mirror of
https://github.com/rust-lang/rust.git
synced 2025-10-28 03:24:11 +00:00
The PR had some unforseen perf regressions that are not as easy to find. Revert the PR for now. This reverts commit 6ae8912a3e7d2c4c775024f58a7ba4b1aedc4073, reversing changes made to 86d6d2b7389fe1b339402c1798edae8b695fc9ef.
697 lines
24 KiB
Rust
697 lines
24 KiB
Rust
//! Generate files suitable for use with [Graphviz](https://www.graphviz.org/)
|
|
//!
|
|
//! The `render` function generates output (e.g., an `output.dot` file) for
|
|
//! use with [Graphviz](https://www.graphviz.org/) by walking a labeled
|
|
//! graph. (Graphviz can then automatically lay out the nodes and edges
|
|
//! of the graph, and also optionally render the graph as an image or
|
|
//! other [output formats](
|
|
//! https://www.graphviz.org/content/output-formats), such as SVG.)
|
|
//!
|
|
//! Rather than impose some particular graph data structure on clients,
|
|
//! this library exposes two traits that clients can implement on their
|
|
//! own structs before handing them over to the rendering function.
|
|
//!
|
|
//! Note: This library does not yet provide access to the full
|
|
//! expressiveness of the [DOT language](
|
|
//! https://www.graphviz.org/doc/info/lang.html). For example, there are
|
|
//! many [attributes](https://www.graphviz.org/content/attrs) related to
|
|
//! providing layout hints (e.g., left-to-right versus top-down, which
|
|
//! algorithm to use, etc). The current intention of this library is to
|
|
//! emit a human-readable .dot file with very regular structure suitable
|
|
//! for easy post-processing.
|
|
//!
|
|
//! # Examples
|
|
//!
|
|
//! The first example uses a very simple graph representation: a list of
|
|
//! pairs of ints, representing the edges (the node set is implicit).
|
|
//! Each node label is derived directly from the int representing the node,
|
|
//! while the edge labels are all empty strings.
|
|
//!
|
|
//! This example also illustrates how to use `Cow<[T]>` to return
|
|
//! an owned vector or a borrowed slice as appropriate: we construct the
|
|
//! node vector from scratch, but borrow the edge list (rather than
|
|
//! constructing a copy of all the edges from scratch).
|
|
//!
|
|
//! The output from this example renders five nodes, with the first four
|
|
//! forming a diamond-shaped acyclic graph and then pointing to the fifth
|
|
//! which is cyclic.
|
|
//!
|
|
//! ```rust
|
|
//! #![feature(rustc_private)]
|
|
//!
|
|
//! use std::io::Write;
|
|
//! use rustc_graphviz as dot;
|
|
//!
|
|
//! type Nd = isize;
|
|
//! type Ed = (isize,isize);
|
|
//! struct Edges(Vec<Ed>);
|
|
//!
|
|
//! pub fn render_to<W: Write>(output: &mut W) {
|
|
//! let edges = Edges(vec![(0,1), (0,2), (1,3), (2,3), (3,4), (4,4)]);
|
|
//! dot::render(&edges, output).unwrap()
|
|
//! }
|
|
//!
|
|
//! impl<'a> dot::Labeller<'a> for Edges {
|
|
//! type Node = Nd;
|
|
//! type Edge = Ed;
|
|
//! fn graph_id(&'a self) -> dot::Id<'a> { dot::Id::new("example1").unwrap() }
|
|
//!
|
|
//! fn node_id(&'a self, n: &Nd) -> dot::Id<'a> {
|
|
//! dot::Id::new(format!("N{}", *n)).unwrap()
|
|
//! }
|
|
//! }
|
|
//!
|
|
//! impl<'a> dot::GraphWalk<'a> for Edges {
|
|
//! type Node = Nd;
|
|
//! type Edge = Ed;
|
|
//! fn nodes(&self) -> dot::Nodes<'a,Nd> {
|
|
//! // (assumes that |N| \approxeq |E|)
|
|
//! let &Edges(ref v) = self;
|
|
//! let mut nodes = Vec::with_capacity(v.len());
|
|
//! for &(s,t) in v {
|
|
//! nodes.push(s); nodes.push(t);
|
|
//! }
|
|
//! nodes.sort();
|
|
//! nodes.dedup();
|
|
//! nodes.into()
|
|
//! }
|
|
//!
|
|
//! fn edges(&'a self) -> dot::Edges<'a,Ed> {
|
|
//! let &Edges(ref edges) = self;
|
|
//! (&edges[..]).into()
|
|
//! }
|
|
//!
|
|
//! fn source(&self, e: &Ed) -> Nd { let &(s,_) = e; s }
|
|
//!
|
|
//! fn target(&self, e: &Ed) -> Nd { let &(_,t) = e; t }
|
|
//! }
|
|
//!
|
|
//! # pub fn main() { render_to(&mut Vec::new()) }
|
|
//! ```
|
|
//!
|
|
//! ```no_run
|
|
//! # pub fn render_to<W:std::io::Write>(output: &mut W) { unimplemented!() }
|
|
//! pub fn main() {
|
|
//! use std::fs::File;
|
|
//! let mut f = File::create("example1.dot").unwrap();
|
|
//! render_to(&mut f)
|
|
//! }
|
|
//! ```
|
|
//!
|
|
//! Output from first example (in `example1.dot`):
|
|
//!
|
|
//! ```dot
|
|
//! digraph example1 {
|
|
//! N0[label="N0"];
|
|
//! N1[label="N1"];
|
|
//! N2[label="N2"];
|
|
//! N3[label="N3"];
|
|
//! N4[label="N4"];
|
|
//! N0 -> N1[label=""];
|
|
//! N0 -> N2[label=""];
|
|
//! N1 -> N3[label=""];
|
|
//! N2 -> N3[label=""];
|
|
//! N3 -> N4[label=""];
|
|
//! N4 -> N4[label=""];
|
|
//! }
|
|
//! ```
|
|
//!
|
|
//! The second example illustrates using `node_label` and `edge_label` to
|
|
//! add labels to the nodes and edges in the rendered graph. The graph
|
|
//! here carries both `nodes` (the label text to use for rendering a
|
|
//! particular node), and `edges` (again a list of `(source,target)`
|
|
//! indices).
|
|
//!
|
|
//! This example also illustrates how to use a type (in this case the edge
|
|
//! type) that shares substructure with the graph: the edge type here is a
|
|
//! direct reference to the `(source,target)` pair stored in the graph's
|
|
//! internal vector (rather than passing around a copy of the pair
|
|
//! itself). Note that this implies that `fn edges(&'a self)` must
|
|
//! construct a fresh `Vec<&'a (usize,usize)>` from the `Vec<(usize,usize)>`
|
|
//! edges stored in `self`.
|
|
//!
|
|
//! Since both the set of nodes and the set of edges are always
|
|
//! constructed from scratch via iterators, we use the `collect()` method
|
|
//! from the `Iterator` trait to collect the nodes and edges into freshly
|
|
//! constructed growable `Vec` values (rather than using `Cow` as in the
|
|
//! first example above).
|
|
//!
|
|
//! The output from this example renders four nodes that make up the
|
|
//! Hasse-diagram for the subsets of the set `{x, y}`. Each edge is
|
|
//! labeled with the ⊆ character (specified using the HTML character
|
|
//! entity `&sube`).
|
|
//!
|
|
//! ```rust
|
|
//! #![feature(rustc_private)]
|
|
//!
|
|
//! use std::io::Write;
|
|
//! use rustc_graphviz as dot;
|
|
//!
|
|
//! type Nd = usize;
|
|
//! type Ed<'a> = &'a (usize, usize);
|
|
//! struct Graph { nodes: Vec<&'static str>, edges: Vec<(usize,usize)> }
|
|
//!
|
|
//! pub fn render_to<W: Write>(output: &mut W) {
|
|
//! let nodes = vec!["{x,y}","{x}","{y}","{}"];
|
|
//! let edges = vec![(0,1), (0,2), (1,3), (2,3)];
|
|
//! let graph = Graph { nodes: nodes, edges: edges };
|
|
//!
|
|
//! dot::render(&graph, output).unwrap()
|
|
//! }
|
|
//!
|
|
//! impl<'a> dot::Labeller<'a> for Graph {
|
|
//! type Node = Nd;
|
|
//! type Edge = Ed<'a>;
|
|
//! fn graph_id(&'a self) -> dot::Id<'a> { dot::Id::new("example2").unwrap() }
|
|
//! fn node_id(&'a self, n: &Nd) -> dot::Id<'a> {
|
|
//! dot::Id::new(format!("N{}", n)).unwrap()
|
|
//! }
|
|
//! fn node_label<'b>(&'b self, n: &Nd) -> dot::LabelText<'b> {
|
|
//! dot::LabelText::LabelStr(self.nodes[*n].into())
|
|
//! }
|
|
//! fn edge_label<'b>(&'b self, _: &Ed) -> dot::LabelText<'b> {
|
|
//! dot::LabelText::LabelStr("⊆".into())
|
|
//! }
|
|
//! }
|
|
//!
|
|
//! impl<'a> dot::GraphWalk<'a> for Graph {
|
|
//! type Node = Nd;
|
|
//! type Edge = Ed<'a>;
|
|
//! fn nodes(&self) -> dot::Nodes<'a,Nd> { (0..self.nodes.len()).collect() }
|
|
//! fn edges(&'a self) -> dot::Edges<'a,Ed<'a>> { self.edges.iter().collect() }
|
|
//! fn source(&self, e: &Ed) -> Nd { let & &(s,_) = e; s }
|
|
//! fn target(&self, e: &Ed) -> Nd { let & &(_,t) = e; t }
|
|
//! }
|
|
//!
|
|
//! # pub fn main() { render_to(&mut Vec::new()) }
|
|
//! ```
|
|
//!
|
|
//! ```no_run
|
|
//! # pub fn render_to<W:std::io::Write>(output: &mut W) { unimplemented!() }
|
|
//! pub fn main() {
|
|
//! use std::fs::File;
|
|
//! let mut f = File::create("example2.dot").unwrap();
|
|
//! render_to(&mut f)
|
|
//! }
|
|
//! ```
|
|
//!
|
|
//! The third example is similar to the second, except now each node and
|
|
//! edge now carries a reference to the string label for each node as well
|
|
//! as that node's index. (This is another illustration of how to share
|
|
//! structure with the graph itself, and why one might want to do so.)
|
|
//!
|
|
//! The output from this example is the same as the second example: the
|
|
//! Hasse-diagram for the subsets of the set `{x, y}`.
|
|
//!
|
|
//! ```rust
|
|
//! #![feature(rustc_private)]
|
|
//!
|
|
//! use std::io::Write;
|
|
//! use rustc_graphviz as dot;
|
|
//!
|
|
//! type Nd<'a> = (usize, &'a str);
|
|
//! type Ed<'a> = (Nd<'a>, Nd<'a>);
|
|
//! struct Graph { nodes: Vec<&'static str>, edges: Vec<(usize,usize)> }
|
|
//!
|
|
//! pub fn render_to<W: Write>(output: &mut W) {
|
|
//! let nodes = vec!["{x,y}","{x}","{y}","{}"];
|
|
//! let edges = vec![(0,1), (0,2), (1,3), (2,3)];
|
|
//! let graph = Graph { nodes: nodes, edges: edges };
|
|
//!
|
|
//! dot::render(&graph, output).unwrap()
|
|
//! }
|
|
//!
|
|
//! impl<'a> dot::Labeller<'a> for Graph {
|
|
//! type Node = Nd<'a>;
|
|
//! type Edge = Ed<'a>;
|
|
//! fn graph_id(&'a self) -> dot::Id<'a> { dot::Id::new("example3").unwrap() }
|
|
//! fn node_id(&'a self, n: &Nd<'a>) -> dot::Id<'a> {
|
|
//! dot::Id::new(format!("N{}", n.0)).unwrap()
|
|
//! }
|
|
//! fn node_label<'b>(&'b self, n: &Nd<'b>) -> dot::LabelText<'b> {
|
|
//! let &(i, _) = n;
|
|
//! dot::LabelText::LabelStr(self.nodes[i].into())
|
|
//! }
|
|
//! fn edge_label<'b>(&'b self, _: &Ed<'b>) -> dot::LabelText<'b> {
|
|
//! dot::LabelText::LabelStr("⊆".into())
|
|
//! }
|
|
//! }
|
|
//!
|
|
//! impl<'a> dot::GraphWalk<'a> for Graph {
|
|
//! type Node = Nd<'a>;
|
|
//! type Edge = Ed<'a>;
|
|
//! fn nodes(&'a self) -> dot::Nodes<'a,Nd<'a>> {
|
|
//! self.nodes.iter().map(|s| &s[..]).enumerate().collect()
|
|
//! }
|
|
//! fn edges(&'a self) -> dot::Edges<'a,Ed<'a>> {
|
|
//! self.edges.iter()
|
|
//! .map(|&(i,j)|((i, &self.nodes[i][..]),
|
|
//! (j, &self.nodes[j][..])))
|
|
//! .collect()
|
|
//! }
|
|
//! fn source(&self, e: &Ed<'a>) -> Nd<'a> { let &(s,_) = e; s }
|
|
//! fn target(&self, e: &Ed<'a>) -> Nd<'a> { let &(_,t) = e; t }
|
|
//! }
|
|
//!
|
|
//! # pub fn main() { render_to(&mut Vec::new()) }
|
|
//! ```
|
|
//!
|
|
//! ```no_run
|
|
//! # pub fn render_to<W:std::io::Write>(output: &mut W) { unimplemented!() }
|
|
//! pub fn main() {
|
|
//! use std::fs::File;
|
|
//! let mut f = File::create("example3.dot").unwrap();
|
|
//! render_to(&mut f)
|
|
//! }
|
|
//! ```
|
|
//!
|
|
//! # References
|
|
//!
|
|
//! * [Graphviz](https://www.graphviz.org/)
|
|
//!
|
|
//! * [DOT language](https://www.graphviz.org/doc/info/lang.html)
|
|
|
|
#![doc(
|
|
html_root_url = "https://doc.rust-lang.org/nightly/nightly-rustc/",
|
|
test(attr(allow(unused_variables), deny(warnings)))
|
|
)]
|
|
#![feature(nll)]
|
|
|
|
use LabelText::*;
|
|
|
|
use std::borrow::Cow;
|
|
use std::io;
|
|
use std::io::prelude::*;
|
|
|
|
/// The text for a graphviz label on a node or edge.
|
|
pub enum LabelText<'a> {
|
|
/// This kind of label preserves the text directly as is.
|
|
///
|
|
/// Occurrences of backslashes (`\`) are escaped, and thus appear
|
|
/// as backslashes in the rendered label.
|
|
LabelStr(Cow<'a, str>),
|
|
|
|
/// This kind of label uses the graphviz label escString type:
|
|
/// <https://www.graphviz.org/content/attrs#kescString>
|
|
///
|
|
/// Occurrences of backslashes (`\`) are not escaped; instead they
|
|
/// are interpreted as initiating an escString escape sequence.
|
|
///
|
|
/// Escape sequences of particular interest: in addition to `\n`
|
|
/// to break a line (centering the line preceding the `\n`), there
|
|
/// are also the escape sequences `\l` which left-justifies the
|
|
/// preceding line and `\r` which right-justifies it.
|
|
EscStr(Cow<'a, str>),
|
|
|
|
/// This uses a graphviz [HTML string label][html]. The string is
|
|
/// printed exactly as given, but between `<` and `>`. **No
|
|
/// escaping is performed.**
|
|
///
|
|
/// [html]: https://www.graphviz.org/content/node-shapes#html
|
|
HtmlStr(Cow<'a, str>),
|
|
}
|
|
|
|
/// The style for a node or edge.
|
|
/// See <https://www.graphviz.org/doc/info/attrs.html#k:style> for descriptions.
|
|
/// Note that some of these are not valid for edges.
|
|
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
|
|
pub enum Style {
|
|
None,
|
|
Solid,
|
|
Dashed,
|
|
Dotted,
|
|
Bold,
|
|
Rounded,
|
|
Diagonals,
|
|
Filled,
|
|
Striped,
|
|
Wedged,
|
|
}
|
|
|
|
impl Style {
|
|
pub fn as_slice(self) -> &'static str {
|
|
match self {
|
|
Style::None => "",
|
|
Style::Solid => "solid",
|
|
Style::Dashed => "dashed",
|
|
Style::Dotted => "dotted",
|
|
Style::Bold => "bold",
|
|
Style::Rounded => "rounded",
|
|
Style::Diagonals => "diagonals",
|
|
Style::Filled => "filled",
|
|
Style::Striped => "striped",
|
|
Style::Wedged => "wedged",
|
|
}
|
|
}
|
|
}
|
|
|
|
// There is a tension in the design of the labelling API.
|
|
//
|
|
// For example, I considered making a `Labeller<T>` trait that
|
|
// provides labels for `T`, and then making the graph type `G`
|
|
// implement `Labeller<Node>` and `Labeller<Edge>`. However, this is
|
|
// not possible without functional dependencies. (One could work
|
|
// around that, but I did not explore that avenue heavily.)
|
|
//
|
|
// Another approach that I actually used for a while was to make a
|
|
// `Label<Context>` trait that is implemented by the client-specific
|
|
// Node and Edge types (as well as an implementation on Graph itself
|
|
// for the overall name for the graph). The main disadvantage of this
|
|
// second approach (compared to having the `G` type parameter
|
|
// implement a Labelling service) that I have encountered is that it
|
|
// makes it impossible to use types outside of the current crate
|
|
// directly as Nodes/Edges; you need to wrap them in newtype'd
|
|
// structs. See e.g., the `No` and `Ed` structs in the examples. (In
|
|
// practice clients using a graph in some other crate would need to
|
|
// provide some sort of adapter shim over the graph anyway to
|
|
// interface with this library).
|
|
//
|
|
// Another approach would be to make a single `Labeller<N,E>` trait
|
|
// that provides three methods (graph_label, node_label, edge_label),
|
|
// and then make `G` implement `Labeller<N,E>`. At first this did not
|
|
// appeal to me, since I had thought I would need separate methods on
|
|
// each data variant for dot-internal identifiers versus user-visible
|
|
// labels. However, the identifier/label distinction only arises for
|
|
// nodes; graphs themselves only have identifiers, and edges only have
|
|
// labels.
|
|
//
|
|
// So in the end I decided to use the third approach described above.
|
|
|
|
/// `Id` is a Graphviz `ID`.
|
|
pub struct Id<'a> {
|
|
name: Cow<'a, str>,
|
|
}
|
|
|
|
impl<'a> Id<'a> {
|
|
/// Creates an `Id` named `name`.
|
|
///
|
|
/// The caller must ensure that the input conforms to an
|
|
/// identifier format: it must be a non-empty string made up of
|
|
/// alphanumeric or underscore characters, not beginning with a
|
|
/// digit (i.e., the regular expression `[a-zA-Z_][a-zA-Z_0-9]*`).
|
|
///
|
|
/// (Note: this format is a strict subset of the `ID` format
|
|
/// defined by the DOT language. This function may change in the
|
|
/// future to accept a broader subset, or the entirety, of DOT's
|
|
/// `ID` format.)
|
|
///
|
|
/// Passing an invalid string (containing spaces, brackets,
|
|
/// quotes, ...) will return an empty `Err` value.
|
|
pub fn new<Name: Into<Cow<'a, str>>>(name: Name) -> Result<Id<'a>, ()> {
|
|
let name = name.into();
|
|
match name.chars().next() {
|
|
Some(c) if c.is_ascii_alphabetic() || c == '_' => {}
|
|
_ => return Err(()),
|
|
}
|
|
if !name.chars().all(|c| c.is_ascii_alphanumeric() || c == '_') {
|
|
return Err(());
|
|
}
|
|
|
|
Ok(Id { name })
|
|
}
|
|
|
|
pub fn as_slice(&'a self) -> &'a str {
|
|
&*self.name
|
|
}
|
|
}
|
|
|
|
/// Each instance of a type that implements `Label<C>` maps to a
|
|
/// unique identifier with respect to `C`, which is used to identify
|
|
/// it in the generated .dot file. They can also provide more
|
|
/// elaborate (and non-unique) label text that is used in the graphviz
|
|
/// rendered output.
|
|
|
|
/// The graph instance is responsible for providing the DOT compatible
|
|
/// identifiers for the nodes and (optionally) rendered labels for the nodes and
|
|
/// edges, as well as an identifier for the graph itself.
|
|
pub trait Labeller<'a> {
|
|
type Node;
|
|
type Edge;
|
|
|
|
/// Must return a DOT compatible identifier naming the graph.
|
|
fn graph_id(&'a self) -> Id<'a>;
|
|
|
|
/// Maps `n` to a unique identifier with respect to `self`. The
|
|
/// implementor is responsible for ensuring that the returned name
|
|
/// is a valid DOT identifier.
|
|
fn node_id(&'a self, n: &Self::Node) -> Id<'a>;
|
|
|
|
/// Maps `n` to one of the [graphviz `shape` names][1]. If `None`
|
|
/// is returned, no `shape` attribute is specified.
|
|
///
|
|
/// [1]: https://www.graphviz.org/content/node-shapes
|
|
fn node_shape(&'a self, _node: &Self::Node) -> Option<LabelText<'a>> {
|
|
None
|
|
}
|
|
|
|
/// Maps `n` to a label that will be used in the rendered output.
|
|
/// The label need not be unique, and may be the empty string; the
|
|
/// default is just the output from `node_id`.
|
|
fn node_label(&'a self, n: &Self::Node) -> LabelText<'a> {
|
|
LabelStr(self.node_id(n).name)
|
|
}
|
|
|
|
/// Maps `e` to a label that will be used in the rendered output.
|
|
/// The label need not be unique, and may be the empty string; the
|
|
/// default is in fact the empty string.
|
|
fn edge_label(&'a self, _e: &Self::Edge) -> LabelText<'a> {
|
|
LabelStr("".into())
|
|
}
|
|
|
|
/// Maps `n` to a style that will be used in the rendered output.
|
|
fn node_style(&'a self, _n: &Self::Node) -> Style {
|
|
Style::None
|
|
}
|
|
|
|
/// Maps `e` to a style that will be used in the rendered output.
|
|
fn edge_style(&'a self, _e: &Self::Edge) -> Style {
|
|
Style::None
|
|
}
|
|
}
|
|
|
|
/// Escape tags in such a way that it is suitable for inclusion in a
|
|
/// Graphviz HTML label.
|
|
pub fn escape_html(s: &str) -> String {
|
|
s.replace("&", "&").replace("\"", """).replace("<", "<").replace(">", ">")
|
|
}
|
|
|
|
impl<'a> LabelText<'a> {
|
|
pub fn label<S: Into<Cow<'a, str>>>(s: S) -> LabelText<'a> {
|
|
LabelStr(s.into())
|
|
}
|
|
|
|
pub fn html<S: Into<Cow<'a, str>>>(s: S) -> LabelText<'a> {
|
|
HtmlStr(s.into())
|
|
}
|
|
|
|
fn escape_char<F>(c: char, mut f: F)
|
|
where
|
|
F: FnMut(char),
|
|
{
|
|
match c {
|
|
// not escaping \\, since Graphviz escString needs to
|
|
// interpret backslashes; see EscStr above.
|
|
'\\' => f(c),
|
|
_ => {
|
|
for c in c.escape_default() {
|
|
f(c)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
fn escape_str(s: &str) -> String {
|
|
let mut out = String::with_capacity(s.len());
|
|
for c in s.chars() {
|
|
LabelText::escape_char(c, |c| out.push(c));
|
|
}
|
|
out
|
|
}
|
|
|
|
/// Renders text as string suitable for a label in a .dot file.
|
|
/// This includes quotes or suitable delimiters.
|
|
pub fn to_dot_string(&self) -> String {
|
|
match *self {
|
|
LabelStr(ref s) => format!("\"{}\"", s.escape_default()),
|
|
EscStr(ref s) => format!("\"{}\"", LabelText::escape_str(&s)),
|
|
HtmlStr(ref s) => format!("<{}>", s),
|
|
}
|
|
}
|
|
|
|
/// Decomposes content into string suitable for making EscStr that
|
|
/// yields same content as self. The result obeys the law
|
|
/// render(`lt`) == render(`EscStr(lt.pre_escaped_content())`) for
|
|
/// all `lt: LabelText`.
|
|
fn pre_escaped_content(self) -> Cow<'a, str> {
|
|
match self {
|
|
EscStr(s) => s,
|
|
LabelStr(s) => {
|
|
if s.contains('\\') {
|
|
(&*s).escape_default().to_string().into()
|
|
} else {
|
|
s
|
|
}
|
|
}
|
|
HtmlStr(s) => s,
|
|
}
|
|
}
|
|
|
|
/// Puts `suffix` on a line below this label, with a blank line separator.
|
|
pub fn suffix_line(self, suffix: LabelText<'_>) -> LabelText<'static> {
|
|
let mut prefix = self.pre_escaped_content().into_owned();
|
|
let suffix = suffix.pre_escaped_content();
|
|
prefix.push_str(r"\n\n");
|
|
prefix.push_str(&suffix);
|
|
EscStr(prefix.into())
|
|
}
|
|
}
|
|
|
|
pub type Nodes<'a, N> = Cow<'a, [N]>;
|
|
pub type Edges<'a, E> = Cow<'a, [E]>;
|
|
|
|
// (The type parameters in GraphWalk should be associated items,
|
|
// when/if Rust supports such.)
|
|
|
|
/// GraphWalk is an abstraction over a directed graph = (nodes,edges)
|
|
/// made up of node handles `N` and edge handles `E`, where each `E`
|
|
/// can be mapped to its source and target nodes.
|
|
///
|
|
/// The lifetime parameter `'a` is exposed in this trait (rather than
|
|
/// introduced as a generic parameter on each method declaration) so
|
|
/// that a client impl can choose `N` and `E` that have substructure
|
|
/// that is bound by the self lifetime `'a`.
|
|
///
|
|
/// The `nodes` and `edges` method each return instantiations of
|
|
/// `Cow<[T]>` to leave implementors the freedom to create
|
|
/// entirely new vectors or to pass back slices into internally owned
|
|
/// vectors.
|
|
pub trait GraphWalk<'a> {
|
|
type Node: Clone;
|
|
type Edge: Clone;
|
|
|
|
/// Returns all the nodes in this graph.
|
|
fn nodes(&'a self) -> Nodes<'a, Self::Node>;
|
|
/// Returns all of the edges in this graph.
|
|
fn edges(&'a self) -> Edges<'a, Self::Edge>;
|
|
/// The source node for `edge`.
|
|
fn source(&'a self, edge: &Self::Edge) -> Self::Node;
|
|
/// The target node for `edge`.
|
|
fn target(&'a self, edge: &Self::Edge) -> Self::Node;
|
|
}
|
|
|
|
#[derive(Clone, PartialEq, Eq, Debug)]
|
|
pub enum RenderOption {
|
|
NoEdgeLabels,
|
|
NoNodeLabels,
|
|
NoEdgeStyles,
|
|
NoNodeStyles,
|
|
|
|
Fontname(String),
|
|
DarkTheme,
|
|
}
|
|
|
|
/// Renders directed graph `g` into the writer `w` in DOT syntax.
|
|
/// (Simple wrapper around `render_opts` that passes a default set of options.)
|
|
pub fn render<'a, N, E, G, W>(g: &'a G, w: &mut W) -> io::Result<()>
|
|
where
|
|
N: Clone + 'a,
|
|
E: Clone + 'a,
|
|
G: Labeller<'a, Node = N, Edge = E> + GraphWalk<'a, Node = N, Edge = E>,
|
|
W: Write,
|
|
{
|
|
render_opts(g, w, &[])
|
|
}
|
|
|
|
/// Renders directed graph `g` into the writer `w` in DOT syntax.
|
|
/// (Main entry point for the library.)
|
|
pub fn render_opts<'a, N, E, G, W>(g: &'a G, w: &mut W, options: &[RenderOption]) -> io::Result<()>
|
|
where
|
|
N: Clone + 'a,
|
|
E: Clone + 'a,
|
|
G: Labeller<'a, Node = N, Edge = E> + GraphWalk<'a, Node = N, Edge = E>,
|
|
W: Write,
|
|
{
|
|
writeln!(w, "digraph {} {{", g.graph_id().as_slice())?;
|
|
|
|
// Global graph properties
|
|
let mut graph_attrs = Vec::new();
|
|
let mut content_attrs = Vec::new();
|
|
let font;
|
|
if let Some(fontname) = options.iter().find_map(|option| {
|
|
if let RenderOption::Fontname(fontname) = option { Some(fontname) } else { None }
|
|
}) {
|
|
font = format!(r#"fontname="{}""#, fontname);
|
|
graph_attrs.push(&font[..]);
|
|
content_attrs.push(&font[..]);
|
|
}
|
|
if options.contains(&RenderOption::DarkTheme) {
|
|
graph_attrs.push(r#"bgcolor="black""#);
|
|
graph_attrs.push(r#"fontcolor="white""#);
|
|
content_attrs.push(r#"color="white""#);
|
|
content_attrs.push(r#"fontcolor="white""#);
|
|
}
|
|
if !(graph_attrs.is_empty() && content_attrs.is_empty()) {
|
|
writeln!(w, r#" graph[{}];"#, graph_attrs.join(" "))?;
|
|
let content_attrs_str = content_attrs.join(" ");
|
|
writeln!(w, r#" node[{}];"#, content_attrs_str)?;
|
|
writeln!(w, r#" edge[{}];"#, content_attrs_str)?;
|
|
}
|
|
|
|
let mut text = Vec::new();
|
|
for n in g.nodes().iter() {
|
|
write!(w, " ")?;
|
|
let id = g.node_id(n);
|
|
|
|
let escaped = &g.node_label(n).to_dot_string();
|
|
|
|
write!(text, "{}", id.as_slice()).unwrap();
|
|
|
|
if !options.contains(&RenderOption::NoNodeLabels) {
|
|
write!(text, "[label={}]", escaped).unwrap();
|
|
}
|
|
|
|
let style = g.node_style(n);
|
|
if !options.contains(&RenderOption::NoNodeStyles) && style != Style::None {
|
|
write!(text, "[style=\"{}\"]", style.as_slice()).unwrap();
|
|
}
|
|
|
|
if let Some(s) = g.node_shape(n) {
|
|
write!(text, "[shape={}]", &s.to_dot_string()).unwrap();
|
|
}
|
|
|
|
writeln!(text, ";").unwrap();
|
|
w.write_all(&text[..])?;
|
|
|
|
text.clear();
|
|
}
|
|
|
|
for e in g.edges().iter() {
|
|
let escaped_label = &g.edge_label(e).to_dot_string();
|
|
write!(w, " ")?;
|
|
let source = g.source(e);
|
|
let target = g.target(e);
|
|
let source_id = g.node_id(&source);
|
|
let target_id = g.node_id(&target);
|
|
|
|
write!(text, "{} -> {}", source_id.as_slice(), target_id.as_slice()).unwrap();
|
|
|
|
if !options.contains(&RenderOption::NoEdgeLabels) {
|
|
write!(text, "[label={}]", escaped_label).unwrap();
|
|
}
|
|
|
|
let style = g.edge_style(e);
|
|
if !options.contains(&RenderOption::NoEdgeStyles) && style != Style::None {
|
|
write!(text, "[style=\"{}\"]", style.as_slice()).unwrap();
|
|
}
|
|
|
|
writeln!(text, ";").unwrap();
|
|
w.write_all(&text[..])?;
|
|
|
|
text.clear();
|
|
}
|
|
|
|
writeln!(w, "}}")
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests;
|