |
| impl<'a, 'tcx> TypeFolder<'tcx> for RegionReplacer<'a, 'tcx> {
 | |
|     fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
 | |
|         self.tcx
 | |
|     }
 | |
| 
 | |
|     fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
 | |
|         (match *r {
 | |
|             ty::ReVar(vid) => self.vid_to_region.get(&vid).cloned(),
 | |
|             _ => None,
 | |
|         })
 | |
|         .unwrap_or_else(|| r.super_fold_with(self))
 | |
|     }
 | |
| }
 | 
