mirror of
https://github.com/rust-lang/rust.git
synced 2025-10-28 03:24:11 +00:00
Only walk ribs to collect possibly shadowed params if we are adding params in our new rib No need to collect params from parent ribs if we literally have no params to declare in this new rib. Attempt to win back some of the perf in https://github.com/rust-lang/rust/pull/128357#issuecomment-2262677031. Please review with whitespace *off*, the diff should be like 2 lines. r? petrochenkov
4962 lines
208 KiB
Rust
4962 lines
208 KiB
Rust
// ignore-tidy-filelength
|
|
//! "Late resolution" is the pass that resolves most of names in a crate beside imports and macros.
|
|
//! It runs when the crate is fully expanded and its module structure is fully built.
|
|
//! So it just walks through the crate and resolves all the expressions, types, etc.
|
|
//!
|
|
//! If you wonder why there's no `early.rs`, that's because it's split into three files -
|
|
//! `build_reduced_graph.rs`, `macros.rs` and `imports.rs`.
|
|
|
|
use std::assert_matches::debug_assert_matches;
|
|
use std::borrow::Cow;
|
|
use std::collections::hash_map::Entry;
|
|
use std::collections::BTreeSet;
|
|
use std::mem::{replace, swap, take};
|
|
|
|
use rustc_ast::ptr::P;
|
|
use rustc_ast::visit::{visit_opt, walk_list, AssocCtxt, BoundKind, FnCtxt, FnKind, Visitor};
|
|
use rustc_ast::*;
|
|
use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexMap};
|
|
use rustc_errors::codes::*;
|
|
use rustc_errors::{Applicability, DiagArgValue, IntoDiagArg, StashKey};
|
|
use rustc_hir::def::Namespace::{self, *};
|
|
use rustc_hir::def::{self, CtorKind, DefKind, LifetimeRes, NonMacroAttrKind, PartialRes, PerNS};
|
|
use rustc_hir::def_id::{DefId, LocalDefId, CRATE_DEF_ID, LOCAL_CRATE};
|
|
use rustc_hir::{MissingLifetimeKind, PrimTy, TraitCandidate};
|
|
use rustc_middle::middle::resolve_bound_vars::Set1;
|
|
use rustc_middle::ty::DelegationFnSig;
|
|
use rustc_middle::{bug, span_bug};
|
|
use rustc_session::config::{CrateType, ResolveDocLinks};
|
|
use rustc_session::lint::{self, BuiltinLintDiag};
|
|
use rustc_session::parse::feature_err;
|
|
use rustc_span::source_map::{respan, Spanned};
|
|
use rustc_span::symbol::{kw, sym, Ident, Symbol};
|
|
use rustc_span::{BytePos, Span, SyntaxContext};
|
|
use smallvec::{smallvec, SmallVec};
|
|
use tracing::{debug, instrument, trace};
|
|
|
|
use crate::{
|
|
errors, path_names_to_string, rustdoc, BindingError, BindingKey, Finalize, LexicalScopeBinding,
|
|
Module, ModuleOrUniformRoot, NameBinding, ParentScope, PathResult, ResolutionError, Resolver,
|
|
Segment, TyCtxt, UseError, Used,
|
|
};
|
|
|
|
mod diagnostics;
|
|
|
|
type Res = def::Res<NodeId>;
|
|
|
|
type IdentMap<T> = FxHashMap<Ident, T>;
|
|
|
|
use diagnostics::{ElisionFnParameter, LifetimeElisionCandidate, MissingLifetime};
|
|
|
|
#[derive(Copy, Clone, Debug)]
|
|
struct BindingInfo {
|
|
span: Span,
|
|
annotation: BindingMode,
|
|
}
|
|
|
|
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
|
|
pub(crate) enum PatternSource {
|
|
Match,
|
|
Let,
|
|
For,
|
|
FnParam,
|
|
}
|
|
|
|
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
|
|
enum IsRepeatExpr {
|
|
No,
|
|
Yes,
|
|
}
|
|
|
|
struct IsNeverPattern;
|
|
|
|
/// Describes whether an `AnonConst` is a type level const arg or
|
|
/// some other form of anon const (i.e. inline consts or enum discriminants)
|
|
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
|
|
enum AnonConstKind {
|
|
EnumDiscriminant,
|
|
InlineConst,
|
|
ConstArg(IsRepeatExpr),
|
|
}
|
|
|
|
impl PatternSource {
|
|
fn descr(self) -> &'static str {
|
|
match self {
|
|
PatternSource::Match => "match binding",
|
|
PatternSource::Let => "let binding",
|
|
PatternSource::For => "for binding",
|
|
PatternSource::FnParam => "function parameter",
|
|
}
|
|
}
|
|
}
|
|
|
|
impl IntoDiagArg for PatternSource {
|
|
fn into_diag_arg(self) -> DiagArgValue {
|
|
DiagArgValue::Str(Cow::Borrowed(self.descr()))
|
|
}
|
|
}
|
|
|
|
/// Denotes whether the context for the set of already bound bindings is a `Product`
|
|
/// or `Or` context. This is used in e.g., `fresh_binding` and `resolve_pattern_inner`.
|
|
/// See those functions for more information.
|
|
#[derive(PartialEq)]
|
|
enum PatBoundCtx {
|
|
/// A product pattern context, e.g., `Variant(a, b)`.
|
|
Product,
|
|
/// An or-pattern context, e.g., `p_0 | ... | p_n`.
|
|
Or,
|
|
}
|
|
|
|
/// Does this the item (from the item rib scope) allow generic parameters?
|
|
#[derive(Copy, Clone, Debug)]
|
|
pub(crate) enum HasGenericParams {
|
|
Yes(Span),
|
|
No,
|
|
}
|
|
|
|
/// May this constant have generics?
|
|
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
|
|
pub(crate) enum ConstantHasGenerics {
|
|
Yes,
|
|
No(NoConstantGenericsReason),
|
|
}
|
|
|
|
impl ConstantHasGenerics {
|
|
fn force_yes_if(self, b: bool) -> Self {
|
|
if b { Self::Yes } else { self }
|
|
}
|
|
}
|
|
|
|
/// Reason for why an anon const is not allowed to reference generic parameters
|
|
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
|
|
pub(crate) enum NoConstantGenericsReason {
|
|
/// Const arguments are only allowed to use generic parameters when:
|
|
/// - `feature(generic_const_exprs)` is enabled
|
|
/// or
|
|
/// - the const argument is a sole const generic paramater, i.e. `foo::<{ N }>()`
|
|
///
|
|
/// If neither of the above are true then this is used as the cause.
|
|
NonTrivialConstArg,
|
|
/// Enum discriminants are not allowed to reference generic parameters ever, this
|
|
/// is used when an anon const is in the following position:
|
|
///
|
|
/// ```rust,compile_fail
|
|
/// enum Foo<const N: isize> {
|
|
/// Variant = { N }, // this anon const is not allowed to use generics
|
|
/// }
|
|
/// ```
|
|
IsEnumDiscriminant,
|
|
}
|
|
|
|
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
|
|
pub(crate) enum ConstantItemKind {
|
|
Const,
|
|
Static,
|
|
}
|
|
|
|
impl ConstantItemKind {
|
|
pub(crate) fn as_str(&self) -> &'static str {
|
|
match self {
|
|
Self::Const => "const",
|
|
Self::Static => "static",
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
|
|
enum RecordPartialRes {
|
|
Yes,
|
|
No,
|
|
}
|
|
|
|
/// The rib kind restricts certain accesses,
|
|
/// e.g. to a `Res::Local` of an outer item.
|
|
#[derive(Copy, Clone, Debug)]
|
|
pub(crate) enum RibKind<'a> {
|
|
/// No restriction needs to be applied.
|
|
Normal,
|
|
|
|
/// We passed through an impl or trait and are now in one of its
|
|
/// methods or associated types. Allow references to ty params that impl or trait
|
|
/// binds. Disallow any other upvars (including other ty params that are
|
|
/// upvars).
|
|
AssocItem,
|
|
|
|
/// We passed through a function, closure or coroutine signature. Disallow labels.
|
|
FnOrCoroutine,
|
|
|
|
/// We passed through an item scope. Disallow upvars.
|
|
Item(HasGenericParams, DefKind),
|
|
|
|
/// We're in a constant item. Can't refer to dynamic stuff.
|
|
///
|
|
/// The item may reference generic parameters in trivial constant expressions.
|
|
/// All other constants aren't allowed to use generic params at all.
|
|
ConstantItem(ConstantHasGenerics, Option<(Ident, ConstantItemKind)>),
|
|
|
|
/// We passed through a module.
|
|
Module(Module<'a>),
|
|
|
|
/// We passed through a `macro_rules!` statement
|
|
MacroDefinition(DefId),
|
|
|
|
/// All bindings in this rib are generic parameters that can't be used
|
|
/// from the default of a generic parameter because they're not declared
|
|
/// before said generic parameter. Also see the `visit_generics` override.
|
|
ForwardGenericParamBan,
|
|
|
|
/// We are inside of the type of a const parameter. Can't refer to any
|
|
/// parameters.
|
|
ConstParamTy,
|
|
|
|
/// We are inside a `sym` inline assembly operand. Can only refer to
|
|
/// globals.
|
|
InlineAsmSym,
|
|
}
|
|
|
|
impl RibKind<'_> {
|
|
/// Whether this rib kind contains generic parameters, as opposed to local
|
|
/// variables.
|
|
pub(crate) fn contains_params(&self) -> bool {
|
|
match self {
|
|
RibKind::Normal
|
|
| RibKind::FnOrCoroutine
|
|
| RibKind::ConstantItem(..)
|
|
| RibKind::Module(_)
|
|
| RibKind::MacroDefinition(_)
|
|
| RibKind::ConstParamTy
|
|
| RibKind::InlineAsmSym => false,
|
|
RibKind::AssocItem | RibKind::Item(..) | RibKind::ForwardGenericParamBan => true,
|
|
}
|
|
}
|
|
|
|
/// This rib forbids referring to labels defined in upwards ribs.
|
|
fn is_label_barrier(self) -> bool {
|
|
match self {
|
|
RibKind::Normal | RibKind::MacroDefinition(..) => false,
|
|
|
|
RibKind::AssocItem
|
|
| RibKind::FnOrCoroutine
|
|
| RibKind::Item(..)
|
|
| RibKind::ConstantItem(..)
|
|
| RibKind::Module(..)
|
|
| RibKind::ForwardGenericParamBan
|
|
| RibKind::ConstParamTy
|
|
| RibKind::InlineAsmSym => true,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A single local scope.
|
|
///
|
|
/// A rib represents a scope names can live in. Note that these appear in many places, not just
|
|
/// around braces. At any place where the list of accessible names (of the given namespace)
|
|
/// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
|
|
/// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
|
|
/// etc.
|
|
///
|
|
/// Different [rib kinds](enum@RibKind) are transparent for different names.
|
|
///
|
|
/// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
|
|
/// resolving, the name is looked up from inside out.
|
|
#[derive(Debug)]
|
|
pub(crate) struct Rib<'a, R = Res> {
|
|
pub bindings: IdentMap<R>,
|
|
pub kind: RibKind<'a>,
|
|
}
|
|
|
|
impl<'a, R> Rib<'a, R> {
|
|
fn new(kind: RibKind<'a>) -> Rib<'a, R> {
|
|
Rib { bindings: Default::default(), kind }
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Copy, Debug)]
|
|
enum LifetimeUseSet {
|
|
One { use_span: Span, use_ctxt: visit::LifetimeCtxt },
|
|
Many,
|
|
}
|
|
|
|
#[derive(Copy, Clone, Debug)]
|
|
enum LifetimeRibKind {
|
|
// -- Ribs introducing named lifetimes
|
|
//
|
|
/// This rib declares generic parameters.
|
|
/// Only for this kind the `LifetimeRib::bindings` field can be non-empty.
|
|
Generics { binder: NodeId, span: Span, kind: LifetimeBinderKind },
|
|
|
|
// -- Ribs introducing unnamed lifetimes
|
|
//
|
|
/// Create a new anonymous lifetime parameter and reference it.
|
|
///
|
|
/// If `report_in_path`, report an error when encountering lifetime elision in a path:
|
|
/// ```compile_fail
|
|
/// struct Foo<'a> { x: &'a () }
|
|
/// async fn foo(x: Foo) {}
|
|
/// ```
|
|
///
|
|
/// Note: the error should not trigger when the elided lifetime is in a pattern or
|
|
/// expression-position path:
|
|
/// ```
|
|
/// struct Foo<'a> { x: &'a () }
|
|
/// async fn foo(Foo { x: _ }: Foo<'_>) {}
|
|
/// ```
|
|
AnonymousCreateParameter { binder: NodeId, report_in_path: bool },
|
|
|
|
/// Replace all anonymous lifetimes by provided lifetime.
|
|
Elided(LifetimeRes),
|
|
|
|
// -- Barrier ribs that stop lifetime lookup, or continue it but produce an error later.
|
|
//
|
|
/// Give a hard error when either `&` or `'_` is written. Used to
|
|
/// rule out things like `where T: Foo<'_>`. Does not imply an
|
|
/// error on default object bounds (e.g., `Box<dyn Foo>`).
|
|
AnonymousReportError,
|
|
|
|
/// Resolves elided lifetimes to `'static` if there are no other lifetimes in scope,
|
|
/// otherwise give a warning that the previous behavior of introducing a new early-bound
|
|
/// lifetime is a bug and will be removed (if `emit_lint` is enabled).
|
|
StaticIfNoLifetimeInScope { lint_id: NodeId, emit_lint: bool },
|
|
|
|
/// Signal we cannot find which should be the anonymous lifetime.
|
|
ElisionFailure,
|
|
|
|
/// This rib forbids usage of generic parameters inside of const parameter types.
|
|
///
|
|
/// While this is desirable to support eventually, it is difficult to do and so is
|
|
/// currently forbidden. See rust-lang/project-const-generics#28 for more info.
|
|
ConstParamTy,
|
|
|
|
/// Usage of generic parameters is forbidden in various positions for anon consts:
|
|
/// - const arguments when `generic_const_exprs` is not enabled
|
|
/// - enum discriminant values
|
|
///
|
|
/// This rib emits an error when a lifetime would resolve to a lifetime parameter.
|
|
ConcreteAnonConst(NoConstantGenericsReason),
|
|
|
|
/// This rib acts as a barrier to forbid reference to lifetimes of a parent item.
|
|
Item,
|
|
}
|
|
|
|
#[derive(Copy, Clone, Debug)]
|
|
enum LifetimeBinderKind {
|
|
BareFnType,
|
|
PolyTrait,
|
|
WhereBound,
|
|
Item,
|
|
ConstItem,
|
|
Function,
|
|
Closure,
|
|
ImplBlock,
|
|
}
|
|
|
|
impl LifetimeBinderKind {
|
|
fn descr(self) -> &'static str {
|
|
use LifetimeBinderKind::*;
|
|
match self {
|
|
BareFnType => "type",
|
|
PolyTrait => "bound",
|
|
WhereBound => "bound",
|
|
Item | ConstItem => "item",
|
|
ImplBlock => "impl block",
|
|
Function => "function",
|
|
Closure => "closure",
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct LifetimeRib {
|
|
kind: LifetimeRibKind,
|
|
// We need to preserve insertion order for async fns.
|
|
bindings: FxIndexMap<Ident, (NodeId, LifetimeRes)>,
|
|
}
|
|
|
|
impl LifetimeRib {
|
|
fn new(kind: LifetimeRibKind) -> LifetimeRib {
|
|
LifetimeRib { bindings: Default::default(), kind }
|
|
}
|
|
}
|
|
|
|
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
|
|
pub(crate) enum AliasPossibility {
|
|
No,
|
|
Maybe,
|
|
}
|
|
|
|
#[derive(Copy, Clone, Debug)]
|
|
pub(crate) enum PathSource<'a> {
|
|
// Type paths `Path`.
|
|
Type,
|
|
// Trait paths in bounds or impls.
|
|
Trait(AliasPossibility),
|
|
// Expression paths `path`, with optional parent context.
|
|
Expr(Option<&'a Expr>),
|
|
// Paths in path patterns `Path`.
|
|
Pat,
|
|
// Paths in struct expressions and patterns `Path { .. }`.
|
|
Struct,
|
|
// Paths in tuple struct patterns `Path(..)`.
|
|
TupleStruct(Span, &'a [Span]),
|
|
// `m::A::B` in `<T as m::A>::B::C`.
|
|
TraitItem(Namespace),
|
|
// Paths in delegation item
|
|
Delegation,
|
|
}
|
|
|
|
impl<'a> PathSource<'a> {
|
|
fn namespace(self) -> Namespace {
|
|
match self {
|
|
PathSource::Type | PathSource::Trait(_) | PathSource::Struct => TypeNS,
|
|
PathSource::Expr(..)
|
|
| PathSource::Pat
|
|
| PathSource::TupleStruct(..)
|
|
| PathSource::Delegation => ValueNS,
|
|
PathSource::TraitItem(ns) => ns,
|
|
}
|
|
}
|
|
|
|
fn defer_to_typeck(self) -> bool {
|
|
match self {
|
|
PathSource::Type
|
|
| PathSource::Expr(..)
|
|
| PathSource::Pat
|
|
| PathSource::Struct
|
|
| PathSource::TupleStruct(..) => true,
|
|
PathSource::Trait(_) | PathSource::TraitItem(..) | PathSource::Delegation => false,
|
|
}
|
|
}
|
|
|
|
fn descr_expected(self) -> &'static str {
|
|
match &self {
|
|
PathSource::Type => "type",
|
|
PathSource::Trait(_) => "trait",
|
|
PathSource::Pat => "unit struct, unit variant or constant",
|
|
PathSource::Struct => "struct, variant or union type",
|
|
PathSource::TupleStruct(..) => "tuple struct or tuple variant",
|
|
PathSource::TraitItem(ns) => match ns {
|
|
TypeNS => "associated type",
|
|
ValueNS => "method or associated constant",
|
|
MacroNS => bug!("associated macro"),
|
|
},
|
|
PathSource::Expr(parent) => match parent.as_ref().map(|p| &p.kind) {
|
|
// "function" here means "anything callable" rather than `DefKind::Fn`,
|
|
// this is not precise but usually more helpful than just "value".
|
|
Some(ExprKind::Call(call_expr, _)) => match &call_expr.kind {
|
|
// the case of `::some_crate()`
|
|
ExprKind::Path(_, path)
|
|
if path.segments.len() == 2
|
|
&& path.segments[0].ident.name == kw::PathRoot =>
|
|
{
|
|
"external crate"
|
|
}
|
|
ExprKind::Path(_, path) => {
|
|
let mut msg = "function";
|
|
if let Some(segment) = path.segments.iter().last() {
|
|
if let Some(c) = segment.ident.to_string().chars().next() {
|
|
if c.is_uppercase() {
|
|
msg = "function, tuple struct or tuple variant";
|
|
}
|
|
}
|
|
}
|
|
msg
|
|
}
|
|
_ => "function",
|
|
},
|
|
_ => "value",
|
|
},
|
|
PathSource::Delegation => "function",
|
|
}
|
|
}
|
|
|
|
fn is_call(self) -> bool {
|
|
matches!(self, PathSource::Expr(Some(&Expr { kind: ExprKind::Call(..), .. })))
|
|
}
|
|
|
|
pub(crate) fn is_expected(self, res: Res) -> bool {
|
|
match self {
|
|
PathSource::Type => matches!(
|
|
res,
|
|
Res::Def(
|
|
DefKind::Struct
|
|
| DefKind::Union
|
|
| DefKind::Enum
|
|
| DefKind::Trait
|
|
| DefKind::TraitAlias
|
|
| DefKind::TyAlias
|
|
| DefKind::AssocTy
|
|
| DefKind::TyParam
|
|
| DefKind::OpaqueTy
|
|
| DefKind::ForeignTy,
|
|
_,
|
|
) | Res::PrimTy(..)
|
|
| Res::SelfTyParam { .. }
|
|
| Res::SelfTyAlias { .. }
|
|
),
|
|
PathSource::Trait(AliasPossibility::No) => matches!(res, Res::Def(DefKind::Trait, _)),
|
|
PathSource::Trait(AliasPossibility::Maybe) => {
|
|
matches!(res, Res::Def(DefKind::Trait | DefKind::TraitAlias, _))
|
|
}
|
|
PathSource::Expr(..) => matches!(
|
|
res,
|
|
Res::Def(
|
|
DefKind::Ctor(_, CtorKind::Const | CtorKind::Fn)
|
|
| DefKind::Const
|
|
| DefKind::Static { .. }
|
|
| DefKind::Fn
|
|
| DefKind::AssocFn
|
|
| DefKind::AssocConst
|
|
| DefKind::ConstParam,
|
|
_,
|
|
) | Res::Local(..)
|
|
| Res::SelfCtor(..)
|
|
),
|
|
PathSource::Pat => {
|
|
res.expected_in_unit_struct_pat()
|
|
|| matches!(res, Res::Def(DefKind::Const | DefKind::AssocConst, _))
|
|
}
|
|
PathSource::TupleStruct(..) => res.expected_in_tuple_struct_pat(),
|
|
PathSource::Struct => matches!(
|
|
res,
|
|
Res::Def(
|
|
DefKind::Struct
|
|
| DefKind::Union
|
|
| DefKind::Variant
|
|
| DefKind::TyAlias
|
|
| DefKind::AssocTy,
|
|
_,
|
|
) | Res::SelfTyParam { .. }
|
|
| Res::SelfTyAlias { .. }
|
|
),
|
|
PathSource::TraitItem(ns) => match res {
|
|
Res::Def(DefKind::AssocConst | DefKind::AssocFn, _) if ns == ValueNS => true,
|
|
Res::Def(DefKind::AssocTy, _) if ns == TypeNS => true,
|
|
_ => false,
|
|
},
|
|
PathSource::Delegation => matches!(res, Res::Def(DefKind::Fn | DefKind::AssocFn, _)),
|
|
}
|
|
}
|
|
|
|
fn error_code(self, has_unexpected_resolution: bool) -> ErrCode {
|
|
match (self, has_unexpected_resolution) {
|
|
(PathSource::Trait(_), true) => E0404,
|
|
(PathSource::Trait(_), false) => E0405,
|
|
(PathSource::Type, true) => E0573,
|
|
(PathSource::Type, false) => E0412,
|
|
(PathSource::Struct, true) => E0574,
|
|
(PathSource::Struct, false) => E0422,
|
|
(PathSource::Expr(..), true) | (PathSource::Delegation, true) => E0423,
|
|
(PathSource::Expr(..), false) | (PathSource::Delegation, false) => E0425,
|
|
(PathSource::Pat | PathSource::TupleStruct(..), true) => E0532,
|
|
(PathSource::Pat | PathSource::TupleStruct(..), false) => E0531,
|
|
(PathSource::TraitItem(..), true) => E0575,
|
|
(PathSource::TraitItem(..), false) => E0576,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// At this point for most items we can answer whether that item is exported or not,
|
|
/// but some items like impls require type information to determine exported-ness, so we make a
|
|
/// conservative estimate for them (e.g. based on nominal visibility).
|
|
#[derive(Clone, Copy)]
|
|
enum MaybeExported<'a> {
|
|
Ok(NodeId),
|
|
Impl(Option<DefId>),
|
|
ImplItem(Result<DefId, &'a Visibility>),
|
|
NestedUse(&'a Visibility),
|
|
}
|
|
|
|
impl MaybeExported<'_> {
|
|
fn eval(self, r: &Resolver<'_, '_>) -> bool {
|
|
let def_id = match self {
|
|
MaybeExported::Ok(node_id) => Some(r.local_def_id(node_id)),
|
|
MaybeExported::Impl(Some(trait_def_id)) | MaybeExported::ImplItem(Ok(trait_def_id)) => {
|
|
trait_def_id.as_local()
|
|
}
|
|
MaybeExported::Impl(None) => return true,
|
|
MaybeExported::ImplItem(Err(vis)) | MaybeExported::NestedUse(vis) => {
|
|
return vis.kind.is_pub();
|
|
}
|
|
};
|
|
def_id.map_or(true, |def_id| r.effective_visibilities.is_exported(def_id))
|
|
}
|
|
}
|
|
|
|
/// Used for recording UnnecessaryQualification.
|
|
#[derive(Debug)]
|
|
pub(crate) struct UnnecessaryQualification<'a> {
|
|
pub binding: LexicalScopeBinding<'a>,
|
|
pub node_id: NodeId,
|
|
pub path_span: Span,
|
|
pub removal_span: Span,
|
|
}
|
|
|
|
#[derive(Default)]
|
|
struct DiagMetadata<'ast> {
|
|
/// The current trait's associated items' ident, used for diagnostic suggestions.
|
|
current_trait_assoc_items: Option<&'ast [P<AssocItem>]>,
|
|
|
|
/// The current self type if inside an impl (used for better errors).
|
|
current_self_type: Option<Ty>,
|
|
|
|
/// The current self item if inside an ADT (used for better errors).
|
|
current_self_item: Option<NodeId>,
|
|
|
|
/// The current trait (used to suggest).
|
|
current_item: Option<&'ast Item>,
|
|
|
|
/// When processing generic arguments and encountering an unresolved ident not found,
|
|
/// suggest introducing a type or const param depending on the context.
|
|
currently_processing_generic_args: bool,
|
|
|
|
/// The current enclosing (non-closure) function (used for better errors).
|
|
current_function: Option<(FnKind<'ast>, Span)>,
|
|
|
|
/// A list of labels as of yet unused. Labels will be removed from this map when
|
|
/// they are used (in a `break` or `continue` statement)
|
|
unused_labels: FxHashMap<NodeId, Span>,
|
|
|
|
/// Only used for better errors on `let x = { foo: bar };`.
|
|
/// In the case of a parse error with `let x = { foo: bar, };`, this isn't needed, it's only
|
|
/// needed for cases where this parses as a correct type ascription.
|
|
current_block_could_be_bare_struct_literal: Option<Span>,
|
|
|
|
/// Only used for better errors on `let <pat>: <expr, not type>;`.
|
|
current_let_binding: Option<(Span, Option<Span>, Option<Span>)>,
|
|
|
|
current_pat: Option<&'ast Pat>,
|
|
|
|
/// Used to detect possible `if let` written without `let` and to provide structured suggestion.
|
|
in_if_condition: Option<&'ast Expr>,
|
|
|
|
/// Used to detect possible new binding written without `let` and to provide structured suggestion.
|
|
in_assignment: Option<&'ast Expr>,
|
|
is_assign_rhs: bool,
|
|
|
|
/// If we are setting an associated type in trait impl, is it a non-GAT type?
|
|
in_non_gat_assoc_type: Option<bool>,
|
|
|
|
/// Used to detect possible `.` -> `..` typo when calling methods.
|
|
in_range: Option<(&'ast Expr, &'ast Expr)>,
|
|
|
|
/// If we are currently in a trait object definition. Used to point at the bounds when
|
|
/// encountering a struct or enum.
|
|
current_trait_object: Option<&'ast [ast::GenericBound]>,
|
|
|
|
/// Given `where <T as Bar>::Baz: String`, suggest `where T: Bar<Baz = String>`.
|
|
current_where_predicate: Option<&'ast WherePredicate>,
|
|
|
|
current_type_path: Option<&'ast Ty>,
|
|
|
|
/// The current impl items (used to suggest).
|
|
current_impl_items: Option<&'ast [P<AssocItem>]>,
|
|
|
|
/// When processing impl trait
|
|
currently_processing_impl_trait: Option<(TraitRef, Ty)>,
|
|
|
|
/// Accumulate the errors due to missed lifetime elision,
|
|
/// and report them all at once for each function.
|
|
current_elision_failures: Vec<MissingLifetime>,
|
|
}
|
|
|
|
struct LateResolutionVisitor<'a, 'b, 'ast, 'tcx> {
|
|
r: &'b mut Resolver<'a, 'tcx>,
|
|
|
|
/// The module that represents the current item scope.
|
|
parent_scope: ParentScope<'a>,
|
|
|
|
/// The current set of local scopes for types and values.
|
|
ribs: PerNS<Vec<Rib<'a>>>,
|
|
|
|
/// Previous popped `rib`, only used for diagnostic.
|
|
last_block_rib: Option<Rib<'a>>,
|
|
|
|
/// The current set of local scopes, for labels.
|
|
label_ribs: Vec<Rib<'a, NodeId>>,
|
|
|
|
/// The current set of local scopes for lifetimes.
|
|
lifetime_ribs: Vec<LifetimeRib>,
|
|
|
|
/// We are looking for lifetimes in an elision context.
|
|
/// The set contains all the resolutions that we encountered so far.
|
|
/// They will be used to determine the correct lifetime for the fn return type.
|
|
/// The `LifetimeElisionCandidate` is used for diagnostics, to suggest introducing named
|
|
/// lifetimes.
|
|
lifetime_elision_candidates: Option<Vec<(LifetimeRes, LifetimeElisionCandidate)>>,
|
|
|
|
/// The trait that the current context can refer to.
|
|
current_trait_ref: Option<(Module<'a>, TraitRef)>,
|
|
|
|
/// Fields used to add information to diagnostic errors.
|
|
diag_metadata: Box<DiagMetadata<'ast>>,
|
|
|
|
/// State used to know whether to ignore resolution errors for function bodies.
|
|
///
|
|
/// In particular, rustdoc uses this to avoid giving errors for `cfg()` items.
|
|
/// In most cases this will be `None`, in which case errors will always be reported.
|
|
/// If it is `true`, then it will be updated when entering a nested function or trait body.
|
|
in_func_body: bool,
|
|
|
|
/// Count the number of places a lifetime is used.
|
|
lifetime_uses: FxHashMap<LocalDefId, LifetimeUseSet>,
|
|
}
|
|
|
|
/// Walks the whole crate in DFS order, visiting each item, resolving names as it goes.
|
|
impl<'a: 'ast, 'ast, 'tcx> Visitor<'ast> for LateResolutionVisitor<'a, '_, 'ast, 'tcx> {
|
|
fn visit_attribute(&mut self, _: &'ast Attribute) {
|
|
// We do not want to resolve expressions that appear in attributes,
|
|
// as they do not correspond to actual code.
|
|
}
|
|
fn visit_item(&mut self, item: &'ast Item) {
|
|
let prev = replace(&mut self.diag_metadata.current_item, Some(item));
|
|
// Always report errors in items we just entered.
|
|
let old_ignore = replace(&mut self.in_func_body, false);
|
|
self.with_lifetime_rib(LifetimeRibKind::Item, |this| this.resolve_item(item));
|
|
self.in_func_body = old_ignore;
|
|
self.diag_metadata.current_item = prev;
|
|
}
|
|
fn visit_arm(&mut self, arm: &'ast Arm) {
|
|
self.resolve_arm(arm);
|
|
}
|
|
fn visit_block(&mut self, block: &'ast Block) {
|
|
let old_macro_rules = self.parent_scope.macro_rules;
|
|
self.resolve_block(block);
|
|
self.parent_scope.macro_rules = old_macro_rules;
|
|
}
|
|
fn visit_anon_const(&mut self, _constant: &'ast AnonConst) {
|
|
bug!("encountered anon const without a manual call to `resolve_anon_const`");
|
|
}
|
|
fn visit_expr(&mut self, expr: &'ast Expr) {
|
|
self.resolve_expr(expr, None);
|
|
}
|
|
fn visit_pat(&mut self, p: &'ast Pat) {
|
|
let prev = self.diag_metadata.current_pat;
|
|
self.diag_metadata.current_pat = Some(p);
|
|
visit::walk_pat(self, p);
|
|
self.diag_metadata.current_pat = prev;
|
|
}
|
|
fn visit_local(&mut self, local: &'ast Local) {
|
|
let local_spans = match local.pat.kind {
|
|
// We check for this to avoid tuple struct fields.
|
|
PatKind::Wild => None,
|
|
_ => Some((
|
|
local.pat.span,
|
|
local.ty.as_ref().map(|ty| ty.span),
|
|
local.kind.init().map(|init| init.span),
|
|
)),
|
|
};
|
|
let original = replace(&mut self.diag_metadata.current_let_binding, local_spans);
|
|
self.resolve_local(local);
|
|
self.diag_metadata.current_let_binding = original;
|
|
}
|
|
fn visit_ty(&mut self, ty: &'ast Ty) {
|
|
let prev = self.diag_metadata.current_trait_object;
|
|
let prev_ty = self.diag_metadata.current_type_path;
|
|
match &ty.kind {
|
|
TyKind::Ref(None, _) => {
|
|
// Elided lifetime in reference: we resolve as if there was some lifetime `'_` with
|
|
// NodeId `ty.id`.
|
|
// This span will be used in case of elision failure.
|
|
let span = self.r.tcx.sess.source_map().start_point(ty.span);
|
|
self.resolve_elided_lifetime(ty.id, span);
|
|
visit::walk_ty(self, ty);
|
|
}
|
|
TyKind::Path(qself, path) => {
|
|
self.diag_metadata.current_type_path = Some(ty);
|
|
self.smart_resolve_path(ty.id, qself, path, PathSource::Type);
|
|
|
|
// Check whether we should interpret this as a bare trait object.
|
|
if qself.is_none()
|
|
&& let Some(partial_res) = self.r.partial_res_map.get(&ty.id)
|
|
&& let Some(Res::Def(DefKind::Trait | DefKind::TraitAlias, _)) =
|
|
partial_res.full_res()
|
|
{
|
|
// This path is actually a bare trait object. In case of a bare `Fn`-trait
|
|
// object with anonymous lifetimes, we need this rib to correctly place the
|
|
// synthetic lifetimes.
|
|
let span = ty.span.shrink_to_lo().to(path.span.shrink_to_lo());
|
|
self.with_generic_param_rib(
|
|
&[],
|
|
RibKind::Normal,
|
|
LifetimeRibKind::Generics {
|
|
binder: ty.id,
|
|
kind: LifetimeBinderKind::PolyTrait,
|
|
span,
|
|
},
|
|
|this| this.visit_path(path, ty.id),
|
|
);
|
|
} else {
|
|
visit::walk_ty(self, ty)
|
|
}
|
|
}
|
|
TyKind::ImplicitSelf => {
|
|
let self_ty = Ident::with_dummy_span(kw::SelfUpper);
|
|
let res = self
|
|
.resolve_ident_in_lexical_scope(
|
|
self_ty,
|
|
TypeNS,
|
|
Some(Finalize::new(ty.id, ty.span)),
|
|
None,
|
|
)
|
|
.map_or(Res::Err, |d| d.res());
|
|
self.r.record_partial_res(ty.id, PartialRes::new(res));
|
|
visit::walk_ty(self, ty)
|
|
}
|
|
TyKind::ImplTrait(node_id, _) => {
|
|
let candidates = self.lifetime_elision_candidates.take();
|
|
visit::walk_ty(self, ty);
|
|
self.record_lifetime_params_for_impl_trait(*node_id);
|
|
self.lifetime_elision_candidates = candidates;
|
|
}
|
|
TyKind::TraitObject(bounds, ..) => {
|
|
self.diag_metadata.current_trait_object = Some(&bounds[..]);
|
|
visit::walk_ty(self, ty)
|
|
}
|
|
TyKind::BareFn(bare_fn) => {
|
|
let span = ty.span.shrink_to_lo().to(bare_fn.decl_span.shrink_to_lo());
|
|
self.with_generic_param_rib(
|
|
&bare_fn.generic_params,
|
|
RibKind::Normal,
|
|
LifetimeRibKind::Generics {
|
|
binder: ty.id,
|
|
kind: LifetimeBinderKind::BareFnType,
|
|
span,
|
|
},
|
|
|this| {
|
|
this.visit_generic_params(&bare_fn.generic_params, false);
|
|
this.with_lifetime_rib(
|
|
LifetimeRibKind::AnonymousCreateParameter {
|
|
binder: ty.id,
|
|
report_in_path: false,
|
|
},
|
|
|this| {
|
|
this.resolve_fn_signature(
|
|
ty.id,
|
|
false,
|
|
// We don't need to deal with patterns in parameters, because
|
|
// they are not possible for foreign or bodiless functions.
|
|
bare_fn
|
|
.decl
|
|
.inputs
|
|
.iter()
|
|
.map(|Param { ty, .. }| (None, &**ty)),
|
|
&bare_fn.decl.output,
|
|
)
|
|
},
|
|
);
|
|
},
|
|
)
|
|
}
|
|
TyKind::Array(element_ty, length) => {
|
|
self.visit_ty(element_ty);
|
|
self.resolve_anon_const(length, AnonConstKind::ConstArg(IsRepeatExpr::No));
|
|
}
|
|
TyKind::Typeof(ct) => {
|
|
self.resolve_anon_const(ct, AnonConstKind::ConstArg(IsRepeatExpr::No))
|
|
}
|
|
_ => visit::walk_ty(self, ty),
|
|
}
|
|
self.diag_metadata.current_trait_object = prev;
|
|
self.diag_metadata.current_type_path = prev_ty;
|
|
}
|
|
fn visit_poly_trait_ref(&mut self, tref: &'ast PolyTraitRef) {
|
|
let span = tref.span.shrink_to_lo().to(tref.trait_ref.path.span.shrink_to_lo());
|
|
self.with_generic_param_rib(
|
|
&tref.bound_generic_params,
|
|
RibKind::Normal,
|
|
LifetimeRibKind::Generics {
|
|
binder: tref.trait_ref.ref_id,
|
|
kind: LifetimeBinderKind::PolyTrait,
|
|
span,
|
|
},
|
|
|this| {
|
|
this.visit_generic_params(&tref.bound_generic_params, false);
|
|
this.smart_resolve_path(
|
|
tref.trait_ref.ref_id,
|
|
&None,
|
|
&tref.trait_ref.path,
|
|
PathSource::Trait(AliasPossibility::Maybe),
|
|
);
|
|
this.visit_trait_ref(&tref.trait_ref);
|
|
},
|
|
);
|
|
}
|
|
fn visit_foreign_item(&mut self, foreign_item: &'ast ForeignItem) {
|
|
self.resolve_doc_links(&foreign_item.attrs, MaybeExported::Ok(foreign_item.id));
|
|
let def_kind = self.r.local_def_kind(foreign_item.id);
|
|
match foreign_item.kind {
|
|
ForeignItemKind::TyAlias(box TyAlias { ref generics, .. }) => {
|
|
self.with_generic_param_rib(
|
|
&generics.params,
|
|
RibKind::Item(HasGenericParams::Yes(generics.span), def_kind),
|
|
LifetimeRibKind::Generics {
|
|
binder: foreign_item.id,
|
|
kind: LifetimeBinderKind::Item,
|
|
span: generics.span,
|
|
},
|
|
|this| visit::walk_item(this, foreign_item),
|
|
);
|
|
}
|
|
ForeignItemKind::Fn(box Fn { ref generics, .. }) => {
|
|
self.with_generic_param_rib(
|
|
&generics.params,
|
|
RibKind::Item(HasGenericParams::Yes(generics.span), def_kind),
|
|
LifetimeRibKind::Generics {
|
|
binder: foreign_item.id,
|
|
kind: LifetimeBinderKind::Function,
|
|
span: generics.span,
|
|
},
|
|
|this| visit::walk_item(this, foreign_item),
|
|
);
|
|
}
|
|
ForeignItemKind::Static(..) => {
|
|
self.with_static_rib(def_kind, |this| visit::walk_item(this, foreign_item))
|
|
}
|
|
ForeignItemKind::MacCall(..) => {
|
|
panic!("unexpanded macro in resolve!")
|
|
}
|
|
}
|
|
}
|
|
fn visit_fn(&mut self, fn_kind: FnKind<'ast>, sp: Span, fn_id: NodeId) {
|
|
let previous_value = self.diag_metadata.current_function;
|
|
match fn_kind {
|
|
// Bail if the function is foreign, and thus cannot validly have
|
|
// a body, or if there's no body for some other reason.
|
|
FnKind::Fn(FnCtxt::Foreign, _, sig, _, generics, _)
|
|
| FnKind::Fn(_, _, sig, _, generics, None) => {
|
|
self.visit_fn_header(&sig.header);
|
|
self.visit_generics(generics);
|
|
self.with_lifetime_rib(
|
|
LifetimeRibKind::AnonymousCreateParameter {
|
|
binder: fn_id,
|
|
report_in_path: false,
|
|
},
|
|
|this| {
|
|
this.resolve_fn_signature(
|
|
fn_id,
|
|
sig.decl.has_self(),
|
|
sig.decl.inputs.iter().map(|Param { ty, .. }| (None, &**ty)),
|
|
&sig.decl.output,
|
|
);
|
|
|
|
if let Some((coro_node_id, _)) = sig
|
|
.header
|
|
.coroutine_kind
|
|
.map(|coroutine_kind| coroutine_kind.return_id())
|
|
{
|
|
this.record_lifetime_params_for_impl_trait(coro_node_id);
|
|
}
|
|
},
|
|
);
|
|
return;
|
|
}
|
|
FnKind::Fn(..) => {
|
|
self.diag_metadata.current_function = Some((fn_kind, sp));
|
|
}
|
|
// Do not update `current_function` for closures: it suggests `self` parameters.
|
|
FnKind::Closure(..) => {}
|
|
};
|
|
debug!("(resolving function) entering function");
|
|
|
|
// Create a value rib for the function.
|
|
self.with_rib(ValueNS, RibKind::FnOrCoroutine, |this| {
|
|
// Create a label rib for the function.
|
|
this.with_label_rib(RibKind::FnOrCoroutine, |this| {
|
|
match fn_kind {
|
|
FnKind::Fn(_, _, sig, _, generics, body) => {
|
|
this.visit_generics(generics);
|
|
|
|
let declaration = &sig.decl;
|
|
let coro_node_id = sig
|
|
.header
|
|
.coroutine_kind
|
|
.map(|coroutine_kind| coroutine_kind.return_id());
|
|
|
|
this.with_lifetime_rib(
|
|
LifetimeRibKind::AnonymousCreateParameter {
|
|
binder: fn_id,
|
|
report_in_path: coro_node_id.is_some(),
|
|
},
|
|
|this| {
|
|
this.resolve_fn_signature(
|
|
fn_id,
|
|
declaration.has_self(),
|
|
declaration
|
|
.inputs
|
|
.iter()
|
|
.map(|Param { pat, ty, .. }| (Some(&**pat), &**ty)),
|
|
&declaration.output,
|
|
);
|
|
|
|
if let Some((async_node_id, _)) = coro_node_id {
|
|
this.record_lifetime_params_for_impl_trait(async_node_id);
|
|
}
|
|
},
|
|
);
|
|
|
|
if let Some(body) = body {
|
|
// Ignore errors in function bodies if this is rustdoc
|
|
// Be sure not to set this until the function signature has been resolved.
|
|
let previous_state = replace(&mut this.in_func_body, true);
|
|
// We only care block in the same function
|
|
this.last_block_rib = None;
|
|
// Resolve the function body, potentially inside the body of an async closure
|
|
this.with_lifetime_rib(
|
|
LifetimeRibKind::Elided(LifetimeRes::Infer),
|
|
|this| this.visit_block(body),
|
|
);
|
|
|
|
debug!("(resolving function) leaving function");
|
|
this.in_func_body = previous_state;
|
|
}
|
|
}
|
|
FnKind::Closure(binder, declaration, body) => {
|
|
this.visit_closure_binder(binder);
|
|
|
|
this.with_lifetime_rib(
|
|
match binder {
|
|
// We do not have any explicit generic lifetime parameter.
|
|
ClosureBinder::NotPresent => {
|
|
LifetimeRibKind::AnonymousCreateParameter {
|
|
binder: fn_id,
|
|
report_in_path: false,
|
|
}
|
|
}
|
|
ClosureBinder::For { .. } => LifetimeRibKind::AnonymousReportError,
|
|
},
|
|
// Add each argument to the rib.
|
|
|this| this.resolve_params(&declaration.inputs),
|
|
);
|
|
this.with_lifetime_rib(
|
|
match binder {
|
|
ClosureBinder::NotPresent => {
|
|
LifetimeRibKind::Elided(LifetimeRes::Infer)
|
|
}
|
|
ClosureBinder::For { .. } => LifetimeRibKind::AnonymousReportError,
|
|
},
|
|
|this| visit::walk_fn_ret_ty(this, &declaration.output),
|
|
);
|
|
|
|
// Ignore errors in function bodies if this is rustdoc
|
|
// Be sure not to set this until the function signature has been resolved.
|
|
let previous_state = replace(&mut this.in_func_body, true);
|
|
// Resolve the function body, potentially inside the body of an async closure
|
|
this.with_lifetime_rib(
|
|
LifetimeRibKind::Elided(LifetimeRes::Infer),
|
|
|this| this.visit_expr(body),
|
|
);
|
|
|
|
debug!("(resolving function) leaving function");
|
|
this.in_func_body = previous_state;
|
|
}
|
|
}
|
|
})
|
|
});
|
|
self.diag_metadata.current_function = previous_value;
|
|
}
|
|
|
|
fn visit_lifetime(&mut self, lifetime: &'ast Lifetime, use_ctxt: visit::LifetimeCtxt) {
|
|
self.resolve_lifetime(lifetime, use_ctxt)
|
|
}
|
|
|
|
fn visit_precise_capturing_arg(&mut self, arg: &'ast PreciseCapturingArg) {
|
|
match arg {
|
|
// Lower the lifetime regularly; we'll resolve the lifetime and check
|
|
// it's a parameter later on in HIR lowering.
|
|
PreciseCapturingArg::Lifetime(_) => {}
|
|
|
|
PreciseCapturingArg::Arg(path, id) => {
|
|
// we want `impl use<C>` to try to resolve `C` as both a type parameter or
|
|
// a const parameter. Since the resolver specifically doesn't allow having
|
|
// two generic params with the same name, even if they're a different namespace,
|
|
// it doesn't really matter which we try resolving first, but just like
|
|
// `Ty::Param` we just fall back to the value namespace only if it's missing
|
|
// from the type namespace.
|
|
let mut check_ns = |ns| {
|
|
self.maybe_resolve_ident_in_lexical_scope(path.segments[0].ident, ns).is_some()
|
|
};
|
|
// Like `Ty::Param`, we try resolving this as both a const and a type.
|
|
if !check_ns(TypeNS) && check_ns(ValueNS) {
|
|
self.smart_resolve_path(*id, &None, path, PathSource::Expr(None));
|
|
} else {
|
|
self.smart_resolve_path(*id, &None, path, PathSource::Type);
|
|
}
|
|
}
|
|
}
|
|
|
|
visit::walk_precise_capturing_arg(self, arg)
|
|
}
|
|
|
|
fn visit_generics(&mut self, generics: &'ast Generics) {
|
|
self.visit_generic_params(&generics.params, self.diag_metadata.current_self_item.is_some());
|
|
for p in &generics.where_clause.predicates {
|
|
self.visit_where_predicate(p);
|
|
}
|
|
}
|
|
|
|
fn visit_closure_binder(&mut self, b: &'ast ClosureBinder) {
|
|
match b {
|
|
ClosureBinder::NotPresent => {}
|
|
ClosureBinder::For { generic_params, .. } => {
|
|
self.visit_generic_params(
|
|
generic_params,
|
|
self.diag_metadata.current_self_item.is_some(),
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn visit_generic_arg(&mut self, arg: &'ast GenericArg) {
|
|
debug!("visit_generic_arg({:?})", arg);
|
|
let prev = replace(&mut self.diag_metadata.currently_processing_generic_args, true);
|
|
match arg {
|
|
GenericArg::Type(ref ty) => {
|
|
// We parse const arguments as path types as we cannot distinguish them during
|
|
// parsing. We try to resolve that ambiguity by attempting resolution the type
|
|
// namespace first, and if that fails we try again in the value namespace. If
|
|
// resolution in the value namespace succeeds, we have an generic const argument on
|
|
// our hands.
|
|
if let TyKind::Path(None, ref path) = ty.kind {
|
|
// We cannot disambiguate multi-segment paths right now as that requires type
|
|
// checking.
|
|
if path.is_potential_trivial_const_arg() {
|
|
let mut check_ns = |ns| {
|
|
self.maybe_resolve_ident_in_lexical_scope(path.segments[0].ident, ns)
|
|
.is_some()
|
|
};
|
|
if !check_ns(TypeNS) && check_ns(ValueNS) {
|
|
self.resolve_anon_const_manual(
|
|
true,
|
|
AnonConstKind::ConstArg(IsRepeatExpr::No),
|
|
|this| {
|
|
this.smart_resolve_path(
|
|
ty.id,
|
|
&None,
|
|
path,
|
|
PathSource::Expr(None),
|
|
);
|
|
this.visit_path(path, ty.id);
|
|
},
|
|
);
|
|
|
|
self.diag_metadata.currently_processing_generic_args = prev;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
self.visit_ty(ty);
|
|
}
|
|
GenericArg::Lifetime(lt) => self.visit_lifetime(lt, visit::LifetimeCtxt::GenericArg),
|
|
GenericArg::Const(ct) => {
|
|
self.resolve_anon_const(ct, AnonConstKind::ConstArg(IsRepeatExpr::No))
|
|
}
|
|
}
|
|
self.diag_metadata.currently_processing_generic_args = prev;
|
|
}
|
|
|
|
fn visit_assoc_item_constraint(&mut self, constraint: &'ast AssocItemConstraint) {
|
|
self.visit_ident(constraint.ident);
|
|
if let Some(ref gen_args) = constraint.gen_args {
|
|
// Forbid anonymous lifetimes in GAT parameters until proper semantics are decided.
|
|
self.with_lifetime_rib(LifetimeRibKind::AnonymousReportError, |this| {
|
|
this.visit_generic_args(gen_args)
|
|
});
|
|
}
|
|
match constraint.kind {
|
|
AssocItemConstraintKind::Equality { ref term } => match term {
|
|
Term::Ty(ty) => self.visit_ty(ty),
|
|
Term::Const(c) => {
|
|
self.resolve_anon_const(c, AnonConstKind::ConstArg(IsRepeatExpr::No))
|
|
}
|
|
},
|
|
AssocItemConstraintKind::Bound { ref bounds } => {
|
|
self.record_lifetime_params_for_impl_trait(constraint.id);
|
|
walk_list!(self, visit_param_bound, bounds, BoundKind::Bound);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn visit_path_segment(&mut self, path_segment: &'ast PathSegment) {
|
|
if let Some(ref args) = path_segment.args {
|
|
match &**args {
|
|
GenericArgs::AngleBracketed(..) => visit::walk_generic_args(self, args),
|
|
GenericArgs::Parenthesized(p_args) => {
|
|
// Probe the lifetime ribs to know how to behave.
|
|
for rib in self.lifetime_ribs.iter().rev() {
|
|
match rib.kind {
|
|
// We are inside a `PolyTraitRef`. The lifetimes are
|
|
// to be introduced in that (maybe implicit) `for<>` binder.
|
|
LifetimeRibKind::Generics {
|
|
binder,
|
|
kind: LifetimeBinderKind::PolyTrait,
|
|
..
|
|
} => {
|
|
self.with_lifetime_rib(
|
|
LifetimeRibKind::AnonymousCreateParameter {
|
|
binder,
|
|
report_in_path: false,
|
|
},
|
|
|this| {
|
|
this.resolve_fn_signature(
|
|
binder,
|
|
false,
|
|
p_args.inputs.iter().map(|ty| (None, &**ty)),
|
|
&p_args.output,
|
|
)
|
|
},
|
|
);
|
|
break;
|
|
}
|
|
// We have nowhere to introduce generics. Code is malformed,
|
|
// so use regular lifetime resolution to avoid spurious errors.
|
|
LifetimeRibKind::Item | LifetimeRibKind::Generics { .. } => {
|
|
visit::walk_generic_args(self, args);
|
|
break;
|
|
}
|
|
LifetimeRibKind::AnonymousCreateParameter { .. }
|
|
| LifetimeRibKind::AnonymousReportError
|
|
| LifetimeRibKind::StaticIfNoLifetimeInScope { .. }
|
|
| LifetimeRibKind::Elided(_)
|
|
| LifetimeRibKind::ElisionFailure
|
|
| LifetimeRibKind::ConcreteAnonConst(_)
|
|
| LifetimeRibKind::ConstParamTy => {}
|
|
}
|
|
}
|
|
}
|
|
GenericArgs::ParenthesizedElided(_) => {}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn visit_where_predicate(&mut self, p: &'ast WherePredicate) {
|
|
debug!("visit_where_predicate {:?}", p);
|
|
let previous_value = replace(&mut self.diag_metadata.current_where_predicate, Some(p));
|
|
self.with_lifetime_rib(LifetimeRibKind::AnonymousReportError, |this| {
|
|
if let WherePredicate::BoundPredicate(WhereBoundPredicate {
|
|
ref bounded_ty,
|
|
ref bounds,
|
|
ref bound_generic_params,
|
|
span: predicate_span,
|
|
..
|
|
}) = p
|
|
{
|
|
let span = predicate_span.shrink_to_lo().to(bounded_ty.span.shrink_to_lo());
|
|
this.with_generic_param_rib(
|
|
bound_generic_params,
|
|
RibKind::Normal,
|
|
LifetimeRibKind::Generics {
|
|
binder: bounded_ty.id,
|
|
kind: LifetimeBinderKind::WhereBound,
|
|
span,
|
|
},
|
|
|this| {
|
|
this.visit_generic_params(bound_generic_params, false);
|
|
this.visit_ty(bounded_ty);
|
|
for bound in bounds {
|
|
this.visit_param_bound(bound, BoundKind::Bound)
|
|
}
|
|
},
|
|
);
|
|
} else {
|
|
visit::walk_where_predicate(this, p);
|
|
}
|
|
});
|
|
self.diag_metadata.current_where_predicate = previous_value;
|
|
}
|
|
|
|
fn visit_inline_asm(&mut self, asm: &'ast InlineAsm) {
|
|
for (op, _) in &asm.operands {
|
|
match op {
|
|
InlineAsmOperand::In { expr, .. }
|
|
| InlineAsmOperand::Out { expr: Some(expr), .. }
|
|
| InlineAsmOperand::InOut { expr, .. } => self.visit_expr(expr),
|
|
InlineAsmOperand::Out { expr: None, .. } => {}
|
|
InlineAsmOperand::SplitInOut { in_expr, out_expr, .. } => {
|
|
self.visit_expr(in_expr);
|
|
if let Some(out_expr) = out_expr {
|
|
self.visit_expr(out_expr);
|
|
}
|
|
}
|
|
InlineAsmOperand::Const { anon_const, .. } => {
|
|
// Although this is `DefKind::AnonConst`, it is allowed to reference outer
|
|
// generic parameters like an inline const.
|
|
self.resolve_anon_const(anon_const, AnonConstKind::InlineConst);
|
|
}
|
|
InlineAsmOperand::Sym { sym } => self.visit_inline_asm_sym(sym),
|
|
InlineAsmOperand::Label { block } => self.visit_block(block),
|
|
}
|
|
}
|
|
}
|
|
|
|
fn visit_inline_asm_sym(&mut self, sym: &'ast InlineAsmSym) {
|
|
// This is similar to the code for AnonConst.
|
|
self.with_rib(ValueNS, RibKind::InlineAsmSym, |this| {
|
|
this.with_rib(TypeNS, RibKind::InlineAsmSym, |this| {
|
|
this.with_label_rib(RibKind::InlineAsmSym, |this| {
|
|
this.smart_resolve_path(sym.id, &sym.qself, &sym.path, PathSource::Expr(None));
|
|
visit::walk_inline_asm_sym(this, sym);
|
|
});
|
|
})
|
|
});
|
|
}
|
|
|
|
fn visit_variant(&mut self, v: &'ast Variant) {
|
|
self.resolve_doc_links(&v.attrs, MaybeExported::Ok(v.id));
|
|
visit::walk_variant(self, v)
|
|
}
|
|
|
|
fn visit_variant_discr(&mut self, discr: &'ast AnonConst) {
|
|
self.resolve_anon_const(discr, AnonConstKind::EnumDiscriminant);
|
|
}
|
|
|
|
fn visit_field_def(&mut self, f: &'ast FieldDef) {
|
|
self.resolve_doc_links(&f.attrs, MaybeExported::Ok(f.id));
|
|
visit::walk_field_def(self, f)
|
|
}
|
|
}
|
|
|
|
impl<'a: 'ast, 'b, 'ast, 'tcx> LateResolutionVisitor<'a, 'b, 'ast, 'tcx> {
|
|
fn new(resolver: &'b mut Resolver<'a, 'tcx>) -> LateResolutionVisitor<'a, 'b, 'ast, 'tcx> {
|
|
// During late resolution we only track the module component of the parent scope,
|
|
// although it may be useful to track other components as well for diagnostics.
|
|
let graph_root = resolver.graph_root;
|
|
let parent_scope = ParentScope::module(graph_root, resolver);
|
|
let start_rib_kind = RibKind::Module(graph_root);
|
|
LateResolutionVisitor {
|
|
r: resolver,
|
|
parent_scope,
|
|
ribs: PerNS {
|
|
value_ns: vec![Rib::new(start_rib_kind)],
|
|
type_ns: vec![Rib::new(start_rib_kind)],
|
|
macro_ns: vec![Rib::new(start_rib_kind)],
|
|
},
|
|
last_block_rib: None,
|
|
label_ribs: Vec::new(),
|
|
lifetime_ribs: Vec::new(),
|
|
lifetime_elision_candidates: None,
|
|
current_trait_ref: None,
|
|
diag_metadata: Default::default(),
|
|
// errors at module scope should always be reported
|
|
in_func_body: false,
|
|
lifetime_uses: Default::default(),
|
|
}
|
|
}
|
|
|
|
fn maybe_resolve_ident_in_lexical_scope(
|
|
&mut self,
|
|
ident: Ident,
|
|
ns: Namespace,
|
|
) -> Option<LexicalScopeBinding<'a>> {
|
|
self.r.resolve_ident_in_lexical_scope(
|
|
ident,
|
|
ns,
|
|
&self.parent_scope,
|
|
None,
|
|
&self.ribs[ns],
|
|
None,
|
|
)
|
|
}
|
|
|
|
fn resolve_ident_in_lexical_scope(
|
|
&mut self,
|
|
ident: Ident,
|
|
ns: Namespace,
|
|
finalize: Option<Finalize>,
|
|
ignore_binding: Option<NameBinding<'a>>,
|
|
) -> Option<LexicalScopeBinding<'a>> {
|
|
self.r.resolve_ident_in_lexical_scope(
|
|
ident,
|
|
ns,
|
|
&self.parent_scope,
|
|
finalize,
|
|
&self.ribs[ns],
|
|
ignore_binding,
|
|
)
|
|
}
|
|
|
|
fn resolve_path(
|
|
&mut self,
|
|
path: &[Segment],
|
|
opt_ns: Option<Namespace>, // `None` indicates a module path in import
|
|
finalize: Option<Finalize>,
|
|
) -> PathResult<'a> {
|
|
self.r.resolve_path_with_ribs(
|
|
path,
|
|
opt_ns,
|
|
&self.parent_scope,
|
|
finalize,
|
|
Some(&self.ribs),
|
|
None,
|
|
None,
|
|
)
|
|
}
|
|
|
|
// AST resolution
|
|
//
|
|
// We maintain a list of value ribs and type ribs.
|
|
//
|
|
// Simultaneously, we keep track of the current position in the module
|
|
// graph in the `parent_scope.module` pointer. When we go to resolve a name in
|
|
// the value or type namespaces, we first look through all the ribs and
|
|
// then query the module graph. When we resolve a name in the module
|
|
// namespace, we can skip all the ribs (since nested modules are not
|
|
// allowed within blocks in Rust) and jump straight to the current module
|
|
// graph node.
|
|
//
|
|
// Named implementations are handled separately. When we find a method
|
|
// call, we consult the module node to find all of the implementations in
|
|
// scope. This information is lazily cached in the module node. We then
|
|
// generate a fake "implementation scope" containing all the
|
|
// implementations thus found, for compatibility with old resolve pass.
|
|
|
|
/// Do some `work` within a new innermost rib of the given `kind` in the given namespace (`ns`).
|
|
fn with_rib<T>(
|
|
&mut self,
|
|
ns: Namespace,
|
|
kind: RibKind<'a>,
|
|
work: impl FnOnce(&mut Self) -> T,
|
|
) -> T {
|
|
self.ribs[ns].push(Rib::new(kind));
|
|
let ret = work(self);
|
|
self.ribs[ns].pop();
|
|
ret
|
|
}
|
|
|
|
fn with_scope<T>(&mut self, id: NodeId, f: impl FnOnce(&mut Self) -> T) -> T {
|
|
if let Some(module) = self.r.get_module(self.r.local_def_id(id).to_def_id()) {
|
|
// Move down in the graph.
|
|
let orig_module = replace(&mut self.parent_scope.module, module);
|
|
self.with_rib(ValueNS, RibKind::Module(module), |this| {
|
|
this.with_rib(TypeNS, RibKind::Module(module), |this| {
|
|
let ret = f(this);
|
|
this.parent_scope.module = orig_module;
|
|
ret
|
|
})
|
|
})
|
|
} else {
|
|
f(self)
|
|
}
|
|
}
|
|
|
|
fn visit_generic_params(&mut self, params: &'ast [GenericParam], add_self_upper: bool) {
|
|
// For type parameter defaults, we have to ban access
|
|
// to following type parameters, as the GenericArgs can only
|
|
// provide previous type parameters as they're built. We
|
|
// put all the parameters on the ban list and then remove
|
|
// them one by one as they are processed and become available.
|
|
let mut forward_ty_ban_rib = Rib::new(RibKind::ForwardGenericParamBan);
|
|
let mut forward_const_ban_rib = Rib::new(RibKind::ForwardGenericParamBan);
|
|
for param in params.iter() {
|
|
match param.kind {
|
|
GenericParamKind::Type { .. } => {
|
|
forward_ty_ban_rib
|
|
.bindings
|
|
.insert(Ident::with_dummy_span(param.ident.name), Res::Err);
|
|
}
|
|
GenericParamKind::Const { .. } => {
|
|
forward_const_ban_rib
|
|
.bindings
|
|
.insert(Ident::with_dummy_span(param.ident.name), Res::Err);
|
|
}
|
|
GenericParamKind::Lifetime => {}
|
|
}
|
|
}
|
|
|
|
// rust-lang/rust#61631: The type `Self` is essentially
|
|
// another type parameter. For ADTs, we consider it
|
|
// well-defined only after all of the ADT type parameters have
|
|
// been provided. Therefore, we do not allow use of `Self`
|
|
// anywhere in ADT type parameter defaults.
|
|
//
|
|
// (We however cannot ban `Self` for defaults on *all* generic
|
|
// lists; e.g. trait generics can usefully refer to `Self`,
|
|
// such as in the case of `trait Add<Rhs = Self>`.)
|
|
if add_self_upper {
|
|
// (`Some` if + only if we are in ADT's generics.)
|
|
forward_ty_ban_rib.bindings.insert(Ident::with_dummy_span(kw::SelfUpper), Res::Err);
|
|
}
|
|
|
|
self.with_lifetime_rib(LifetimeRibKind::AnonymousReportError, |this| {
|
|
for param in params {
|
|
match param.kind {
|
|
GenericParamKind::Lifetime => {
|
|
for bound in ¶m.bounds {
|
|
this.visit_param_bound(bound, BoundKind::Bound);
|
|
}
|
|
}
|
|
GenericParamKind::Type { ref default } => {
|
|
for bound in ¶m.bounds {
|
|
this.visit_param_bound(bound, BoundKind::Bound);
|
|
}
|
|
|
|
if let Some(ref ty) = default {
|
|
this.ribs[TypeNS].push(forward_ty_ban_rib);
|
|
this.ribs[ValueNS].push(forward_const_ban_rib);
|
|
this.visit_ty(ty);
|
|
forward_const_ban_rib = this.ribs[ValueNS].pop().unwrap();
|
|
forward_ty_ban_rib = this.ribs[TypeNS].pop().unwrap();
|
|
}
|
|
|
|
// Allow all following defaults to refer to this type parameter.
|
|
forward_ty_ban_rib
|
|
.bindings
|
|
.remove(&Ident::with_dummy_span(param.ident.name));
|
|
}
|
|
GenericParamKind::Const { ref ty, kw_span: _, ref default } => {
|
|
// Const parameters can't have param bounds.
|
|
assert!(param.bounds.is_empty());
|
|
|
|
this.ribs[TypeNS].push(Rib::new(RibKind::ConstParamTy));
|
|
this.ribs[ValueNS].push(Rib::new(RibKind::ConstParamTy));
|
|
this.with_lifetime_rib(LifetimeRibKind::ConstParamTy, |this| {
|
|
this.visit_ty(ty)
|
|
});
|
|
this.ribs[TypeNS].pop().unwrap();
|
|
this.ribs[ValueNS].pop().unwrap();
|
|
|
|
if let Some(ref expr) = default {
|
|
this.ribs[TypeNS].push(forward_ty_ban_rib);
|
|
this.ribs[ValueNS].push(forward_const_ban_rib);
|
|
this.resolve_anon_const(
|
|
expr,
|
|
AnonConstKind::ConstArg(IsRepeatExpr::No),
|
|
);
|
|
forward_const_ban_rib = this.ribs[ValueNS].pop().unwrap();
|
|
forward_ty_ban_rib = this.ribs[TypeNS].pop().unwrap();
|
|
}
|
|
|
|
// Allow all following defaults to refer to this const parameter.
|
|
forward_const_ban_rib
|
|
.bindings
|
|
.remove(&Ident::with_dummy_span(param.ident.name));
|
|
}
|
|
}
|
|
}
|
|
})
|
|
}
|
|
|
|
#[instrument(level = "debug", skip(self, work))]
|
|
fn with_lifetime_rib<T>(
|
|
&mut self,
|
|
kind: LifetimeRibKind,
|
|
work: impl FnOnce(&mut Self) -> T,
|
|
) -> T {
|
|
self.lifetime_ribs.push(LifetimeRib::new(kind));
|
|
let outer_elision_candidates = self.lifetime_elision_candidates.take();
|
|
let ret = work(self);
|
|
self.lifetime_elision_candidates = outer_elision_candidates;
|
|
self.lifetime_ribs.pop();
|
|
ret
|
|
}
|
|
|
|
#[instrument(level = "debug", skip(self))]
|
|
fn resolve_lifetime(&mut self, lifetime: &'ast Lifetime, use_ctxt: visit::LifetimeCtxt) {
|
|
let ident = lifetime.ident;
|
|
|
|
if ident.name == kw::StaticLifetime {
|
|
self.record_lifetime_res(
|
|
lifetime.id,
|
|
LifetimeRes::Static,
|
|
LifetimeElisionCandidate::Named,
|
|
);
|
|
return;
|
|
}
|
|
|
|
if ident.name == kw::UnderscoreLifetime {
|
|
return self.resolve_anonymous_lifetime(lifetime, false);
|
|
}
|
|
|
|
let mut lifetime_rib_iter = self.lifetime_ribs.iter().rev();
|
|
while let Some(rib) = lifetime_rib_iter.next() {
|
|
let normalized_ident = ident.normalize_to_macros_2_0();
|
|
if let Some(&(_, res)) = rib.bindings.get(&normalized_ident) {
|
|
self.record_lifetime_res(lifetime.id, res, LifetimeElisionCandidate::Named);
|
|
|
|
if let LifetimeRes::Param { param, binder } = res {
|
|
match self.lifetime_uses.entry(param) {
|
|
Entry::Vacant(v) => {
|
|
debug!("First use of {:?} at {:?}", res, ident.span);
|
|
let use_set = self
|
|
.lifetime_ribs
|
|
.iter()
|
|
.rev()
|
|
.find_map(|rib| match rib.kind {
|
|
// Do not suggest eliding a lifetime where an anonymous
|
|
// lifetime would be illegal.
|
|
LifetimeRibKind::Item
|
|
| LifetimeRibKind::AnonymousReportError
|
|
| LifetimeRibKind::StaticIfNoLifetimeInScope { .. }
|
|
| LifetimeRibKind::ElisionFailure => Some(LifetimeUseSet::Many),
|
|
// An anonymous lifetime is legal here, and bound to the right
|
|
// place, go ahead.
|
|
LifetimeRibKind::AnonymousCreateParameter {
|
|
binder: anon_binder,
|
|
..
|
|
} => Some(if binder == anon_binder {
|
|
LifetimeUseSet::One { use_span: ident.span, use_ctxt }
|
|
} else {
|
|
LifetimeUseSet::Many
|
|
}),
|
|
// Only report if eliding the lifetime would have the same
|
|
// semantics.
|
|
LifetimeRibKind::Elided(r) => Some(if res == r {
|
|
LifetimeUseSet::One { use_span: ident.span, use_ctxt }
|
|
} else {
|
|
LifetimeUseSet::Many
|
|
}),
|
|
LifetimeRibKind::Generics { .. }
|
|
| LifetimeRibKind::ConstParamTy => None,
|
|
LifetimeRibKind::ConcreteAnonConst(_) => {
|
|
span_bug!(ident.span, "unexpected rib kind: {:?}", rib.kind)
|
|
}
|
|
})
|
|
.unwrap_or(LifetimeUseSet::Many);
|
|
debug!(?use_ctxt, ?use_set);
|
|
v.insert(use_set);
|
|
}
|
|
Entry::Occupied(mut o) => {
|
|
debug!("Many uses of {:?} at {:?}", res, ident.span);
|
|
*o.get_mut() = LifetimeUseSet::Many;
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
match rib.kind {
|
|
LifetimeRibKind::Item => break,
|
|
LifetimeRibKind::ConstParamTy => {
|
|
self.emit_non_static_lt_in_const_param_ty_error(lifetime);
|
|
self.record_lifetime_res(
|
|
lifetime.id,
|
|
LifetimeRes::Error,
|
|
LifetimeElisionCandidate::Ignore,
|
|
);
|
|
return;
|
|
}
|
|
LifetimeRibKind::ConcreteAnonConst(cause) => {
|
|
self.emit_forbidden_non_static_lifetime_error(cause, lifetime);
|
|
self.record_lifetime_res(
|
|
lifetime.id,
|
|
LifetimeRes::Error,
|
|
LifetimeElisionCandidate::Ignore,
|
|
);
|
|
return;
|
|
}
|
|
LifetimeRibKind::AnonymousCreateParameter { .. }
|
|
| LifetimeRibKind::Elided(_)
|
|
| LifetimeRibKind::Generics { .. }
|
|
| LifetimeRibKind::ElisionFailure
|
|
| LifetimeRibKind::AnonymousReportError
|
|
| LifetimeRibKind::StaticIfNoLifetimeInScope { .. } => {}
|
|
}
|
|
}
|
|
|
|
let mut outer_res = None;
|
|
for rib in lifetime_rib_iter {
|
|
let normalized_ident = ident.normalize_to_macros_2_0();
|
|
if let Some((&outer, _)) = rib.bindings.get_key_value(&normalized_ident) {
|
|
outer_res = Some(outer);
|
|
break;
|
|
}
|
|
}
|
|
|
|
self.emit_undeclared_lifetime_error(lifetime, outer_res);
|
|
self.record_lifetime_res(lifetime.id, LifetimeRes::Error, LifetimeElisionCandidate::Named);
|
|
}
|
|
|
|
#[instrument(level = "debug", skip(self))]
|
|
fn resolve_anonymous_lifetime(&mut self, lifetime: &Lifetime, elided: bool) {
|
|
debug_assert_eq!(lifetime.ident.name, kw::UnderscoreLifetime);
|
|
|
|
let kind =
|
|
if elided { MissingLifetimeKind::Ampersand } else { MissingLifetimeKind::Underscore };
|
|
let missing_lifetime =
|
|
MissingLifetime { id: lifetime.id, span: lifetime.ident.span, kind, count: 1 };
|
|
let elision_candidate = LifetimeElisionCandidate::Missing(missing_lifetime);
|
|
for (i, rib) in self.lifetime_ribs.iter().enumerate().rev() {
|
|
debug!(?rib.kind);
|
|
match rib.kind {
|
|
LifetimeRibKind::AnonymousCreateParameter { binder, .. } => {
|
|
let res = self.create_fresh_lifetime(lifetime.ident, binder, kind);
|
|
self.record_lifetime_res(lifetime.id, res, elision_candidate);
|
|
return;
|
|
}
|
|
LifetimeRibKind::StaticIfNoLifetimeInScope { lint_id: node_id, emit_lint } => {
|
|
let mut lifetimes_in_scope = vec![];
|
|
for rib in &self.lifetime_ribs[..i] {
|
|
lifetimes_in_scope.extend(rib.bindings.iter().map(|(ident, _)| ident.span));
|
|
// Consider any anonymous lifetimes, too
|
|
if let LifetimeRibKind::AnonymousCreateParameter { binder, .. } = rib.kind
|
|
&& let Some(extra) = self.r.extra_lifetime_params_map.get(&binder)
|
|
{
|
|
lifetimes_in_scope.extend(extra.iter().map(|(ident, _, _)| ident.span));
|
|
}
|
|
}
|
|
if lifetimes_in_scope.is_empty() {
|
|
self.record_lifetime_res(
|
|
lifetime.id,
|
|
LifetimeRes::Static,
|
|
elision_candidate,
|
|
);
|
|
return;
|
|
} else if emit_lint {
|
|
self.r.lint_buffer.buffer_lint(
|
|
lint::builtin::ELIDED_LIFETIMES_IN_ASSOCIATED_CONSTANT,
|
|
node_id,
|
|
lifetime.ident.span,
|
|
lint::BuiltinLintDiag::AssociatedConstElidedLifetime {
|
|
elided,
|
|
span: lifetime.ident.span,
|
|
lifetimes_in_scope: lifetimes_in_scope.into(),
|
|
},
|
|
);
|
|
}
|
|
}
|
|
LifetimeRibKind::AnonymousReportError => {
|
|
if elided {
|
|
let mut suggestion = None;
|
|
for rib in self.lifetime_ribs[i..].iter().rev() {
|
|
if let LifetimeRibKind::Generics {
|
|
span,
|
|
kind: LifetimeBinderKind::PolyTrait | LifetimeBinderKind::WhereBound,
|
|
..
|
|
} = &rib.kind
|
|
{
|
|
suggestion =
|
|
Some(errors::ElidedAnonymousLivetimeReportErrorSuggestion {
|
|
lo: span.shrink_to_lo(),
|
|
hi: lifetime.ident.span.shrink_to_hi(),
|
|
});
|
|
break;
|
|
}
|
|
}
|
|
|
|
// are we trying to use an anonymous lifetime
|
|
// on a non GAT associated trait type?
|
|
if !self.in_func_body
|
|
&& let Some((module, _)) = &self.current_trait_ref
|
|
&& let Some(ty) = &self.diag_metadata.current_self_type
|
|
&& Some(true) == self.diag_metadata.in_non_gat_assoc_type
|
|
&& let crate::ModuleKind::Def(DefKind::Trait, trait_id, _) = module.kind
|
|
{
|
|
if def_id_matches_path(
|
|
self.r.tcx,
|
|
trait_id,
|
|
&["core", "iter", "traits", "iterator", "Iterator"],
|
|
) {
|
|
self.r.dcx().emit_err(errors::LendingIteratorReportError {
|
|
lifetime: lifetime.ident.span,
|
|
ty: ty.span,
|
|
});
|
|
} else {
|
|
self.r.dcx().emit_err(errors::AnonymousLivetimeNonGatReportError {
|
|
lifetime: lifetime.ident.span,
|
|
});
|
|
}
|
|
} else {
|
|
self.r.dcx().emit_err(errors::ElidedAnonymousLivetimeReportError {
|
|
span: lifetime.ident.span,
|
|
suggestion,
|
|
});
|
|
}
|
|
} else {
|
|
self.r.dcx().emit_err(errors::ExplicitAnonymousLivetimeReportError {
|
|
span: lifetime.ident.span,
|
|
});
|
|
};
|
|
self.record_lifetime_res(lifetime.id, LifetimeRes::Error, elision_candidate);
|
|
return;
|
|
}
|
|
LifetimeRibKind::Elided(res) => {
|
|
self.record_lifetime_res(lifetime.id, res, elision_candidate);
|
|
return;
|
|
}
|
|
LifetimeRibKind::ElisionFailure => {
|
|
self.diag_metadata.current_elision_failures.push(missing_lifetime);
|
|
self.record_lifetime_res(lifetime.id, LifetimeRes::Error, elision_candidate);
|
|
return;
|
|
}
|
|
LifetimeRibKind::Item => break,
|
|
LifetimeRibKind::Generics { .. } | LifetimeRibKind::ConstParamTy => {}
|
|
LifetimeRibKind::ConcreteAnonConst(_) => {
|
|
// There is always an `Elided(LifetimeRes::Infer)` inside an `AnonConst`.
|
|
span_bug!(lifetime.ident.span, "unexpected rib kind: {:?}", rib.kind)
|
|
}
|
|
}
|
|
}
|
|
self.record_lifetime_res(lifetime.id, LifetimeRes::Error, elision_candidate);
|
|
self.report_missing_lifetime_specifiers(vec![missing_lifetime], None);
|
|
}
|
|
|
|
#[instrument(level = "debug", skip(self))]
|
|
fn resolve_elided_lifetime(&mut self, anchor_id: NodeId, span: Span) {
|
|
let id = self.r.next_node_id();
|
|
let lt = Lifetime { id, ident: Ident::new(kw::UnderscoreLifetime, span) };
|
|
|
|
self.record_lifetime_res(
|
|
anchor_id,
|
|
LifetimeRes::ElidedAnchor { start: id, end: NodeId::from_u32(id.as_u32() + 1) },
|
|
LifetimeElisionCandidate::Ignore,
|
|
);
|
|
self.resolve_anonymous_lifetime(<, true);
|
|
}
|
|
|
|
#[instrument(level = "debug", skip(self))]
|
|
fn create_fresh_lifetime(
|
|
&mut self,
|
|
ident: Ident,
|
|
binder: NodeId,
|
|
kind: MissingLifetimeKind,
|
|
) -> LifetimeRes {
|
|
debug_assert_eq!(ident.name, kw::UnderscoreLifetime);
|
|
debug!(?ident.span);
|
|
|
|
// Leave the responsibility to create the `LocalDefId` to lowering.
|
|
let param = self.r.next_node_id();
|
|
let res = LifetimeRes::Fresh { param, binder, kind };
|
|
self.record_lifetime_param(param, res);
|
|
|
|
// Record the created lifetime parameter so lowering can pick it up and add it to HIR.
|
|
self.r
|
|
.extra_lifetime_params_map
|
|
.entry(binder)
|
|
.or_insert_with(Vec::new)
|
|
.push((ident, param, res));
|
|
res
|
|
}
|
|
|
|
#[instrument(level = "debug", skip(self))]
|
|
fn resolve_elided_lifetimes_in_path(
|
|
&mut self,
|
|
partial_res: PartialRes,
|
|
path: &[Segment],
|
|
source: PathSource<'_>,
|
|
path_span: Span,
|
|
) {
|
|
let proj_start = path.len() - partial_res.unresolved_segments();
|
|
for (i, segment) in path.iter().enumerate() {
|
|
if segment.has_lifetime_args {
|
|
continue;
|
|
}
|
|
let Some(segment_id) = segment.id else {
|
|
continue;
|
|
};
|
|
|
|
// Figure out if this is a type/trait segment,
|
|
// which may need lifetime elision performed.
|
|
let type_def_id = match partial_res.base_res() {
|
|
Res::Def(DefKind::AssocTy, def_id) if i + 2 == proj_start => {
|
|
self.r.tcx.parent(def_id)
|
|
}
|
|
Res::Def(DefKind::Variant, def_id) if i + 1 == proj_start => {
|
|
self.r.tcx.parent(def_id)
|
|
}
|
|
Res::Def(DefKind::Struct, def_id)
|
|
| Res::Def(DefKind::Union, def_id)
|
|
| Res::Def(DefKind::Enum, def_id)
|
|
| Res::Def(DefKind::TyAlias, def_id)
|
|
| Res::Def(DefKind::Trait, def_id)
|
|
if i + 1 == proj_start =>
|
|
{
|
|
def_id
|
|
}
|
|
_ => continue,
|
|
};
|
|
|
|
let expected_lifetimes = self.r.item_generics_num_lifetimes(type_def_id);
|
|
if expected_lifetimes == 0 {
|
|
continue;
|
|
}
|
|
|
|
let node_ids = self.r.next_node_ids(expected_lifetimes);
|
|
self.record_lifetime_res(
|
|
segment_id,
|
|
LifetimeRes::ElidedAnchor { start: node_ids.start, end: node_ids.end },
|
|
LifetimeElisionCandidate::Ignore,
|
|
);
|
|
|
|
let inferred = match source {
|
|
PathSource::Trait(..) | PathSource::TraitItem(..) | PathSource::Type => false,
|
|
PathSource::Expr(..)
|
|
| PathSource::Pat
|
|
| PathSource::Struct
|
|
| PathSource::TupleStruct(..)
|
|
| PathSource::Delegation => true,
|
|
};
|
|
if inferred {
|
|
// Do not create a parameter for patterns and expressions: type checking can infer
|
|
// the appropriate lifetime for us.
|
|
for id in node_ids {
|
|
self.record_lifetime_res(
|
|
id,
|
|
LifetimeRes::Infer,
|
|
LifetimeElisionCandidate::Named,
|
|
);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
let elided_lifetime_span = if segment.has_generic_args {
|
|
// If there are brackets, but not generic arguments, then use the opening bracket
|
|
segment.args_span.with_hi(segment.args_span.lo() + BytePos(1))
|
|
} else {
|
|
// If there are no brackets, use the identifier span.
|
|
// HACK: we use find_ancestor_inside to properly suggest elided spans in paths
|
|
// originating from macros, since the segment's span might be from a macro arg.
|
|
segment.ident.span.find_ancestor_inside(path_span).unwrap_or(path_span)
|
|
};
|
|
let ident = Ident::new(kw::UnderscoreLifetime, elided_lifetime_span);
|
|
|
|
let kind = if segment.has_generic_args {
|
|
MissingLifetimeKind::Comma
|
|
} else {
|
|
MissingLifetimeKind::Brackets
|
|
};
|
|
let missing_lifetime = MissingLifetime {
|
|
id: node_ids.start,
|
|
span: elided_lifetime_span,
|
|
kind,
|
|
count: expected_lifetimes,
|
|
};
|
|
let mut should_lint = true;
|
|
for rib in self.lifetime_ribs.iter().rev() {
|
|
match rib.kind {
|
|
// In create-parameter mode we error here because we don't want to support
|
|
// deprecated impl elision in new features like impl elision and `async fn`,
|
|
// both of which work using the `CreateParameter` mode:
|
|
//
|
|
// impl Foo for std::cell::Ref<u32> // note lack of '_
|
|
// async fn foo(_: std::cell::Ref<u32>) { ... }
|
|
LifetimeRibKind::AnonymousCreateParameter { report_in_path: true, .. }
|
|
| LifetimeRibKind::StaticIfNoLifetimeInScope { .. } => {
|
|
let sess = self.r.tcx.sess;
|
|
let subdiag = rustc_errors::elided_lifetime_in_path_suggestion(
|
|
sess.source_map(),
|
|
expected_lifetimes,
|
|
path_span,
|
|
!segment.has_generic_args,
|
|
elided_lifetime_span,
|
|
);
|
|
self.r.dcx().emit_err(errors::ImplicitElidedLifetimeNotAllowedHere {
|
|
span: path_span,
|
|
subdiag,
|
|
});
|
|
should_lint = false;
|
|
|
|
for id in node_ids {
|
|
self.record_lifetime_res(
|
|
id,
|
|
LifetimeRes::Error,
|
|
LifetimeElisionCandidate::Named,
|
|
);
|
|
}
|
|
break;
|
|
}
|
|
// Do not create a parameter for patterns and expressions.
|
|
LifetimeRibKind::AnonymousCreateParameter { binder, .. } => {
|
|
// Group all suggestions into the first record.
|
|
let mut candidate = LifetimeElisionCandidate::Missing(missing_lifetime);
|
|
for id in node_ids {
|
|
let res = self.create_fresh_lifetime(ident, binder, kind);
|
|
self.record_lifetime_res(
|
|
id,
|
|
res,
|
|
replace(&mut candidate, LifetimeElisionCandidate::Named),
|
|
);
|
|
}
|
|
break;
|
|
}
|
|
LifetimeRibKind::Elided(res) => {
|
|
let mut candidate = LifetimeElisionCandidate::Missing(missing_lifetime);
|
|
for id in node_ids {
|
|
self.record_lifetime_res(
|
|
id,
|
|
res,
|
|
replace(&mut candidate, LifetimeElisionCandidate::Ignore),
|
|
);
|
|
}
|
|
break;
|
|
}
|
|
LifetimeRibKind::ElisionFailure => {
|
|
self.diag_metadata.current_elision_failures.push(missing_lifetime);
|
|
for id in node_ids {
|
|
self.record_lifetime_res(
|
|
id,
|
|
LifetimeRes::Error,
|
|
LifetimeElisionCandidate::Ignore,
|
|
);
|
|
}
|
|
break;
|
|
}
|
|
// `LifetimeRes::Error`, which would usually be used in the case of
|
|
// `ReportError`, is unsuitable here, as we don't emit an error yet. Instead,
|
|
// we simply resolve to an implicit lifetime, which will be checked later, at
|
|
// which point a suitable error will be emitted.
|
|
LifetimeRibKind::AnonymousReportError | LifetimeRibKind::Item => {
|
|
for id in node_ids {
|
|
self.record_lifetime_res(
|
|
id,
|
|
LifetimeRes::Error,
|
|
LifetimeElisionCandidate::Ignore,
|
|
);
|
|
}
|
|
self.report_missing_lifetime_specifiers(vec![missing_lifetime], None);
|
|
break;
|
|
}
|
|
LifetimeRibKind::Generics { .. } | LifetimeRibKind::ConstParamTy => {}
|
|
LifetimeRibKind::ConcreteAnonConst(_) => {
|
|
// There is always an `Elided(LifetimeRes::Infer)` inside an `AnonConst`.
|
|
span_bug!(elided_lifetime_span, "unexpected rib kind: {:?}", rib.kind)
|
|
}
|
|
}
|
|
}
|
|
|
|
if should_lint {
|
|
self.r.lint_buffer.buffer_lint(
|
|
lint::builtin::ELIDED_LIFETIMES_IN_PATHS,
|
|
segment_id,
|
|
elided_lifetime_span,
|
|
lint::BuiltinLintDiag::ElidedLifetimesInPaths(
|
|
expected_lifetimes,
|
|
path_span,
|
|
!segment.has_generic_args,
|
|
elided_lifetime_span,
|
|
),
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
#[instrument(level = "debug", skip(self))]
|
|
fn record_lifetime_res(
|
|
&mut self,
|
|
id: NodeId,
|
|
res: LifetimeRes,
|
|
candidate: LifetimeElisionCandidate,
|
|
) {
|
|
if let Some(prev_res) = self.r.lifetimes_res_map.insert(id, res) {
|
|
panic!("lifetime {id:?} resolved multiple times ({prev_res:?} before, {res:?} now)")
|
|
}
|
|
match res {
|
|
LifetimeRes::Param { .. } | LifetimeRes::Fresh { .. } | LifetimeRes::Static => {
|
|
if let Some(ref mut candidates) = self.lifetime_elision_candidates {
|
|
candidates.push((res, candidate));
|
|
}
|
|
}
|
|
LifetimeRes::Infer | LifetimeRes::Error | LifetimeRes::ElidedAnchor { .. } => {}
|
|
}
|
|
}
|
|
|
|
#[instrument(level = "debug", skip(self))]
|
|
fn record_lifetime_param(&mut self, id: NodeId, res: LifetimeRes) {
|
|
if let Some(prev_res) = self.r.lifetimes_res_map.insert(id, res) {
|
|
panic!(
|
|
"lifetime parameter {id:?} resolved multiple times ({prev_res:?} before, {res:?} now)"
|
|
)
|
|
}
|
|
}
|
|
|
|
/// Perform resolution of a function signature, accounting for lifetime elision.
|
|
#[instrument(level = "debug", skip(self, inputs))]
|
|
fn resolve_fn_signature(
|
|
&mut self,
|
|
fn_id: NodeId,
|
|
has_self: bool,
|
|
inputs: impl Iterator<Item = (Option<&'ast Pat>, &'ast Ty)> + Clone,
|
|
output_ty: &'ast FnRetTy,
|
|
) {
|
|
// Add each argument to the rib.
|
|
let elision_lifetime = self.resolve_fn_params(has_self, inputs);
|
|
debug!(?elision_lifetime);
|
|
|
|
let outer_failures = take(&mut self.diag_metadata.current_elision_failures);
|
|
let output_rib = if let Ok(res) = elision_lifetime.as_ref() {
|
|
self.r.lifetime_elision_allowed.insert(fn_id);
|
|
LifetimeRibKind::Elided(*res)
|
|
} else {
|
|
LifetimeRibKind::ElisionFailure
|
|
};
|
|
self.with_lifetime_rib(output_rib, |this| visit::walk_fn_ret_ty(this, output_ty));
|
|
let elision_failures =
|
|
replace(&mut self.diag_metadata.current_elision_failures, outer_failures);
|
|
if !elision_failures.is_empty() {
|
|
let Err(failure_info) = elision_lifetime else { bug!() };
|
|
self.report_missing_lifetime_specifiers(elision_failures, Some(failure_info));
|
|
}
|
|
}
|
|
|
|
/// Resolve inside function parameters and parameter types.
|
|
/// Returns the lifetime for elision in fn return type,
|
|
/// or diagnostic information in case of elision failure.
|
|
fn resolve_fn_params(
|
|
&mut self,
|
|
has_self: bool,
|
|
inputs: impl Iterator<Item = (Option<&'ast Pat>, &'ast Ty)>,
|
|
) -> Result<LifetimeRes, (Vec<MissingLifetime>, Vec<ElisionFnParameter>)> {
|
|
enum Elision {
|
|
/// We have not found any candidate.
|
|
None,
|
|
/// We have a candidate bound to `self`.
|
|
Self_(LifetimeRes),
|
|
/// We have a candidate bound to a parameter.
|
|
Param(LifetimeRes),
|
|
/// We failed elision.
|
|
Err,
|
|
}
|
|
|
|
// Save elision state to reinstate it later.
|
|
let outer_candidates = self.lifetime_elision_candidates.take();
|
|
|
|
// Result of elision.
|
|
let mut elision_lifetime = Elision::None;
|
|
// Information for diagnostics.
|
|
let mut parameter_info = Vec::new();
|
|
let mut all_candidates = Vec::new();
|
|
|
|
let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())];
|
|
for (index, (pat, ty)) in inputs.enumerate() {
|
|
debug!(?pat, ?ty);
|
|
self.with_lifetime_rib(LifetimeRibKind::Elided(LifetimeRes::Infer), |this| {
|
|
if let Some(pat) = pat {
|
|
this.resolve_pattern(pat, PatternSource::FnParam, &mut bindings);
|
|
}
|
|
});
|
|
|
|
// Record elision candidates only for this parameter.
|
|
debug_assert_matches!(self.lifetime_elision_candidates, None);
|
|
self.lifetime_elision_candidates = Some(Default::default());
|
|
self.visit_ty(ty);
|
|
let local_candidates = self.lifetime_elision_candidates.take();
|
|
|
|
if let Some(candidates) = local_candidates {
|
|
let distinct: FxHashSet<_> = candidates.iter().map(|(res, _)| *res).collect();
|
|
let lifetime_count = distinct.len();
|
|
if lifetime_count != 0 {
|
|
parameter_info.push(ElisionFnParameter {
|
|
index,
|
|
ident: if let Some(pat) = pat
|
|
&& let PatKind::Ident(_, ident, _) = pat.kind
|
|
{
|
|
Some(ident)
|
|
} else {
|
|
None
|
|
},
|
|
lifetime_count,
|
|
span: ty.span,
|
|
});
|
|
all_candidates.extend(candidates.into_iter().filter_map(|(_, candidate)| {
|
|
match candidate {
|
|
LifetimeElisionCandidate::Ignore | LifetimeElisionCandidate::Named => {
|
|
None
|
|
}
|
|
LifetimeElisionCandidate::Missing(missing) => Some(missing),
|
|
}
|
|
}));
|
|
}
|
|
let mut distinct_iter = distinct.into_iter();
|
|
if let Some(res) = distinct_iter.next() {
|
|
match elision_lifetime {
|
|
// We are the first parameter to bind lifetimes.
|
|
Elision::None => {
|
|
if distinct_iter.next().is_none() {
|
|
// We have a single lifetime => success.
|
|
elision_lifetime = Elision::Param(res)
|
|
} else {
|
|
// We have multiple lifetimes => error.
|
|
elision_lifetime = Elision::Err;
|
|
}
|
|
}
|
|
// We have 2 parameters that bind lifetimes => error.
|
|
Elision::Param(_) => elision_lifetime = Elision::Err,
|
|
// `self` elision takes precedence over everything else.
|
|
Elision::Self_(_) | Elision::Err => {}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Handle `self` specially.
|
|
if index == 0 && has_self {
|
|
let self_lifetime = self.find_lifetime_for_self(ty);
|
|
elision_lifetime = match self_lifetime {
|
|
// We found `self` elision.
|
|
Set1::One(lifetime) => Elision::Self_(lifetime),
|
|
// `self` itself had ambiguous lifetimes, e.g.
|
|
// &Box<&Self>. In this case we won't consider
|
|
// taking an alternative parameter lifetime; just avoid elision
|
|
// entirely.
|
|
Set1::Many => Elision::Err,
|
|
// We do not have `self` elision: disregard the `Elision::Param` that we may
|
|
// have found.
|
|
Set1::Empty => Elision::None,
|
|
}
|
|
}
|
|
debug!("(resolving function / closure) recorded parameter");
|
|
}
|
|
|
|
// Reinstate elision state.
|
|
debug_assert_matches!(self.lifetime_elision_candidates, None);
|
|
self.lifetime_elision_candidates = outer_candidates;
|
|
|
|
if let Elision::Param(res) | Elision::Self_(res) = elision_lifetime {
|
|
return Ok(res);
|
|
}
|
|
|
|
// We do not have a candidate.
|
|
Err((all_candidates, parameter_info))
|
|
}
|
|
|
|
/// List all the lifetimes that appear in the provided type.
|
|
fn find_lifetime_for_self(&self, ty: &'ast Ty) -> Set1<LifetimeRes> {
|
|
/// Visits a type to find all the &references, and determines the
|
|
/// set of lifetimes for all of those references where the referent
|
|
/// contains Self.
|
|
struct FindReferenceVisitor<'r, 'a, 'tcx> {
|
|
r: &'r Resolver<'a, 'tcx>,
|
|
impl_self: Option<Res>,
|
|
lifetime: Set1<LifetimeRes>,
|
|
}
|
|
|
|
impl<'a> Visitor<'a> for FindReferenceVisitor<'_, '_, '_> {
|
|
fn visit_ty(&mut self, ty: &'a Ty) {
|
|
trace!("FindReferenceVisitor considering ty={:?}", ty);
|
|
if let TyKind::Ref(lt, _) = ty.kind {
|
|
// See if anything inside the &thing contains Self
|
|
let mut visitor =
|
|
SelfVisitor { r: self.r, impl_self: self.impl_self, self_found: false };
|
|
visitor.visit_ty(ty);
|
|
trace!("FindReferenceVisitor: SelfVisitor self_found={:?}", visitor.self_found);
|
|
if visitor.self_found {
|
|
let lt_id = if let Some(lt) = lt {
|
|
lt.id
|
|
} else {
|
|
let res = self.r.lifetimes_res_map[&ty.id];
|
|
let LifetimeRes::ElidedAnchor { start, .. } = res else { bug!() };
|
|
start
|
|
};
|
|
let lt_res = self.r.lifetimes_res_map[<_id];
|
|
trace!("FindReferenceVisitor inserting res={:?}", lt_res);
|
|
self.lifetime.insert(lt_res);
|
|
}
|
|
}
|
|
visit::walk_ty(self, ty)
|
|
}
|
|
|
|
// A type may have an expression as a const generic argument.
|
|
// We do not want to recurse into those.
|
|
fn visit_expr(&mut self, _: &'a Expr) {}
|
|
}
|
|
|
|
/// Visitor which checks the referent of a &Thing to see if the
|
|
/// Thing contains Self
|
|
struct SelfVisitor<'r, 'a, 'tcx> {
|
|
r: &'r Resolver<'a, 'tcx>,
|
|
impl_self: Option<Res>,
|
|
self_found: bool,
|
|
}
|
|
|
|
impl SelfVisitor<'_, '_, '_> {
|
|
// Look for `self: &'a Self` - also desugared from `&'a self`
|
|
fn is_self_ty(&self, ty: &Ty) -> bool {
|
|
match ty.kind {
|
|
TyKind::ImplicitSelf => true,
|
|
TyKind::Path(None, _) => {
|
|
let path_res = self.r.partial_res_map[&ty.id].full_res();
|
|
if let Some(Res::SelfTyParam { .. } | Res::SelfTyAlias { .. }) = path_res {
|
|
return true;
|
|
}
|
|
self.impl_self.is_some() && path_res == self.impl_self
|
|
}
|
|
_ => false,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a> Visitor<'a> for SelfVisitor<'_, '_, '_> {
|
|
fn visit_ty(&mut self, ty: &'a Ty) {
|
|
trace!("SelfVisitor considering ty={:?}", ty);
|
|
if self.is_self_ty(ty) {
|
|
trace!("SelfVisitor found Self");
|
|
self.self_found = true;
|
|
}
|
|
visit::walk_ty(self, ty)
|
|
}
|
|
|
|
// A type may have an expression as a const generic argument.
|
|
// We do not want to recurse into those.
|
|
fn visit_expr(&mut self, _: &'a Expr) {}
|
|
}
|
|
|
|
let impl_self = self
|
|
.diag_metadata
|
|
.current_self_type
|
|
.as_ref()
|
|
.and_then(|ty| {
|
|
if let TyKind::Path(None, _) = ty.kind {
|
|
self.r.partial_res_map.get(&ty.id)
|
|
} else {
|
|
None
|
|
}
|
|
})
|
|
.and_then(|res| res.full_res())
|
|
.filter(|res| {
|
|
// Permit the types that unambiguously always
|
|
// result in the same type constructor being used
|
|
// (it can't differ between `Self` and `self`).
|
|
matches!(
|
|
res,
|
|
Res::Def(DefKind::Struct | DefKind::Union | DefKind::Enum, _,) | Res::PrimTy(_)
|
|
)
|
|
});
|
|
let mut visitor = FindReferenceVisitor { r: self.r, impl_self, lifetime: Set1::Empty };
|
|
visitor.visit_ty(ty);
|
|
trace!("FindReferenceVisitor found={:?}", visitor.lifetime);
|
|
visitor.lifetime
|
|
}
|
|
|
|
/// Searches the current set of local scopes for labels. Returns the `NodeId` of the resolved
|
|
/// label and reports an error if the label is not found or is unreachable.
|
|
fn resolve_label(&mut self, mut label: Ident) -> Result<(NodeId, Span), ResolutionError<'a>> {
|
|
let mut suggestion = None;
|
|
|
|
for i in (0..self.label_ribs.len()).rev() {
|
|
let rib = &self.label_ribs[i];
|
|
|
|
if let RibKind::MacroDefinition(def) = rib.kind {
|
|
// If an invocation of this macro created `ident`, give up on `ident`
|
|
// and switch to `ident`'s source from the macro definition.
|
|
if def == self.r.macro_def(label.span.ctxt()) {
|
|
label.span.remove_mark();
|
|
}
|
|
}
|
|
|
|
let ident = label.normalize_to_macro_rules();
|
|
if let Some((ident, id)) = rib.bindings.get_key_value(&ident) {
|
|
let definition_span = ident.span;
|
|
return if self.is_label_valid_from_rib(i) {
|
|
Ok((*id, definition_span))
|
|
} else {
|
|
Err(ResolutionError::UnreachableLabel {
|
|
name: label.name,
|
|
definition_span,
|
|
suggestion,
|
|
})
|
|
};
|
|
}
|
|
|
|
// Diagnostics: Check if this rib contains a label with a similar name, keep track of
|
|
// the first such label that is encountered.
|
|
suggestion = suggestion.or_else(|| self.suggestion_for_label_in_rib(i, label));
|
|
}
|
|
|
|
Err(ResolutionError::UndeclaredLabel { name: label.name, suggestion })
|
|
}
|
|
|
|
/// Determine whether or not a label from the `rib_index`th label rib is reachable.
|
|
fn is_label_valid_from_rib(&self, rib_index: usize) -> bool {
|
|
let ribs = &self.label_ribs[rib_index + 1..];
|
|
|
|
for rib in ribs {
|
|
if rib.kind.is_label_barrier() {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
true
|
|
}
|
|
|
|
fn resolve_adt(&mut self, item: &'ast Item, generics: &'ast Generics) {
|
|
debug!("resolve_adt");
|
|
let kind = self.r.local_def_kind(item.id);
|
|
self.with_current_self_item(item, |this| {
|
|
this.with_generic_param_rib(
|
|
&generics.params,
|
|
RibKind::Item(HasGenericParams::Yes(generics.span), kind),
|
|
LifetimeRibKind::Generics {
|
|
binder: item.id,
|
|
kind: LifetimeBinderKind::Item,
|
|
span: generics.span,
|
|
},
|
|
|this| {
|
|
let item_def_id = this.r.local_def_id(item.id).to_def_id();
|
|
this.with_self_rib(
|
|
Res::SelfTyAlias {
|
|
alias_to: item_def_id,
|
|
forbid_generic: false,
|
|
is_trait_impl: false,
|
|
},
|
|
|this| {
|
|
visit::walk_item(this, item);
|
|
},
|
|
);
|
|
},
|
|
);
|
|
});
|
|
}
|
|
|
|
fn future_proof_import(&mut self, use_tree: &UseTree) {
|
|
let segments = &use_tree.prefix.segments;
|
|
if !segments.is_empty() {
|
|
let ident = segments[0].ident;
|
|
if ident.is_path_segment_keyword() || ident.span.is_rust_2015() {
|
|
return;
|
|
}
|
|
|
|
let nss = match use_tree.kind {
|
|
UseTreeKind::Simple(..) if segments.len() == 1 => &[TypeNS, ValueNS][..],
|
|
_ => &[TypeNS],
|
|
};
|
|
let report_error = |this: &Self, ns| {
|
|
if this.should_report_errs() {
|
|
let what = if ns == TypeNS { "type parameters" } else { "local variables" };
|
|
this.r.dcx().emit_err(errors::ImportsCannotReferTo { span: ident.span, what });
|
|
}
|
|
};
|
|
|
|
for &ns in nss {
|
|
match self.maybe_resolve_ident_in_lexical_scope(ident, ns) {
|
|
Some(LexicalScopeBinding::Res(..)) => {
|
|
report_error(self, ns);
|
|
}
|
|
Some(LexicalScopeBinding::Item(binding)) => {
|
|
if let Some(LexicalScopeBinding::Res(..)) =
|
|
self.resolve_ident_in_lexical_scope(ident, ns, None, Some(binding))
|
|
{
|
|
report_error(self, ns);
|
|
}
|
|
}
|
|
None => {}
|
|
}
|
|
}
|
|
} else if let UseTreeKind::Nested { items, .. } = &use_tree.kind {
|
|
for (use_tree, _) in items {
|
|
self.future_proof_import(use_tree);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn resolve_item(&mut self, item: &'ast Item) {
|
|
let mod_inner_docs =
|
|
matches!(item.kind, ItemKind::Mod(..)) && rustdoc::inner_docs(&item.attrs);
|
|
if !mod_inner_docs && !matches!(item.kind, ItemKind::Impl(..) | ItemKind::Use(..)) {
|
|
self.resolve_doc_links(&item.attrs, MaybeExported::Ok(item.id));
|
|
}
|
|
|
|
let name = item.ident.name;
|
|
debug!("(resolving item) resolving {} ({:?})", name, item.kind);
|
|
|
|
let def_kind = self.r.local_def_kind(item.id);
|
|
match item.kind {
|
|
ItemKind::TyAlias(box TyAlias { ref generics, .. }) => {
|
|
self.with_generic_param_rib(
|
|
&generics.params,
|
|
RibKind::Item(HasGenericParams::Yes(generics.span), def_kind),
|
|
LifetimeRibKind::Generics {
|
|
binder: item.id,
|
|
kind: LifetimeBinderKind::Item,
|
|
span: generics.span,
|
|
},
|
|
|this| visit::walk_item(this, item),
|
|
);
|
|
}
|
|
|
|
ItemKind::Fn(box Fn { ref generics, .. }) => {
|
|
self.with_generic_param_rib(
|
|
&generics.params,
|
|
RibKind::Item(HasGenericParams::Yes(generics.span), def_kind),
|
|
LifetimeRibKind::Generics {
|
|
binder: item.id,
|
|
kind: LifetimeBinderKind::Function,
|
|
span: generics.span,
|
|
},
|
|
|this| visit::walk_item(this, item),
|
|
);
|
|
}
|
|
|
|
ItemKind::Enum(_, ref generics)
|
|
| ItemKind::Struct(_, ref generics)
|
|
| ItemKind::Union(_, ref generics) => {
|
|
self.resolve_adt(item, generics);
|
|
}
|
|
|
|
ItemKind::Impl(box Impl {
|
|
ref generics,
|
|
ref of_trait,
|
|
ref self_ty,
|
|
items: ref impl_items,
|
|
..
|
|
}) => {
|
|
self.diag_metadata.current_impl_items = Some(impl_items);
|
|
self.resolve_implementation(
|
|
&item.attrs,
|
|
generics,
|
|
of_trait,
|
|
self_ty,
|
|
item.id,
|
|
impl_items,
|
|
);
|
|
self.diag_metadata.current_impl_items = None;
|
|
}
|
|
|
|
ItemKind::Trait(box Trait { ref generics, ref bounds, ref items, .. }) => {
|
|
// Create a new rib for the trait-wide type parameters.
|
|
self.with_generic_param_rib(
|
|
&generics.params,
|
|
RibKind::Item(HasGenericParams::Yes(generics.span), def_kind),
|
|
LifetimeRibKind::Generics {
|
|
binder: item.id,
|
|
kind: LifetimeBinderKind::Item,
|
|
span: generics.span,
|
|
},
|
|
|this| {
|
|
let local_def_id = this.r.local_def_id(item.id).to_def_id();
|
|
this.with_self_rib(Res::SelfTyParam { trait_: local_def_id }, |this| {
|
|
this.visit_generics(generics);
|
|
walk_list!(this, visit_param_bound, bounds, BoundKind::SuperTraits);
|
|
this.resolve_trait_items(items);
|
|
});
|
|
},
|
|
);
|
|
}
|
|
|
|
ItemKind::TraitAlias(ref generics, ref bounds) => {
|
|
// Create a new rib for the trait-wide type parameters.
|
|
self.with_generic_param_rib(
|
|
&generics.params,
|
|
RibKind::Item(HasGenericParams::Yes(generics.span), def_kind),
|
|
LifetimeRibKind::Generics {
|
|
binder: item.id,
|
|
kind: LifetimeBinderKind::Item,
|
|
span: generics.span,
|
|
},
|
|
|this| {
|
|
let local_def_id = this.r.local_def_id(item.id).to_def_id();
|
|
this.with_self_rib(Res::SelfTyParam { trait_: local_def_id }, |this| {
|
|
this.visit_generics(generics);
|
|
walk_list!(this, visit_param_bound, bounds, BoundKind::Bound);
|
|
});
|
|
},
|
|
);
|
|
}
|
|
|
|
ItemKind::Mod(..) => {
|
|
self.with_scope(item.id, |this| {
|
|
if mod_inner_docs {
|
|
this.resolve_doc_links(&item.attrs, MaybeExported::Ok(item.id));
|
|
}
|
|
let old_macro_rules = this.parent_scope.macro_rules;
|
|
visit::walk_item(this, item);
|
|
// Maintain macro_rules scopes in the same way as during early resolution
|
|
// for diagnostics and doc links.
|
|
if item.attrs.iter().all(|attr| {
|
|
!attr.has_name(sym::macro_use) && !attr.has_name(sym::macro_escape)
|
|
}) {
|
|
this.parent_scope.macro_rules = old_macro_rules;
|
|
}
|
|
});
|
|
}
|
|
|
|
ItemKind::Static(box ast::StaticItem { ref ty, ref expr, .. }) => {
|
|
self.with_static_rib(def_kind, |this| {
|
|
this.with_lifetime_rib(LifetimeRibKind::Elided(LifetimeRes::Static), |this| {
|
|
this.visit_ty(ty);
|
|
});
|
|
if let Some(expr) = expr {
|
|
// We already forbid generic params because of the above item rib,
|
|
// so it doesn't matter whether this is a trivial constant.
|
|
this.resolve_const_body(expr, Some((item.ident, ConstantItemKind::Static)));
|
|
}
|
|
});
|
|
}
|
|
|
|
ItemKind::Const(box ast::ConstItem { ref generics, ref ty, ref expr, .. }) => {
|
|
self.with_generic_param_rib(
|
|
&generics.params,
|
|
RibKind::Item(
|
|
if self.r.tcx.features().generic_const_items {
|
|
HasGenericParams::Yes(generics.span)
|
|
} else {
|
|
HasGenericParams::No
|
|
},
|
|
def_kind,
|
|
),
|
|
LifetimeRibKind::Generics {
|
|
binder: item.id,
|
|
kind: LifetimeBinderKind::ConstItem,
|
|
span: generics.span,
|
|
},
|
|
|this| {
|
|
this.visit_generics(generics);
|
|
|
|
this.with_lifetime_rib(
|
|
LifetimeRibKind::Elided(LifetimeRes::Static),
|
|
|this| this.visit_ty(ty),
|
|
);
|
|
|
|
if let Some(expr) = expr {
|
|
this.resolve_const_body(
|
|
expr,
|
|
Some((item.ident, ConstantItemKind::Const)),
|
|
);
|
|
}
|
|
},
|
|
);
|
|
}
|
|
|
|
ItemKind::Use(ref use_tree) => {
|
|
let maybe_exported = match use_tree.kind {
|
|
UseTreeKind::Simple(_) | UseTreeKind::Glob => MaybeExported::Ok(item.id),
|
|
UseTreeKind::Nested { .. } => MaybeExported::NestedUse(&item.vis),
|
|
};
|
|
self.resolve_doc_links(&item.attrs, maybe_exported);
|
|
|
|
self.future_proof_import(use_tree);
|
|
}
|
|
|
|
ItemKind::MacroDef(ref macro_def) => {
|
|
// Maintain macro_rules scopes in the same way as during early resolution
|
|
// for diagnostics and doc links.
|
|
if macro_def.macro_rules {
|
|
let def_id = self.r.local_def_id(item.id);
|
|
self.parent_scope.macro_rules = self.r.macro_rules_scopes[&def_id];
|
|
}
|
|
}
|
|
|
|
ItemKind::ForeignMod(_) | ItemKind::GlobalAsm(_) => {
|
|
visit::walk_item(self, item);
|
|
}
|
|
|
|
ItemKind::Delegation(ref delegation) => {
|
|
let span = delegation.path.segments.last().unwrap().ident.span;
|
|
self.with_generic_param_rib(
|
|
&[],
|
|
RibKind::Item(HasGenericParams::Yes(span), def_kind),
|
|
LifetimeRibKind::Generics {
|
|
binder: item.id,
|
|
kind: LifetimeBinderKind::Function,
|
|
span,
|
|
},
|
|
|this| this.resolve_delegation(delegation),
|
|
);
|
|
}
|
|
|
|
ItemKind::ExternCrate(..) => {}
|
|
|
|
ItemKind::MacCall(_) | ItemKind::DelegationMac(..) => {
|
|
panic!("unexpanded macro in resolve!")
|
|
}
|
|
}
|
|
}
|
|
|
|
fn with_generic_param_rib<'c, F>(
|
|
&'c mut self,
|
|
params: &'c [GenericParam],
|
|
kind: RibKind<'a>,
|
|
lifetime_kind: LifetimeRibKind,
|
|
f: F,
|
|
) where
|
|
F: FnOnce(&mut Self),
|
|
{
|
|
debug!("with_generic_param_rib");
|
|
let LifetimeRibKind::Generics { binder, span: generics_span, kind: generics_kind, .. } =
|
|
lifetime_kind
|
|
else {
|
|
panic!()
|
|
};
|
|
|
|
let mut function_type_rib = Rib::new(kind);
|
|
let mut function_value_rib = Rib::new(kind);
|
|
let mut function_lifetime_rib = LifetimeRib::new(lifetime_kind);
|
|
|
|
// Only check for shadowed bindings if we're declaring new params.
|
|
if !params.is_empty() {
|
|
let mut seen_bindings = FxHashMap::default();
|
|
// Store all seen lifetimes names from outer scopes.
|
|
let mut seen_lifetimes = FxHashSet::default();
|
|
|
|
// We also can't shadow bindings from associated parent items.
|
|
for ns in [ValueNS, TypeNS] {
|
|
for parent_rib in self.ribs[ns].iter().rev() {
|
|
seen_bindings
|
|
.extend(parent_rib.bindings.keys().map(|ident| (*ident, ident.span)));
|
|
|
|
// Break at mod level, to account for nested items which are
|
|
// allowed to shadow generic param names.
|
|
if matches!(parent_rib.kind, RibKind::Module(..)) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Forbid shadowing lifetime bindings
|
|
for rib in self.lifetime_ribs.iter().rev() {
|
|
seen_lifetimes.extend(rib.bindings.iter().map(|(ident, _)| *ident));
|
|
if let LifetimeRibKind::Item = rib.kind {
|
|
break;
|
|
}
|
|
}
|
|
|
|
for param in params {
|
|
let ident = param.ident.normalize_to_macros_2_0();
|
|
debug!("with_generic_param_rib: {}", param.id);
|
|
|
|
if let GenericParamKind::Lifetime = param.kind
|
|
&& let Some(&original) = seen_lifetimes.get(&ident)
|
|
{
|
|
diagnostics::signal_lifetime_shadowing(self.r.tcx.sess, original, param.ident);
|
|
// Record lifetime res, so lowering knows there is something fishy.
|
|
self.record_lifetime_param(param.id, LifetimeRes::Error);
|
|
continue;
|
|
}
|
|
|
|
match seen_bindings.entry(ident) {
|
|
Entry::Occupied(entry) => {
|
|
let span = *entry.get();
|
|
let err = ResolutionError::NameAlreadyUsedInParameterList(ident.name, span);
|
|
self.report_error(param.ident.span, err);
|
|
let rib = match param.kind {
|
|
GenericParamKind::Lifetime => {
|
|
// Record lifetime res, so lowering knows there is something fishy.
|
|
self.record_lifetime_param(param.id, LifetimeRes::Error);
|
|
continue;
|
|
}
|
|
GenericParamKind::Type { .. } => &mut function_type_rib,
|
|
GenericParamKind::Const { .. } => &mut function_value_rib,
|
|
};
|
|
|
|
// Taint the resolution in case of errors to prevent follow up errors in typeck
|
|
self.r.record_partial_res(param.id, PartialRes::new(Res::Err));
|
|
rib.bindings.insert(ident, Res::Err);
|
|
continue;
|
|
}
|
|
Entry::Vacant(entry) => {
|
|
entry.insert(param.ident.span);
|
|
}
|
|
}
|
|
|
|
if param.ident.name == kw::UnderscoreLifetime {
|
|
self.r
|
|
.dcx()
|
|
.emit_err(errors::UnderscoreLifetimeIsReserved { span: param.ident.span });
|
|
// Record lifetime res, so lowering knows there is something fishy.
|
|
self.record_lifetime_param(param.id, LifetimeRes::Error);
|
|
continue;
|
|
}
|
|
|
|
if param.ident.name == kw::StaticLifetime {
|
|
self.r.dcx().emit_err(errors::StaticLifetimeIsReserved {
|
|
span: param.ident.span,
|
|
lifetime: param.ident,
|
|
});
|
|
// Record lifetime res, so lowering knows there is something fishy.
|
|
self.record_lifetime_param(param.id, LifetimeRes::Error);
|
|
continue;
|
|
}
|
|
|
|
let def_id = self.r.local_def_id(param.id);
|
|
|
|
// Plain insert (no renaming).
|
|
let (rib, def_kind) = match param.kind {
|
|
GenericParamKind::Type { .. } => (&mut function_type_rib, DefKind::TyParam),
|
|
GenericParamKind::Const { .. } => {
|
|
(&mut function_value_rib, DefKind::ConstParam)
|
|
}
|
|
GenericParamKind::Lifetime => {
|
|
let res = LifetimeRes::Param { param: def_id, binder };
|
|
self.record_lifetime_param(param.id, res);
|
|
function_lifetime_rib.bindings.insert(ident, (param.id, res));
|
|
continue;
|
|
}
|
|
};
|
|
|
|
let res = match kind {
|
|
RibKind::Item(..) | RibKind::AssocItem => {
|
|
Res::Def(def_kind, def_id.to_def_id())
|
|
}
|
|
RibKind::Normal => {
|
|
// FIXME(non_lifetime_binders): Stop special-casing
|
|
// const params to error out here.
|
|
if self.r.tcx.features().non_lifetime_binders
|
|
&& matches!(param.kind, GenericParamKind::Type { .. })
|
|
{
|
|
Res::Def(def_kind, def_id.to_def_id())
|
|
} else {
|
|
Res::Err
|
|
}
|
|
}
|
|
_ => span_bug!(param.ident.span, "Unexpected rib kind {:?}", kind),
|
|
};
|
|
self.r.record_partial_res(param.id, PartialRes::new(res));
|
|
rib.bindings.insert(ident, res);
|
|
}
|
|
}
|
|
|
|
self.lifetime_ribs.push(function_lifetime_rib);
|
|
self.ribs[ValueNS].push(function_value_rib);
|
|
self.ribs[TypeNS].push(function_type_rib);
|
|
|
|
f(self);
|
|
|
|
self.ribs[TypeNS].pop();
|
|
self.ribs[ValueNS].pop();
|
|
let function_lifetime_rib = self.lifetime_ribs.pop().unwrap();
|
|
|
|
// Do not account for the parameters we just bound for function lifetime elision.
|
|
if let Some(ref mut candidates) = self.lifetime_elision_candidates {
|
|
for (_, res) in function_lifetime_rib.bindings.values() {
|
|
candidates.retain(|(r, _)| r != res);
|
|
}
|
|
}
|
|
|
|
if let LifetimeBinderKind::BareFnType
|
|
| LifetimeBinderKind::WhereBound
|
|
| LifetimeBinderKind::Function
|
|
| LifetimeBinderKind::ImplBlock = generics_kind
|
|
{
|
|
self.maybe_report_lifetime_uses(generics_span, params)
|
|
}
|
|
}
|
|
|
|
fn with_label_rib(&mut self, kind: RibKind<'a>, f: impl FnOnce(&mut Self)) {
|
|
self.label_ribs.push(Rib::new(kind));
|
|
f(self);
|
|
self.label_ribs.pop();
|
|
}
|
|
|
|
fn with_static_rib(&mut self, def_kind: DefKind, f: impl FnOnce(&mut Self)) {
|
|
let kind = RibKind::Item(HasGenericParams::No, def_kind);
|
|
self.with_rib(ValueNS, kind, |this| this.with_rib(TypeNS, kind, f))
|
|
}
|
|
|
|
// HACK(min_const_generics, generic_const_exprs): We
|
|
// want to keep allowing `[0; std::mem::size_of::<*mut T>()]`
|
|
// with a future compat lint for now. We do this by adding an
|
|
// additional special case for repeat expressions.
|
|
//
|
|
// Note that we intentionally still forbid `[0; N + 1]` during
|
|
// name resolution so that we don't extend the future
|
|
// compat lint to new cases.
|
|
#[instrument(level = "debug", skip(self, f))]
|
|
fn with_constant_rib(
|
|
&mut self,
|
|
is_repeat: IsRepeatExpr,
|
|
may_use_generics: ConstantHasGenerics,
|
|
item: Option<(Ident, ConstantItemKind)>,
|
|
f: impl FnOnce(&mut Self),
|
|
) {
|
|
let f = |this: &mut Self| {
|
|
this.with_rib(ValueNS, RibKind::ConstantItem(may_use_generics, item), |this| {
|
|
this.with_rib(
|
|
TypeNS,
|
|
RibKind::ConstantItem(
|
|
may_use_generics.force_yes_if(is_repeat == IsRepeatExpr::Yes),
|
|
item,
|
|
),
|
|
|this| {
|
|
this.with_label_rib(RibKind::ConstantItem(may_use_generics, item), f);
|
|
},
|
|
)
|
|
})
|
|
};
|
|
|
|
if let ConstantHasGenerics::No(cause) = may_use_generics {
|
|
self.with_lifetime_rib(LifetimeRibKind::ConcreteAnonConst(cause), f)
|
|
} else {
|
|
f(self)
|
|
}
|
|
}
|
|
|
|
fn with_current_self_type<T>(&mut self, self_type: &Ty, f: impl FnOnce(&mut Self) -> T) -> T {
|
|
// Handle nested impls (inside fn bodies)
|
|
let previous_value =
|
|
replace(&mut self.diag_metadata.current_self_type, Some(self_type.clone()));
|
|
let result = f(self);
|
|
self.diag_metadata.current_self_type = previous_value;
|
|
result
|
|
}
|
|
|
|
fn with_current_self_item<T>(&mut self, self_item: &Item, f: impl FnOnce(&mut Self) -> T) -> T {
|
|
let previous_value = replace(&mut self.diag_metadata.current_self_item, Some(self_item.id));
|
|
let result = f(self);
|
|
self.diag_metadata.current_self_item = previous_value;
|
|
result
|
|
}
|
|
|
|
/// When evaluating a `trait` use its associated types' idents for suggestions in E0412.
|
|
fn resolve_trait_items(&mut self, trait_items: &'ast [P<AssocItem>]) {
|
|
let trait_assoc_items =
|
|
replace(&mut self.diag_metadata.current_trait_assoc_items, Some(trait_items));
|
|
|
|
let walk_assoc_item =
|
|
|this: &mut Self, generics: &Generics, kind, item: &'ast AssocItem| {
|
|
this.with_generic_param_rib(
|
|
&generics.params,
|
|
RibKind::AssocItem,
|
|
LifetimeRibKind::Generics { binder: item.id, span: generics.span, kind },
|
|
|this| visit::walk_assoc_item(this, item, AssocCtxt::Trait),
|
|
);
|
|
};
|
|
|
|
for item in trait_items {
|
|
self.resolve_doc_links(&item.attrs, MaybeExported::Ok(item.id));
|
|
match &item.kind {
|
|
AssocItemKind::Const(box ast::ConstItem { generics, ty, expr, .. }) => {
|
|
self.with_generic_param_rib(
|
|
&generics.params,
|
|
RibKind::AssocItem,
|
|
LifetimeRibKind::Generics {
|
|
binder: item.id,
|
|
span: generics.span,
|
|
kind: LifetimeBinderKind::ConstItem,
|
|
},
|
|
|this| {
|
|
this.with_lifetime_rib(
|
|
LifetimeRibKind::StaticIfNoLifetimeInScope {
|
|
lint_id: item.id,
|
|
emit_lint: false,
|
|
},
|
|
|this| {
|
|
this.visit_generics(generics);
|
|
this.visit_ty(ty);
|
|
|
|
// Only impose the restrictions of `ConstRibKind` for an
|
|
// actual constant expression in a provided default.
|
|
if let Some(expr) = expr {
|
|
// We allow arbitrary const expressions inside of associated consts,
|
|
// even if they are potentially not const evaluatable.
|
|
//
|
|
// Type parameters can already be used and as associated consts are
|
|
// not used as part of the type system, this is far less surprising.
|
|
this.resolve_const_body(expr, None);
|
|
}
|
|
},
|
|
)
|
|
},
|
|
);
|
|
}
|
|
AssocItemKind::Fn(box Fn { generics, .. }) => {
|
|
walk_assoc_item(self, generics, LifetimeBinderKind::Function, item);
|
|
}
|
|
AssocItemKind::Delegation(delegation) => {
|
|
self.with_generic_param_rib(
|
|
&[],
|
|
RibKind::AssocItem,
|
|
LifetimeRibKind::Generics {
|
|
binder: item.id,
|
|
kind: LifetimeBinderKind::Function,
|
|
span: delegation.path.segments.last().unwrap().ident.span,
|
|
},
|
|
|this| this.resolve_delegation(delegation),
|
|
);
|
|
}
|
|
AssocItemKind::Type(box TyAlias { generics, .. }) => self
|
|
.with_lifetime_rib(LifetimeRibKind::AnonymousReportError, |this| {
|
|
walk_assoc_item(this, generics, LifetimeBinderKind::Item, item)
|
|
}),
|
|
AssocItemKind::MacCall(_) | AssocItemKind::DelegationMac(..) => {
|
|
panic!("unexpanded macro in resolve!")
|
|
}
|
|
};
|
|
}
|
|
|
|
self.diag_metadata.current_trait_assoc_items = trait_assoc_items;
|
|
}
|
|
|
|
/// This is called to resolve a trait reference from an `impl` (i.e., `impl Trait for Foo`).
|
|
fn with_optional_trait_ref<T>(
|
|
&mut self,
|
|
opt_trait_ref: Option<&TraitRef>,
|
|
self_type: &'ast Ty,
|
|
f: impl FnOnce(&mut Self, Option<DefId>) -> T,
|
|
) -> T {
|
|
let mut new_val = None;
|
|
let mut new_id = None;
|
|
if let Some(trait_ref) = opt_trait_ref {
|
|
let path: Vec<_> = Segment::from_path(&trait_ref.path);
|
|
self.diag_metadata.currently_processing_impl_trait =
|
|
Some((trait_ref.clone(), self_type.clone()));
|
|
let res = self.smart_resolve_path_fragment(
|
|
&None,
|
|
&path,
|
|
PathSource::Trait(AliasPossibility::No),
|
|
Finalize::new(trait_ref.ref_id, trait_ref.path.span),
|
|
RecordPartialRes::Yes,
|
|
);
|
|
self.diag_metadata.currently_processing_impl_trait = None;
|
|
if let Some(def_id) = res.expect_full_res().opt_def_id() {
|
|
new_id = Some(def_id);
|
|
new_val = Some((self.r.expect_module(def_id), trait_ref.clone()));
|
|
}
|
|
}
|
|
let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
|
|
let result = f(self, new_id);
|
|
self.current_trait_ref = original_trait_ref;
|
|
result
|
|
}
|
|
|
|
fn with_self_rib_ns(&mut self, ns: Namespace, self_res: Res, f: impl FnOnce(&mut Self)) {
|
|
let mut self_type_rib = Rib::new(RibKind::Normal);
|
|
|
|
// Plain insert (no renaming, since types are not currently hygienic)
|
|
self_type_rib.bindings.insert(Ident::with_dummy_span(kw::SelfUpper), self_res);
|
|
self.ribs[ns].push(self_type_rib);
|
|
f(self);
|
|
self.ribs[ns].pop();
|
|
}
|
|
|
|
fn with_self_rib(&mut self, self_res: Res, f: impl FnOnce(&mut Self)) {
|
|
self.with_self_rib_ns(TypeNS, self_res, f)
|
|
}
|
|
|
|
fn resolve_implementation(
|
|
&mut self,
|
|
attrs: &[ast::Attribute],
|
|
generics: &'ast Generics,
|
|
opt_trait_reference: &'ast Option<TraitRef>,
|
|
self_type: &'ast Ty,
|
|
item_id: NodeId,
|
|
impl_items: &'ast [P<AssocItem>],
|
|
) {
|
|
debug!("resolve_implementation");
|
|
// If applicable, create a rib for the type parameters.
|
|
self.with_generic_param_rib(
|
|
&generics.params,
|
|
RibKind::Item(HasGenericParams::Yes(generics.span), self.r.local_def_kind(item_id)),
|
|
LifetimeRibKind::Generics {
|
|
span: generics.span,
|
|
binder: item_id,
|
|
kind: LifetimeBinderKind::ImplBlock,
|
|
},
|
|
|this| {
|
|
// Dummy self type for better errors if `Self` is used in the trait path.
|
|
this.with_self_rib(Res::SelfTyParam { trait_: LOCAL_CRATE.as_def_id() }, |this| {
|
|
this.with_lifetime_rib(
|
|
LifetimeRibKind::AnonymousCreateParameter {
|
|
binder: item_id,
|
|
report_in_path: true
|
|
},
|
|
|this| {
|
|
// Resolve the trait reference, if necessary.
|
|
this.with_optional_trait_ref(
|
|
opt_trait_reference.as_ref(),
|
|
self_type,
|
|
|this, trait_id| {
|
|
this.resolve_doc_links(attrs, MaybeExported::Impl(trait_id));
|
|
|
|
let item_def_id = this.r.local_def_id(item_id);
|
|
|
|
// Register the trait definitions from here.
|
|
if let Some(trait_id) = trait_id {
|
|
this.r
|
|
.trait_impls
|
|
.entry(trait_id)
|
|
.or_default()
|
|
.push(item_def_id);
|
|
}
|
|
|
|
let item_def_id = item_def_id.to_def_id();
|
|
let res = Res::SelfTyAlias {
|
|
alias_to: item_def_id,
|
|
forbid_generic: false,
|
|
is_trait_impl: trait_id.is_some()
|
|
};
|
|
this.with_self_rib(res, |this| {
|
|
if let Some(trait_ref) = opt_trait_reference.as_ref() {
|
|
// Resolve type arguments in the trait path.
|
|
visit::walk_trait_ref(this, trait_ref);
|
|
}
|
|
// Resolve the self type.
|
|
this.visit_ty(self_type);
|
|
// Resolve the generic parameters.
|
|
this.visit_generics(generics);
|
|
|
|
// Resolve the items within the impl.
|
|
this.with_current_self_type(self_type, |this| {
|
|
this.with_self_rib_ns(ValueNS, Res::SelfCtor(item_def_id), |this| {
|
|
debug!("resolve_implementation with_self_rib_ns(ValueNS, ...)");
|
|
let mut seen_trait_items = Default::default();
|
|
for item in impl_items {
|
|
this.resolve_impl_item(&**item, &mut seen_trait_items, trait_id);
|
|
}
|
|
});
|
|
});
|
|
});
|
|
},
|
|
)
|
|
},
|
|
);
|
|
});
|
|
},
|
|
);
|
|
}
|
|
|
|
fn resolve_impl_item(
|
|
&mut self,
|
|
item: &'ast AssocItem,
|
|
seen_trait_items: &mut FxHashMap<DefId, Span>,
|
|
trait_id: Option<DefId>,
|
|
) {
|
|
use crate::ResolutionError::*;
|
|
self.resolve_doc_links(&item.attrs, MaybeExported::ImplItem(trait_id.ok_or(&item.vis)));
|
|
match &item.kind {
|
|
AssocItemKind::Const(box ast::ConstItem { generics, ty, expr, .. }) => {
|
|
debug!("resolve_implementation AssocItemKind::Const");
|
|
self.with_generic_param_rib(
|
|
&generics.params,
|
|
RibKind::AssocItem,
|
|
LifetimeRibKind::Generics {
|
|
binder: item.id,
|
|
span: generics.span,
|
|
kind: LifetimeBinderKind::ConstItem,
|
|
},
|
|
|this| {
|
|
this.with_lifetime_rib(
|
|
LifetimeRibKind::StaticIfNoLifetimeInScope {
|
|
lint_id: item.id,
|
|
// In impls, it's not a hard error yet due to backcompat.
|
|
emit_lint: true,
|
|
},
|
|
|this| {
|
|
// If this is a trait impl, ensure the const
|
|
// exists in trait
|
|
this.check_trait_item(
|
|
item.id,
|
|
item.ident,
|
|
&item.kind,
|
|
ValueNS,
|
|
item.span,
|
|
seen_trait_items,
|
|
|i, s, c| ConstNotMemberOfTrait(i, s, c),
|
|
);
|
|
|
|
this.visit_generics(generics);
|
|
this.visit_ty(ty);
|
|
if let Some(expr) = expr {
|
|
// We allow arbitrary const expressions inside of associated consts,
|
|
// even if they are potentially not const evaluatable.
|
|
//
|
|
// Type parameters can already be used and as associated consts are
|
|
// not used as part of the type system, this is far less surprising.
|
|
this.resolve_const_body(expr, None);
|
|
}
|
|
},
|
|
);
|
|
},
|
|
);
|
|
}
|
|
AssocItemKind::Fn(box Fn { generics, .. }) => {
|
|
debug!("resolve_implementation AssocItemKind::Fn");
|
|
// We also need a new scope for the impl item type parameters.
|
|
self.with_generic_param_rib(
|
|
&generics.params,
|
|
RibKind::AssocItem,
|
|
LifetimeRibKind::Generics {
|
|
binder: item.id,
|
|
span: generics.span,
|
|
kind: LifetimeBinderKind::Function,
|
|
},
|
|
|this| {
|
|
// If this is a trait impl, ensure the method
|
|
// exists in trait
|
|
this.check_trait_item(
|
|
item.id,
|
|
item.ident,
|
|
&item.kind,
|
|
ValueNS,
|
|
item.span,
|
|
seen_trait_items,
|
|
|i, s, c| MethodNotMemberOfTrait(i, s, c),
|
|
);
|
|
|
|
visit::walk_assoc_item(this, item, AssocCtxt::Impl)
|
|
},
|
|
);
|
|
}
|
|
AssocItemKind::Type(box TyAlias { generics, .. }) => {
|
|
self.diag_metadata.in_non_gat_assoc_type = Some(generics.params.is_empty());
|
|
debug!("resolve_implementation AssocItemKind::Type");
|
|
// We also need a new scope for the impl item type parameters.
|
|
self.with_generic_param_rib(
|
|
&generics.params,
|
|
RibKind::AssocItem,
|
|
LifetimeRibKind::Generics {
|
|
binder: item.id,
|
|
span: generics.span,
|
|
kind: LifetimeBinderKind::Item,
|
|
},
|
|
|this| {
|
|
this.with_lifetime_rib(LifetimeRibKind::AnonymousReportError, |this| {
|
|
// If this is a trait impl, ensure the type
|
|
// exists in trait
|
|
this.check_trait_item(
|
|
item.id,
|
|
item.ident,
|
|
&item.kind,
|
|
TypeNS,
|
|
item.span,
|
|
seen_trait_items,
|
|
|i, s, c| TypeNotMemberOfTrait(i, s, c),
|
|
);
|
|
|
|
visit::walk_assoc_item(this, item, AssocCtxt::Impl)
|
|
});
|
|
},
|
|
);
|
|
self.diag_metadata.in_non_gat_assoc_type = None;
|
|
}
|
|
AssocItemKind::Delegation(box delegation) => {
|
|
debug!("resolve_implementation AssocItemKind::Delegation");
|
|
self.with_generic_param_rib(
|
|
&[],
|
|
RibKind::AssocItem,
|
|
LifetimeRibKind::Generics {
|
|
binder: item.id,
|
|
kind: LifetimeBinderKind::Function,
|
|
span: delegation.path.segments.last().unwrap().ident.span,
|
|
},
|
|
|this| {
|
|
this.check_trait_item(
|
|
item.id,
|
|
item.ident,
|
|
&item.kind,
|
|
ValueNS,
|
|
item.span,
|
|
seen_trait_items,
|
|
|i, s, c| MethodNotMemberOfTrait(i, s, c),
|
|
);
|
|
|
|
this.resolve_delegation(delegation)
|
|
},
|
|
);
|
|
}
|
|
AssocItemKind::MacCall(_) | AssocItemKind::DelegationMac(..) => {
|
|
panic!("unexpanded macro in resolve!")
|
|
}
|
|
}
|
|
}
|
|
|
|
fn check_trait_item<F>(
|
|
&mut self,
|
|
id: NodeId,
|
|
mut ident: Ident,
|
|
kind: &AssocItemKind,
|
|
ns: Namespace,
|
|
span: Span,
|
|
seen_trait_items: &mut FxHashMap<DefId, Span>,
|
|
err: F,
|
|
) where
|
|
F: FnOnce(Ident, String, Option<Symbol>) -> ResolutionError<'a>,
|
|
{
|
|
// If there is a TraitRef in scope for an impl, then the method must be in the trait.
|
|
let Some((module, _)) = self.current_trait_ref else {
|
|
return;
|
|
};
|
|
ident.span.normalize_to_macros_2_0_and_adjust(module.expansion);
|
|
let key = BindingKey::new(ident, ns);
|
|
let mut binding = self.r.resolution(module, key).try_borrow().ok().and_then(|r| r.binding);
|
|
debug!(?binding);
|
|
if binding.is_none() {
|
|
// We could not find the trait item in the correct namespace.
|
|
// Check the other namespace to report an error.
|
|
let ns = match ns {
|
|
ValueNS => TypeNS,
|
|
TypeNS => ValueNS,
|
|
_ => ns,
|
|
};
|
|
let key = BindingKey::new(ident, ns);
|
|
binding = self.r.resolution(module, key).try_borrow().ok().and_then(|r| r.binding);
|
|
debug!(?binding);
|
|
}
|
|
|
|
let feed_visibility = |this: &mut Self, def_id| {
|
|
let vis = this.r.tcx.visibility(def_id);
|
|
let vis = if vis.is_visible_locally() {
|
|
vis.expect_local()
|
|
} else {
|
|
this.r.dcx().span_delayed_bug(
|
|
span,
|
|
"error should be emitted when an unexpected trait item is used",
|
|
);
|
|
rustc_middle::ty::Visibility::Public
|
|
};
|
|
this.r.feed_visibility(this.r.feed(id), vis);
|
|
};
|
|
|
|
let Some(binding) = binding else {
|
|
// We could not find the method: report an error.
|
|
let candidate = self.find_similarly_named_assoc_item(ident.name, kind);
|
|
let path = &self.current_trait_ref.as_ref().unwrap().1.path;
|
|
let path_names = path_names_to_string(path);
|
|
self.report_error(span, err(ident, path_names, candidate));
|
|
feed_visibility(self, module.def_id());
|
|
return;
|
|
};
|
|
|
|
let res = binding.res();
|
|
let Res::Def(def_kind, id_in_trait) = res else { bug!() };
|
|
feed_visibility(self, id_in_trait);
|
|
|
|
match seen_trait_items.entry(id_in_trait) {
|
|
Entry::Occupied(entry) => {
|
|
self.report_error(
|
|
span,
|
|
ResolutionError::TraitImplDuplicate {
|
|
name: ident.name,
|
|
old_span: *entry.get(),
|
|
trait_item_span: binding.span,
|
|
},
|
|
);
|
|
return;
|
|
}
|
|
Entry::Vacant(entry) => {
|
|
entry.insert(span);
|
|
}
|
|
};
|
|
|
|
match (def_kind, kind) {
|
|
(DefKind::AssocTy, AssocItemKind::Type(..))
|
|
| (DefKind::AssocFn, AssocItemKind::Fn(..))
|
|
| (DefKind::AssocConst, AssocItemKind::Const(..))
|
|
| (DefKind::AssocFn, AssocItemKind::Delegation(..)) => {
|
|
self.r.record_partial_res(id, PartialRes::new(res));
|
|
return;
|
|
}
|
|
_ => {}
|
|
}
|
|
|
|
// The method kind does not correspond to what appeared in the trait, report.
|
|
let path = &self.current_trait_ref.as_ref().unwrap().1.path;
|
|
let (code, kind) = match kind {
|
|
AssocItemKind::Const(..) => (E0323, "const"),
|
|
AssocItemKind::Fn(..) => (E0324, "method"),
|
|
AssocItemKind::Type(..) => (E0325, "type"),
|
|
AssocItemKind::Delegation(..) => (E0324, "method"),
|
|
AssocItemKind::MacCall(..) | AssocItemKind::DelegationMac(..) => {
|
|
span_bug!(span, "unexpanded macro")
|
|
}
|
|
};
|
|
let trait_path = path_names_to_string(path);
|
|
self.report_error(
|
|
span,
|
|
ResolutionError::TraitImplMismatch {
|
|
name: ident.name,
|
|
kind,
|
|
code,
|
|
trait_path,
|
|
trait_item_span: binding.span,
|
|
},
|
|
);
|
|
}
|
|
|
|
fn resolve_const_body(&mut self, expr: &'ast Expr, item: Option<(Ident, ConstantItemKind)>) {
|
|
self.with_lifetime_rib(LifetimeRibKind::Elided(LifetimeRes::Infer), |this| {
|
|
this.with_constant_rib(IsRepeatExpr::No, ConstantHasGenerics::Yes, item, |this| {
|
|
this.visit_expr(expr)
|
|
});
|
|
})
|
|
}
|
|
|
|
fn resolve_delegation(&mut self, delegation: &'ast Delegation) {
|
|
self.smart_resolve_path(
|
|
delegation.id,
|
|
&delegation.qself,
|
|
&delegation.path,
|
|
PathSource::Delegation,
|
|
);
|
|
if let Some(qself) = &delegation.qself {
|
|
self.visit_ty(&qself.ty);
|
|
}
|
|
self.visit_path(&delegation.path, delegation.id);
|
|
if let Some(body) = &delegation.body {
|
|
self.with_rib(ValueNS, RibKind::FnOrCoroutine, |this| {
|
|
// `PatBoundCtx` is not necessary in this context
|
|
let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())];
|
|
|
|
let span = delegation.path.segments.last().unwrap().ident.span;
|
|
this.fresh_binding(
|
|
Ident::new(kw::SelfLower, span),
|
|
delegation.id,
|
|
PatternSource::FnParam,
|
|
&mut bindings,
|
|
);
|
|
this.visit_block(body);
|
|
});
|
|
}
|
|
}
|
|
|
|
fn resolve_params(&mut self, params: &'ast [Param]) {
|
|
let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())];
|
|
self.with_lifetime_rib(LifetimeRibKind::Elided(LifetimeRes::Infer), |this| {
|
|
for Param { pat, .. } in params {
|
|
this.resolve_pattern(pat, PatternSource::FnParam, &mut bindings);
|
|
}
|
|
});
|
|
for Param { ty, .. } in params {
|
|
self.visit_ty(ty);
|
|
}
|
|
}
|
|
|
|
fn resolve_local(&mut self, local: &'ast Local) {
|
|
debug!("resolving local ({:?})", local);
|
|
// Resolve the type.
|
|
visit_opt!(self, visit_ty, &local.ty);
|
|
|
|
// Resolve the initializer.
|
|
if let Some((init, els)) = local.kind.init_else_opt() {
|
|
self.visit_expr(init);
|
|
|
|
// Resolve the `else` block
|
|
if let Some(els) = els {
|
|
self.visit_block(els);
|
|
}
|
|
}
|
|
|
|
// Resolve the pattern.
|
|
self.resolve_pattern_top(&local.pat, PatternSource::Let);
|
|
}
|
|
|
|
/// Build a map from pattern identifiers to binding-info's, and check the bindings are
|
|
/// consistent when encountering or-patterns and never patterns.
|
|
/// This is done hygienically: this could arise for a macro that expands into an or-pattern
|
|
/// where one 'x' was from the user and one 'x' came from the macro.
|
|
///
|
|
/// A never pattern by definition indicates an unreachable case. For example, matching on
|
|
/// `Result<T, &!>` could look like:
|
|
/// ```rust
|
|
/// # #![feature(never_type)]
|
|
/// # #![feature(never_patterns)]
|
|
/// # fn bar(_x: u32) {}
|
|
/// let foo: Result<u32, &!> = Ok(0);
|
|
/// match foo {
|
|
/// Ok(x) => bar(x),
|
|
/// Err(&!),
|
|
/// }
|
|
/// ```
|
|
/// This extends to product types: `(x, !)` is likewise unreachable. So it doesn't make sense to
|
|
/// have a binding here, and we tell the user to use `_` instead.
|
|
fn compute_and_check_binding_map(
|
|
&mut self,
|
|
pat: &Pat,
|
|
) -> Result<FxIndexMap<Ident, BindingInfo>, IsNeverPattern> {
|
|
let mut binding_map = FxIndexMap::default();
|
|
let mut is_never_pat = false;
|
|
|
|
pat.walk(&mut |pat| {
|
|
match pat.kind {
|
|
PatKind::Ident(annotation, ident, ref sub_pat)
|
|
if sub_pat.is_some() || self.is_base_res_local(pat.id) =>
|
|
{
|
|
binding_map.insert(ident, BindingInfo { span: ident.span, annotation });
|
|
}
|
|
PatKind::Or(ref ps) => {
|
|
// Check the consistency of this or-pattern and
|
|
// then add all bindings to the larger map.
|
|
match self.compute_and_check_or_pat_binding_map(ps) {
|
|
Ok(bm) => binding_map.extend(bm),
|
|
Err(IsNeverPattern) => is_never_pat = true,
|
|
}
|
|
return false;
|
|
}
|
|
PatKind::Never => is_never_pat = true,
|
|
_ => {}
|
|
}
|
|
|
|
true
|
|
});
|
|
|
|
if is_never_pat {
|
|
for (_, binding) in binding_map {
|
|
self.report_error(binding.span, ResolutionError::BindingInNeverPattern);
|
|
}
|
|
Err(IsNeverPattern)
|
|
} else {
|
|
Ok(binding_map)
|
|
}
|
|
}
|
|
|
|
fn is_base_res_local(&self, nid: NodeId) -> bool {
|
|
matches!(
|
|
self.r.partial_res_map.get(&nid).map(|res| res.expect_full_res()),
|
|
Some(Res::Local(..))
|
|
)
|
|
}
|
|
|
|
/// Compute the binding map for an or-pattern. Checks that all of the arms in the or-pattern
|
|
/// have exactly the same set of bindings, with the same binding modes for each.
|
|
/// Returns the computed binding map and a boolean indicating whether the pattern is a never
|
|
/// pattern.
|
|
///
|
|
/// A never pattern by definition indicates an unreachable case. For example, destructuring a
|
|
/// `Result<T, &!>` could look like:
|
|
/// ```rust
|
|
/// # #![feature(never_type)]
|
|
/// # #![feature(never_patterns)]
|
|
/// # fn foo() -> Result<bool, &'static !> { Ok(true) }
|
|
/// let (Ok(x) | Err(&!)) = foo();
|
|
/// # let _ = x;
|
|
/// ```
|
|
/// Because the `Err(&!)` branch is never reached, it does not need to have the same bindings as
|
|
/// the other branches of the or-pattern. So we must ignore never pattern when checking the
|
|
/// bindings of an or-pattern.
|
|
/// Moreover, if all the subpatterns are never patterns (e.g. `Ok(!) | Err(!)`), then the
|
|
/// pattern as a whole counts as a never pattern (since it's definitionallly unreachable).
|
|
fn compute_and_check_or_pat_binding_map(
|
|
&mut self,
|
|
pats: &[P<Pat>],
|
|
) -> Result<FxIndexMap<Ident, BindingInfo>, IsNeverPattern> {
|
|
let mut missing_vars = FxIndexMap::default();
|
|
let mut inconsistent_vars = FxIndexMap::default();
|
|
|
|
// 1) Compute the binding maps of all arms; we must ignore never patterns here.
|
|
let not_never_pats = pats
|
|
.iter()
|
|
.filter_map(|pat| {
|
|
let binding_map = self.compute_and_check_binding_map(pat).ok()?;
|
|
Some((binding_map, pat))
|
|
})
|
|
.collect::<Vec<_>>();
|
|
|
|
// 2) Record any missing bindings or binding mode inconsistencies.
|
|
for (map_outer, pat_outer) in not_never_pats.iter() {
|
|
// Check against all arms except for the same pattern which is always self-consistent.
|
|
let inners = not_never_pats
|
|
.iter()
|
|
.filter(|(_, pat)| pat.id != pat_outer.id)
|
|
.flat_map(|(map, _)| map);
|
|
|
|
for (key, binding_inner) in inners {
|
|
let name = key.name;
|
|
match map_outer.get(key) {
|
|
None => {
|
|
// The inner binding is missing in the outer.
|
|
let binding_error =
|
|
missing_vars.entry(name).or_insert_with(|| BindingError {
|
|
name,
|
|
origin: BTreeSet::new(),
|
|
target: BTreeSet::new(),
|
|
could_be_path: name.as_str().starts_with(char::is_uppercase),
|
|
});
|
|
binding_error.origin.insert(binding_inner.span);
|
|
binding_error.target.insert(pat_outer.span);
|
|
}
|
|
Some(binding_outer) => {
|
|
if binding_outer.annotation != binding_inner.annotation {
|
|
// The binding modes in the outer and inner bindings differ.
|
|
inconsistent_vars
|
|
.entry(name)
|
|
.or_insert((binding_inner.span, binding_outer.span));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// 3) Report all missing variables we found.
|
|
for (name, mut v) in missing_vars {
|
|
if inconsistent_vars.contains_key(&name) {
|
|
v.could_be_path = false;
|
|
}
|
|
self.report_error(
|
|
*v.origin.iter().next().unwrap(),
|
|
ResolutionError::VariableNotBoundInPattern(v, self.parent_scope),
|
|
);
|
|
}
|
|
|
|
// 4) Report all inconsistencies in binding modes we found.
|
|
for (name, v) in inconsistent_vars {
|
|
self.report_error(v.0, ResolutionError::VariableBoundWithDifferentMode(name, v.1));
|
|
}
|
|
|
|
// 5) Bubble up the final binding map.
|
|
if not_never_pats.is_empty() {
|
|
// All the patterns are never patterns, so the whole or-pattern is one too.
|
|
Err(IsNeverPattern)
|
|
} else {
|
|
let mut binding_map = FxIndexMap::default();
|
|
for (bm, _) in not_never_pats {
|
|
binding_map.extend(bm);
|
|
}
|
|
Ok(binding_map)
|
|
}
|
|
}
|
|
|
|
/// Check the consistency of bindings wrt or-patterns and never patterns.
|
|
fn check_consistent_bindings(&mut self, pat: &'ast Pat) {
|
|
let mut is_or_or_never = false;
|
|
pat.walk(&mut |pat| match pat.kind {
|
|
PatKind::Or(..) | PatKind::Never => {
|
|
is_or_or_never = true;
|
|
false
|
|
}
|
|
_ => true,
|
|
});
|
|
if is_or_or_never {
|
|
let _ = self.compute_and_check_binding_map(pat);
|
|
}
|
|
}
|
|
|
|
fn resolve_arm(&mut self, arm: &'ast Arm) {
|
|
self.with_rib(ValueNS, RibKind::Normal, |this| {
|
|
this.resolve_pattern_top(&arm.pat, PatternSource::Match);
|
|
visit_opt!(this, visit_expr, &arm.guard);
|
|
visit_opt!(this, visit_expr, &arm.body);
|
|
});
|
|
}
|
|
|
|
/// Arising from `source`, resolve a top level pattern.
|
|
fn resolve_pattern_top(&mut self, pat: &'ast Pat, pat_src: PatternSource) {
|
|
let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())];
|
|
self.resolve_pattern(pat, pat_src, &mut bindings);
|
|
}
|
|
|
|
fn resolve_pattern(
|
|
&mut self,
|
|
pat: &'ast Pat,
|
|
pat_src: PatternSource,
|
|
bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
|
|
) {
|
|
// We walk the pattern before declaring the pattern's inner bindings,
|
|
// so that we avoid resolving a literal expression to a binding defined
|
|
// by the pattern.
|
|
visit::walk_pat(self, pat);
|
|
self.resolve_pattern_inner(pat, pat_src, bindings);
|
|
// This has to happen *after* we determine which pat_idents are variants:
|
|
self.check_consistent_bindings(pat);
|
|
}
|
|
|
|
/// Resolve bindings in a pattern. This is a helper to `resolve_pattern`.
|
|
///
|
|
/// ### `bindings`
|
|
///
|
|
/// A stack of sets of bindings accumulated.
|
|
///
|
|
/// In each set, `PatBoundCtx::Product` denotes that a found binding in it should
|
|
/// be interpreted as re-binding an already bound binding. This results in an error.
|
|
/// Meanwhile, `PatBound::Or` denotes that a found binding in the set should result
|
|
/// in reusing this binding rather than creating a fresh one.
|
|
///
|
|
/// When called at the top level, the stack must have a single element
|
|
/// with `PatBound::Product`. Otherwise, pushing to the stack happens as
|
|
/// or-patterns (`p_0 | ... | p_n`) are encountered and the context needs
|
|
/// to be switched to `PatBoundCtx::Or` and then `PatBoundCtx::Product` for each `p_i`.
|
|
/// When each `p_i` has been dealt with, the top set is merged with its parent.
|
|
/// When a whole or-pattern has been dealt with, the thing happens.
|
|
///
|
|
/// See the implementation and `fresh_binding` for more details.
|
|
fn resolve_pattern_inner(
|
|
&mut self,
|
|
pat: &Pat,
|
|
pat_src: PatternSource,
|
|
bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
|
|
) {
|
|
// Visit all direct subpatterns of this pattern.
|
|
pat.walk(&mut |pat| {
|
|
debug!("resolve_pattern pat={:?} node={:?}", pat, pat.kind);
|
|
match pat.kind {
|
|
PatKind::Ident(bmode, ident, ref sub) => {
|
|
// First try to resolve the identifier as some existing entity,
|
|
// then fall back to a fresh binding.
|
|
let has_sub = sub.is_some();
|
|
let res = self
|
|
.try_resolve_as_non_binding(pat_src, bmode, ident, has_sub)
|
|
.unwrap_or_else(|| self.fresh_binding(ident, pat.id, pat_src, bindings));
|
|
self.r.record_partial_res(pat.id, PartialRes::new(res));
|
|
self.r.record_pat_span(pat.id, pat.span);
|
|
}
|
|
PatKind::TupleStruct(ref qself, ref path, ref sub_patterns) => {
|
|
self.smart_resolve_path(
|
|
pat.id,
|
|
qself,
|
|
path,
|
|
PathSource::TupleStruct(
|
|
pat.span,
|
|
self.r.arenas.alloc_pattern_spans(sub_patterns.iter().map(|p| p.span)),
|
|
),
|
|
);
|
|
}
|
|
PatKind::Path(ref qself, ref path) => {
|
|
self.smart_resolve_path(pat.id, qself, path, PathSource::Pat);
|
|
}
|
|
PatKind::Struct(ref qself, ref path, ..) => {
|
|
self.smart_resolve_path(pat.id, qself, path, PathSource::Struct);
|
|
}
|
|
PatKind::Or(ref ps) => {
|
|
// Add a new set of bindings to the stack. `Or` here records that when a
|
|
// binding already exists in this set, it should not result in an error because
|
|
// `V1(a) | V2(a)` must be allowed and are checked for consistency later.
|
|
bindings.push((PatBoundCtx::Or, Default::default()));
|
|
for p in ps {
|
|
// Now we need to switch back to a product context so that each
|
|
// part of the or-pattern internally rejects already bound names.
|
|
// For example, `V1(a) | V2(a, a)` and `V1(a, a) | V2(a)` are bad.
|
|
bindings.push((PatBoundCtx::Product, Default::default()));
|
|
self.resolve_pattern_inner(p, pat_src, bindings);
|
|
// Move up the non-overlapping bindings to the or-pattern.
|
|
// Existing bindings just get "merged".
|
|
let collected = bindings.pop().unwrap().1;
|
|
bindings.last_mut().unwrap().1.extend(collected);
|
|
}
|
|
// This or-pattern itself can itself be part of a product,
|
|
// e.g. `(V1(a) | V2(a), a)` or `(a, V1(a) | V2(a))`.
|
|
// Both cases bind `a` again in a product pattern and must be rejected.
|
|
let collected = bindings.pop().unwrap().1;
|
|
bindings.last_mut().unwrap().1.extend(collected);
|
|
|
|
// Prevent visiting `ps` as we've already done so above.
|
|
return false;
|
|
}
|
|
_ => {}
|
|
}
|
|
true
|
|
});
|
|
}
|
|
|
|
fn fresh_binding(
|
|
&mut self,
|
|
ident: Ident,
|
|
pat_id: NodeId,
|
|
pat_src: PatternSource,
|
|
bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
|
|
) -> Res {
|
|
// Add the binding to the local ribs, if it doesn't already exist in the bindings map.
|
|
// (We must not add it if it's in the bindings map because that breaks the assumptions
|
|
// later passes make about or-patterns.)
|
|
let ident = ident.normalize_to_macro_rules();
|
|
|
|
let mut bound_iter = bindings.iter().filter(|(_, set)| set.contains(&ident));
|
|
// Already bound in a product pattern? e.g. `(a, a)` which is not allowed.
|
|
let already_bound_and = bound_iter.clone().any(|(ctx, _)| *ctx == PatBoundCtx::Product);
|
|
// Already bound in an or-pattern? e.g. `V1(a) | V2(a)`.
|
|
// This is *required* for consistency which is checked later.
|
|
let already_bound_or = bound_iter.any(|(ctx, _)| *ctx == PatBoundCtx::Or);
|
|
|
|
if already_bound_and {
|
|
// Overlap in a product pattern somewhere; report an error.
|
|
use ResolutionError::*;
|
|
let error = match pat_src {
|
|
// `fn f(a: u8, a: u8)`:
|
|
PatternSource::FnParam => IdentifierBoundMoreThanOnceInParameterList,
|
|
// `Variant(a, a)`:
|
|
_ => IdentifierBoundMoreThanOnceInSamePattern,
|
|
};
|
|
self.report_error(ident.span, error(ident.name));
|
|
}
|
|
|
|
// Record as bound if it's valid:
|
|
let ident_valid = ident.name != kw::Empty;
|
|
if ident_valid {
|
|
bindings.last_mut().unwrap().1.insert(ident);
|
|
}
|
|
|
|
if already_bound_or {
|
|
// `Variant1(a) | Variant2(a)`, ok
|
|
// Reuse definition from the first `a`.
|
|
self.innermost_rib_bindings(ValueNS)[&ident]
|
|
} else {
|
|
let res = Res::Local(pat_id);
|
|
if ident_valid {
|
|
// A completely fresh binding add to the set if it's valid.
|
|
self.innermost_rib_bindings(ValueNS).insert(ident, res);
|
|
}
|
|
res
|
|
}
|
|
}
|
|
|
|
fn innermost_rib_bindings(&mut self, ns: Namespace) -> &mut IdentMap<Res> {
|
|
&mut self.ribs[ns].last_mut().unwrap().bindings
|
|
}
|
|
|
|
fn try_resolve_as_non_binding(
|
|
&mut self,
|
|
pat_src: PatternSource,
|
|
ann: BindingMode,
|
|
ident: Ident,
|
|
has_sub: bool,
|
|
) -> Option<Res> {
|
|
// An immutable (no `mut`) by-value (no `ref`) binding pattern without
|
|
// a sub pattern (no `@ $pat`) is syntactically ambiguous as it could
|
|
// also be interpreted as a path to e.g. a constant, variant, etc.
|
|
let is_syntactic_ambiguity = !has_sub && ann == BindingMode::NONE;
|
|
|
|
let ls_binding = self.maybe_resolve_ident_in_lexical_scope(ident, ValueNS)?;
|
|
let (res, binding) = match ls_binding {
|
|
LexicalScopeBinding::Item(binding)
|
|
if is_syntactic_ambiguity && binding.is_ambiguity_recursive() =>
|
|
{
|
|
// For ambiguous bindings we don't know all their definitions and cannot check
|
|
// whether they can be shadowed by fresh bindings or not, so force an error.
|
|
// issues/33118#issuecomment-233962221 (see below) still applies here,
|
|
// but we have to ignore it for backward compatibility.
|
|
self.r.record_use(ident, binding, Used::Other);
|
|
return None;
|
|
}
|
|
LexicalScopeBinding::Item(binding) => (binding.res(), Some(binding)),
|
|
LexicalScopeBinding::Res(res) => (res, None),
|
|
};
|
|
|
|
match res {
|
|
Res::SelfCtor(_) // See #70549.
|
|
| Res::Def(
|
|
DefKind::Ctor(_, CtorKind::Const) | DefKind::Const | DefKind::ConstParam,
|
|
_,
|
|
) if is_syntactic_ambiguity => {
|
|
// Disambiguate in favor of a unit struct/variant or constant pattern.
|
|
if let Some(binding) = binding {
|
|
self.r.record_use(ident, binding, Used::Other);
|
|
}
|
|
Some(res)
|
|
}
|
|
Res::Def(DefKind::Ctor(..) | DefKind::Const | DefKind::Static { .. }, _) => {
|
|
// This is unambiguously a fresh binding, either syntactically
|
|
// (e.g., `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
|
|
// to something unusable as a pattern (e.g., constructor function),
|
|
// but we still conservatively report an error, see
|
|
// issues/33118#issuecomment-233962221 for one reason why.
|
|
let binding = binding.expect("no binding for a ctor or static");
|
|
self.report_error(
|
|
ident.span,
|
|
ResolutionError::BindingShadowsSomethingUnacceptable {
|
|
shadowing_binding: pat_src,
|
|
name: ident.name,
|
|
participle: if binding.is_import() { "imported" } else { "defined" },
|
|
article: binding.res().article(),
|
|
shadowed_binding: binding.res(),
|
|
shadowed_binding_span: binding.span,
|
|
},
|
|
);
|
|
None
|
|
}
|
|
Res::Def(DefKind::ConstParam, def_id) => {
|
|
// Same as for DefKind::Const above, but here, `binding` is `None`, so we
|
|
// have to construct the error differently
|
|
self.report_error(
|
|
ident.span,
|
|
ResolutionError::BindingShadowsSomethingUnacceptable {
|
|
shadowing_binding: pat_src,
|
|
name: ident.name,
|
|
participle: "defined",
|
|
article: res.article(),
|
|
shadowed_binding: res,
|
|
shadowed_binding_span: self.r.def_span(def_id),
|
|
}
|
|
);
|
|
None
|
|
}
|
|
Res::Def(DefKind::Fn, _) | Res::Local(..) | Res::Err => {
|
|
// These entities are explicitly allowed to be shadowed by fresh bindings.
|
|
None
|
|
}
|
|
Res::SelfCtor(_) => {
|
|
// We resolve `Self` in pattern position as an ident sometimes during recovery,
|
|
// so delay a bug instead of ICEing. (Note: is this no longer true? We now ICE. If
|
|
// this triggers, please convert to a delayed bug and add a test.)
|
|
self.r.dcx().span_bug(
|
|
ident.span,
|
|
"unexpected `SelfCtor` in pattern, expected identifier"
|
|
);
|
|
}
|
|
_ => span_bug!(
|
|
ident.span,
|
|
"unexpected resolution for an identifier in pattern: {:?}",
|
|
res,
|
|
),
|
|
}
|
|
}
|
|
|
|
// High-level and context dependent path resolution routine.
|
|
// Resolves the path and records the resolution into definition map.
|
|
// If resolution fails tries several techniques to find likely
|
|
// resolution candidates, suggest imports or other help, and report
|
|
// errors in user friendly way.
|
|
fn smart_resolve_path(
|
|
&mut self,
|
|
id: NodeId,
|
|
qself: &Option<P<QSelf>>,
|
|
path: &Path,
|
|
source: PathSource<'ast>,
|
|
) {
|
|
self.smart_resolve_path_fragment(
|
|
qself,
|
|
&Segment::from_path(path),
|
|
source,
|
|
Finalize::new(id, path.span),
|
|
RecordPartialRes::Yes,
|
|
);
|
|
}
|
|
|
|
#[instrument(level = "debug", skip(self))]
|
|
fn smart_resolve_path_fragment(
|
|
&mut self,
|
|
qself: &Option<P<QSelf>>,
|
|
path: &[Segment],
|
|
source: PathSource<'ast>,
|
|
finalize: Finalize,
|
|
record_partial_res: RecordPartialRes,
|
|
) -> PartialRes {
|
|
let ns = source.namespace();
|
|
|
|
let Finalize { node_id, path_span, .. } = finalize;
|
|
let report_errors = |this: &mut Self, res: Option<Res>| {
|
|
if this.should_report_errs() {
|
|
let (err, candidates) =
|
|
this.smart_resolve_report_errors(path, None, path_span, source, res);
|
|
|
|
let def_id = this.parent_scope.module.nearest_parent_mod();
|
|
let instead = res.is_some();
|
|
let suggestion = if let Some((start, end)) = this.diag_metadata.in_range
|
|
&& path[0].ident.span.lo() == end.span.lo()
|
|
{
|
|
let mut sugg = ".";
|
|
let mut span = start.span.between(end.span);
|
|
if span.lo() + BytePos(2) == span.hi() {
|
|
// There's no space between the start, the range op and the end, suggest
|
|
// removal which will look better.
|
|
span = span.with_lo(span.lo() + BytePos(1));
|
|
sugg = "";
|
|
}
|
|
Some((
|
|
span,
|
|
"you might have meant to write `.` instead of `..`",
|
|
sugg.to_string(),
|
|
Applicability::MaybeIncorrect,
|
|
))
|
|
} else if res.is_none()
|
|
&& let PathSource::Type | PathSource::Expr(_) = source
|
|
{
|
|
this.suggest_adding_generic_parameter(path, source)
|
|
} else {
|
|
None
|
|
};
|
|
|
|
let ue = UseError {
|
|
err,
|
|
candidates,
|
|
def_id,
|
|
instead,
|
|
suggestion,
|
|
path: path.into(),
|
|
is_call: source.is_call(),
|
|
};
|
|
|
|
this.r.use_injections.push(ue);
|
|
}
|
|
|
|
PartialRes::new(Res::Err)
|
|
};
|
|
|
|
// For paths originating from calls (like in `HashMap::new()`), tries
|
|
// to enrich the plain `failed to resolve: ...` message with hints
|
|
// about possible missing imports.
|
|
//
|
|
// Similar thing, for types, happens in `report_errors` above.
|
|
let report_errors_for_call = |this: &mut Self, parent_err: Spanned<ResolutionError<'a>>| {
|
|
// Before we start looking for candidates, we have to get our hands
|
|
// on the type user is trying to perform invocation on; basically:
|
|
// we're transforming `HashMap::new` into just `HashMap`.
|
|
let (following_seg, prefix_path) = match path.split_last() {
|
|
Some((last, path)) if !path.is_empty() => (Some(last), path),
|
|
_ => return Some(parent_err),
|
|
};
|
|
|
|
let (mut err, candidates) = this.smart_resolve_report_errors(
|
|
prefix_path,
|
|
following_seg,
|
|
path_span,
|
|
PathSource::Type,
|
|
None,
|
|
);
|
|
|
|
// There are two different error messages user might receive at
|
|
// this point:
|
|
// - E0412 cannot find type `{}` in this scope
|
|
// - E0433 failed to resolve: use of undeclared type or module `{}`
|
|
//
|
|
// The first one is emitted for paths in type-position, and the
|
|
// latter one - for paths in expression-position.
|
|
//
|
|
// Thus (since we're in expression-position at this point), not to
|
|
// confuse the user, we want to keep the *message* from E0433 (so
|
|
// `parent_err`), but we want *hints* from E0412 (so `err`).
|
|
//
|
|
// And that's what happens below - we're just mixing both messages
|
|
// into a single one.
|
|
let mut parent_err = this.r.into_struct_error(parent_err.span, parent_err.node);
|
|
|
|
// overwrite all properties with the parent's error message
|
|
err.messages = take(&mut parent_err.messages);
|
|
err.code = take(&mut parent_err.code);
|
|
swap(&mut err.span, &mut parent_err.span);
|
|
err.children = take(&mut parent_err.children);
|
|
err.sort_span = parent_err.sort_span;
|
|
err.is_lint = parent_err.is_lint.clone();
|
|
|
|
// merge the parent's suggestions with the typo suggestions
|
|
fn append_result<T, E>(res1: &mut Result<Vec<T>, E>, res2: Result<Vec<T>, E>) {
|
|
match res1 {
|
|
Ok(vec1) => match res2 {
|
|
Ok(mut vec2) => vec1.append(&mut vec2),
|
|
Err(e) => *res1 = Err(e),
|
|
},
|
|
Err(_) => (),
|
|
};
|
|
}
|
|
append_result(&mut err.suggestions, parent_err.suggestions.clone());
|
|
|
|
parent_err.cancel();
|
|
|
|
let def_id = this.parent_scope.module.nearest_parent_mod();
|
|
|
|
if this.should_report_errs() {
|
|
if candidates.is_empty() {
|
|
if path.len() == 2 && prefix_path.len() == 1 {
|
|
// Delay to check whether methond name is an associated function or not
|
|
// ```
|
|
// let foo = Foo {};
|
|
// foo::bar(); // possibly suggest to foo.bar();
|
|
//```
|
|
err.stash(
|
|
prefix_path[0].ident.span,
|
|
rustc_errors::StashKey::CallAssocMethod,
|
|
);
|
|
} else {
|
|
// When there is no suggested imports, we can just emit the error
|
|
// and suggestions immediately. Note that we bypass the usually error
|
|
// reporting routine (ie via `self.r.report_error`) because we need
|
|
// to post-process the `ResolutionError` above.
|
|
err.emit();
|
|
}
|
|
} else {
|
|
// If there are suggested imports, the error reporting is delayed
|
|
this.r.use_injections.push(UseError {
|
|
err,
|
|
candidates,
|
|
def_id,
|
|
instead: false,
|
|
suggestion: None,
|
|
path: prefix_path.into(),
|
|
is_call: source.is_call(),
|
|
});
|
|
}
|
|
} else {
|
|
err.cancel();
|
|
}
|
|
|
|
// We don't return `Some(parent_err)` here, because the error will
|
|
// be already printed either immediately or as part of the `use` injections
|
|
None
|
|
};
|
|
|
|
let partial_res = match self.resolve_qpath_anywhere(
|
|
qself,
|
|
path,
|
|
ns,
|
|
path_span,
|
|
source.defer_to_typeck(),
|
|
finalize,
|
|
) {
|
|
Ok(Some(partial_res)) if let Some(res) = partial_res.full_res() => {
|
|
// if we also have an associated type that matches the ident, stash a suggestion
|
|
if let Some(items) = self.diag_metadata.current_trait_assoc_items
|
|
&& let [Segment { ident, .. }] = path
|
|
&& items.iter().any(|item| {
|
|
item.ident == *ident && matches!(item.kind, AssocItemKind::Type(_))
|
|
})
|
|
{
|
|
let mut diag = self.r.tcx.dcx().struct_allow("");
|
|
diag.span_suggestion_verbose(
|
|
path_span.shrink_to_lo(),
|
|
"there is an associated type with the same name",
|
|
"Self::",
|
|
Applicability::MaybeIncorrect,
|
|
);
|
|
diag.stash(path_span, StashKey::AssociatedTypeSuggestion);
|
|
}
|
|
|
|
if source.is_expected(res) || res == Res::Err {
|
|
partial_res
|
|
} else {
|
|
report_errors(self, Some(res))
|
|
}
|
|
}
|
|
|
|
Ok(Some(partial_res)) if source.defer_to_typeck() => {
|
|
// Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
|
|
// or `<T>::A::B`. If `B` should be resolved in value namespace then
|
|
// it needs to be added to the trait map.
|
|
if ns == ValueNS {
|
|
let item_name = path.last().unwrap().ident;
|
|
let traits = self.traits_in_scope(item_name, ns);
|
|
self.r.trait_map.insert(node_id, traits);
|
|
}
|
|
|
|
if PrimTy::from_name(path[0].ident.name).is_some() {
|
|
let mut std_path = Vec::with_capacity(1 + path.len());
|
|
|
|
std_path.push(Segment::from_ident(Ident::with_dummy_span(sym::std)));
|
|
std_path.extend(path);
|
|
if let PathResult::Module(_) | PathResult::NonModule(_) =
|
|
self.resolve_path(&std_path, Some(ns), None)
|
|
{
|
|
// Check if we wrote `str::from_utf8` instead of `std::str::from_utf8`
|
|
let item_span =
|
|
path.iter().last().map_or(path_span, |segment| segment.ident.span);
|
|
|
|
self.r.confused_type_with_std_module.insert(item_span, path_span);
|
|
self.r.confused_type_with_std_module.insert(path_span, path_span);
|
|
}
|
|
}
|
|
|
|
partial_res
|
|
}
|
|
|
|
Err(err) => {
|
|
if let Some(err) = report_errors_for_call(self, err) {
|
|
self.report_error(err.span, err.node);
|
|
}
|
|
|
|
PartialRes::new(Res::Err)
|
|
}
|
|
|
|
_ => report_errors(self, None),
|
|
};
|
|
|
|
if record_partial_res == RecordPartialRes::Yes {
|
|
// Avoid recording definition of `A::B` in `<T as A>::B::C`.
|
|
self.r.record_partial_res(node_id, partial_res);
|
|
self.resolve_elided_lifetimes_in_path(partial_res, path, source, path_span);
|
|
self.lint_unused_qualifications(path, ns, finalize);
|
|
}
|
|
|
|
partial_res
|
|
}
|
|
|
|
fn self_type_is_available(&mut self) -> bool {
|
|
let binding = self
|
|
.maybe_resolve_ident_in_lexical_scope(Ident::with_dummy_span(kw::SelfUpper), TypeNS);
|
|
if let Some(LexicalScopeBinding::Res(res)) = binding { res != Res::Err } else { false }
|
|
}
|
|
|
|
fn self_value_is_available(&mut self, self_span: Span) -> bool {
|
|
let ident = Ident::new(kw::SelfLower, self_span);
|
|
let binding = self.maybe_resolve_ident_in_lexical_scope(ident, ValueNS);
|
|
if let Some(LexicalScopeBinding::Res(res)) = binding { res != Res::Err } else { false }
|
|
}
|
|
|
|
/// A wrapper around [`Resolver::report_error`].
|
|
///
|
|
/// This doesn't emit errors for function bodies if this is rustdoc.
|
|
fn report_error(&mut self, span: Span, resolution_error: ResolutionError<'a>) {
|
|
if self.should_report_errs() {
|
|
self.r.report_error(span, resolution_error);
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
/// If we're actually rustdoc then avoid giving a name resolution error for `cfg()` items or
|
|
// an invalid `use foo::*;` was found, which can cause unbounded ammounts of "item not found"
|
|
// errors. We silence them all.
|
|
fn should_report_errs(&self) -> bool {
|
|
!(self.r.tcx.sess.opts.actually_rustdoc && self.in_func_body)
|
|
&& !self.r.glob_error.is_some()
|
|
}
|
|
|
|
// Resolve in alternative namespaces if resolution in the primary namespace fails.
|
|
fn resolve_qpath_anywhere(
|
|
&mut self,
|
|
qself: &Option<P<QSelf>>,
|
|
path: &[Segment],
|
|
primary_ns: Namespace,
|
|
span: Span,
|
|
defer_to_typeck: bool,
|
|
finalize: Finalize,
|
|
) -> Result<Option<PartialRes>, Spanned<ResolutionError<'a>>> {
|
|
let mut fin_res = None;
|
|
|
|
for (i, &ns) in [primary_ns, TypeNS, ValueNS].iter().enumerate() {
|
|
if i == 0 || ns != primary_ns {
|
|
match self.resolve_qpath(qself, path, ns, finalize)? {
|
|
Some(partial_res)
|
|
if partial_res.unresolved_segments() == 0 || defer_to_typeck =>
|
|
{
|
|
return Ok(Some(partial_res));
|
|
}
|
|
partial_res => {
|
|
if fin_res.is_none() {
|
|
fin_res = partial_res;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
assert!(primary_ns != MacroNS);
|
|
|
|
if qself.is_none() {
|
|
let path_seg = |seg: &Segment| PathSegment::from_ident(seg.ident);
|
|
let path = Path { segments: path.iter().map(path_seg).collect(), span, tokens: None };
|
|
if let Ok((_, res)) =
|
|
self.r.resolve_macro_path(&path, None, &self.parent_scope, false, false, None)
|
|
{
|
|
return Ok(Some(PartialRes::new(res)));
|
|
}
|
|
}
|
|
|
|
Ok(fin_res)
|
|
}
|
|
|
|
/// Handles paths that may refer to associated items.
|
|
fn resolve_qpath(
|
|
&mut self,
|
|
qself: &Option<P<QSelf>>,
|
|
path: &[Segment],
|
|
ns: Namespace,
|
|
finalize: Finalize,
|
|
) -> Result<Option<PartialRes>, Spanned<ResolutionError<'a>>> {
|
|
debug!(
|
|
"resolve_qpath(qself={:?}, path={:?}, ns={:?}, finalize={:?})",
|
|
qself, path, ns, finalize,
|
|
);
|
|
|
|
if let Some(qself) = qself {
|
|
if qself.position == 0 {
|
|
// This is a case like `<T>::B`, where there is no
|
|
// trait to resolve. In that case, we leave the `B`
|
|
// segment to be resolved by type-check.
|
|
return Ok(Some(PartialRes::with_unresolved_segments(
|
|
Res::Def(DefKind::Mod, CRATE_DEF_ID.to_def_id()),
|
|
path.len(),
|
|
)));
|
|
}
|
|
|
|
let num_privacy_errors = self.r.privacy_errors.len();
|
|
// Make sure that `A` in `<T as A>::B::C` is a trait.
|
|
let trait_res = self.smart_resolve_path_fragment(
|
|
&None,
|
|
&path[..qself.position],
|
|
PathSource::Trait(AliasPossibility::No),
|
|
Finalize::new(finalize.node_id, qself.path_span),
|
|
RecordPartialRes::No,
|
|
);
|
|
|
|
if trait_res.expect_full_res() == Res::Err {
|
|
return Ok(Some(trait_res));
|
|
}
|
|
|
|
// Truncate additional privacy errors reported above,
|
|
// because they'll be recomputed below.
|
|
self.r.privacy_errors.truncate(num_privacy_errors);
|
|
|
|
// Make sure `A::B` in `<T as A>::B::C` is a trait item.
|
|
//
|
|
// Currently, `path` names the full item (`A::B::C`, in
|
|
// our example). so we extract the prefix of that that is
|
|
// the trait (the slice upto and including
|
|
// `qself.position`). And then we recursively resolve that,
|
|
// but with `qself` set to `None`.
|
|
let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
|
|
let partial_res = self.smart_resolve_path_fragment(
|
|
&None,
|
|
&path[..=qself.position],
|
|
PathSource::TraitItem(ns),
|
|
Finalize::with_root_span(finalize.node_id, finalize.path_span, qself.path_span),
|
|
RecordPartialRes::No,
|
|
);
|
|
|
|
// The remaining segments (the `C` in our example) will
|
|
// have to be resolved by type-check, since that requires doing
|
|
// trait resolution.
|
|
return Ok(Some(PartialRes::with_unresolved_segments(
|
|
partial_res.base_res(),
|
|
partial_res.unresolved_segments() + path.len() - qself.position - 1,
|
|
)));
|
|
}
|
|
|
|
let result = match self.resolve_path(path, Some(ns), Some(finalize)) {
|
|
PathResult::NonModule(path_res) => path_res,
|
|
PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => {
|
|
PartialRes::new(module.res().unwrap())
|
|
}
|
|
// In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
|
|
// don't report an error right away, but try to fallback to a primitive type.
|
|
// So, we are still able to successfully resolve something like
|
|
//
|
|
// use std::u8; // bring module u8 in scope
|
|
// fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
|
|
// u8::max_value() // OK, resolves to associated function <u8>::max_value,
|
|
// // not to nonexistent std::u8::max_value
|
|
// }
|
|
//
|
|
// Such behavior is required for backward compatibility.
|
|
// The same fallback is used when `a` resolves to nothing.
|
|
PathResult::Module(ModuleOrUniformRoot::Module(_)) | PathResult::Failed { .. }
|
|
if (ns == TypeNS || path.len() > 1)
|
|
&& PrimTy::from_name(path[0].ident.name).is_some() =>
|
|
{
|
|
let prim = PrimTy::from_name(path[0].ident.name).unwrap();
|
|
let tcx = self.r.tcx();
|
|
|
|
let gate_err_sym_msg = match prim {
|
|
PrimTy::Float(FloatTy::F16) if !tcx.features().f16 => {
|
|
Some((sym::f16, "the type `f16` is unstable"))
|
|
}
|
|
PrimTy::Float(FloatTy::F128) if !tcx.features().f128 => {
|
|
Some((sym::f128, "the type `f128` is unstable"))
|
|
}
|
|
_ => None,
|
|
};
|
|
|
|
if let Some((sym, msg)) = gate_err_sym_msg {
|
|
let span = path[0].ident.span;
|
|
if !span.allows_unstable(sym) {
|
|
feature_err(tcx.sess, sym, span, msg).emit();
|
|
}
|
|
};
|
|
|
|
PartialRes::with_unresolved_segments(Res::PrimTy(prim), path.len() - 1)
|
|
}
|
|
PathResult::Module(ModuleOrUniformRoot::Module(module)) => {
|
|
PartialRes::new(module.res().unwrap())
|
|
}
|
|
PathResult::Failed {
|
|
is_error_from_last_segment: false,
|
|
span,
|
|
label,
|
|
suggestion,
|
|
module,
|
|
segment_name,
|
|
} => {
|
|
return Err(respan(
|
|
span,
|
|
ResolutionError::FailedToResolve {
|
|
segment: Some(segment_name),
|
|
label,
|
|
suggestion,
|
|
module,
|
|
},
|
|
));
|
|
}
|
|
PathResult::Module(..) | PathResult::Failed { .. } => return Ok(None),
|
|
PathResult::Indeterminate => bug!("indeterminate path result in resolve_qpath"),
|
|
};
|
|
|
|
Ok(Some(result))
|
|
}
|
|
|
|
fn with_resolved_label(&mut self, label: Option<Label>, id: NodeId, f: impl FnOnce(&mut Self)) {
|
|
if let Some(label) = label {
|
|
if label.ident.as_str().as_bytes()[1] != b'_' {
|
|
self.diag_metadata.unused_labels.insert(id, label.ident.span);
|
|
}
|
|
|
|
if let Ok((_, orig_span)) = self.resolve_label(label.ident) {
|
|
diagnostics::signal_label_shadowing(self.r.tcx.sess, orig_span, label.ident)
|
|
}
|
|
|
|
self.with_label_rib(RibKind::Normal, |this| {
|
|
let ident = label.ident.normalize_to_macro_rules();
|
|
this.label_ribs.last_mut().unwrap().bindings.insert(ident, id);
|
|
f(this);
|
|
});
|
|
} else {
|
|
f(self);
|
|
}
|
|
}
|
|
|
|
fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &'ast Block) {
|
|
self.with_resolved_label(label, id, |this| this.visit_block(block));
|
|
}
|
|
|
|
fn resolve_block(&mut self, block: &'ast Block) {
|
|
debug!("(resolving block) entering block");
|
|
// Move down in the graph, if there's an anonymous module rooted here.
|
|
let orig_module = self.parent_scope.module;
|
|
let anonymous_module = self.r.block_map.get(&block.id).cloned(); // clones a reference
|
|
|
|
let mut num_macro_definition_ribs = 0;
|
|
if let Some(anonymous_module) = anonymous_module {
|
|
debug!("(resolving block) found anonymous module, moving down");
|
|
self.ribs[ValueNS].push(Rib::new(RibKind::Module(anonymous_module)));
|
|
self.ribs[TypeNS].push(Rib::new(RibKind::Module(anonymous_module)));
|
|
self.parent_scope.module = anonymous_module;
|
|
} else {
|
|
self.ribs[ValueNS].push(Rib::new(RibKind::Normal));
|
|
}
|
|
|
|
let prev = self.diag_metadata.current_block_could_be_bare_struct_literal.take();
|
|
if let (true, [Stmt { kind: StmtKind::Expr(expr), .. }]) =
|
|
(block.could_be_bare_literal, &block.stmts[..])
|
|
&& let ExprKind::Type(..) = expr.kind
|
|
{
|
|
self.diag_metadata.current_block_could_be_bare_struct_literal = Some(block.span);
|
|
}
|
|
// Descend into the block.
|
|
for stmt in &block.stmts {
|
|
if let StmtKind::Item(ref item) = stmt.kind
|
|
&& let ItemKind::MacroDef(..) = item.kind
|
|
{
|
|
num_macro_definition_ribs += 1;
|
|
let res = self.r.local_def_id(item.id).to_def_id();
|
|
self.ribs[ValueNS].push(Rib::new(RibKind::MacroDefinition(res)));
|
|
self.label_ribs.push(Rib::new(RibKind::MacroDefinition(res)));
|
|
}
|
|
|
|
self.visit_stmt(stmt);
|
|
}
|
|
self.diag_metadata.current_block_could_be_bare_struct_literal = prev;
|
|
|
|
// Move back up.
|
|
self.parent_scope.module = orig_module;
|
|
for _ in 0..num_macro_definition_ribs {
|
|
self.ribs[ValueNS].pop();
|
|
self.label_ribs.pop();
|
|
}
|
|
self.last_block_rib = self.ribs[ValueNS].pop();
|
|
if anonymous_module.is_some() {
|
|
self.ribs[TypeNS].pop();
|
|
}
|
|
debug!("(resolving block) leaving block");
|
|
}
|
|
|
|
fn resolve_anon_const(&mut self, constant: &'ast AnonConst, anon_const_kind: AnonConstKind) {
|
|
debug!(
|
|
"resolve_anon_const(constant: {:?}, anon_const_kind: {:?})",
|
|
constant, anon_const_kind
|
|
);
|
|
|
|
self.resolve_anon_const_manual(
|
|
constant.value.is_potential_trivial_const_arg(),
|
|
anon_const_kind,
|
|
|this| this.resolve_expr(&constant.value, None),
|
|
)
|
|
}
|
|
|
|
/// There are a few places that we need to resolve an anon const but we did not parse an
|
|
/// anon const so cannot provide an `&'ast AnonConst`. Right now this is just unbraced
|
|
/// const arguments that were parsed as type arguments, and `legact_const_generics` which
|
|
/// parse as normal function argument expressions. To avoid duplicating the code for resolving
|
|
/// an anon const we have this function which lets the caller manually call `resolve_expr` or
|
|
/// `smart_resolve_path`.
|
|
fn resolve_anon_const_manual(
|
|
&mut self,
|
|
is_trivial_const_arg: bool,
|
|
anon_const_kind: AnonConstKind,
|
|
resolve_expr: impl FnOnce(&mut Self),
|
|
) {
|
|
let is_repeat_expr = match anon_const_kind {
|
|
AnonConstKind::ConstArg(is_repeat_expr) => is_repeat_expr,
|
|
_ => IsRepeatExpr::No,
|
|
};
|
|
|
|
let may_use_generics = match anon_const_kind {
|
|
AnonConstKind::EnumDiscriminant => {
|
|
ConstantHasGenerics::No(NoConstantGenericsReason::IsEnumDiscriminant)
|
|
}
|
|
AnonConstKind::InlineConst => ConstantHasGenerics::Yes,
|
|
AnonConstKind::ConstArg(_) => {
|
|
if self.r.tcx.features().generic_const_exprs || is_trivial_const_arg {
|
|
ConstantHasGenerics::Yes
|
|
} else {
|
|
ConstantHasGenerics::No(NoConstantGenericsReason::NonTrivialConstArg)
|
|
}
|
|
}
|
|
};
|
|
|
|
self.with_constant_rib(is_repeat_expr, may_use_generics, None, |this| {
|
|
this.with_lifetime_rib(LifetimeRibKind::Elided(LifetimeRes::Infer), |this| {
|
|
resolve_expr(this);
|
|
});
|
|
});
|
|
}
|
|
|
|
fn resolve_expr_field(&mut self, f: &'ast ExprField, e: &'ast Expr) {
|
|
self.resolve_expr(&f.expr, Some(e));
|
|
self.visit_ident(f.ident);
|
|
walk_list!(self, visit_attribute, f.attrs.iter());
|
|
}
|
|
|
|
fn resolve_expr(&mut self, expr: &'ast Expr, parent: Option<&'ast Expr>) {
|
|
// First, record candidate traits for this expression if it could
|
|
// result in the invocation of a method call.
|
|
|
|
self.record_candidate_traits_for_expr_if_necessary(expr);
|
|
|
|
// Next, resolve the node.
|
|
match expr.kind {
|
|
ExprKind::Path(ref qself, ref path) => {
|
|
self.smart_resolve_path(expr.id, qself, path, PathSource::Expr(parent));
|
|
visit::walk_expr(self, expr);
|
|
}
|
|
|
|
ExprKind::Struct(ref se) => {
|
|
self.smart_resolve_path(expr.id, &se.qself, &se.path, PathSource::Struct);
|
|
// This is the same as `visit::walk_expr(self, expr);`, but we want to pass the
|
|
// parent in for accurate suggestions when encountering `Foo { bar }` that should
|
|
// have been `Foo { bar: self.bar }`.
|
|
if let Some(qself) = &se.qself {
|
|
self.visit_ty(&qself.ty);
|
|
}
|
|
self.visit_path(&se.path, expr.id);
|
|
walk_list!(self, resolve_expr_field, &se.fields, expr);
|
|
match &se.rest {
|
|
StructRest::Base(expr) => self.visit_expr(expr),
|
|
StructRest::Rest(_span) => {}
|
|
StructRest::None => {}
|
|
}
|
|
}
|
|
|
|
ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
|
|
match self.resolve_label(label.ident) {
|
|
Ok((node_id, _)) => {
|
|
// Since this res is a label, it is never read.
|
|
self.r.label_res_map.insert(expr.id, node_id);
|
|
self.diag_metadata.unused_labels.remove(&node_id);
|
|
}
|
|
Err(error) => {
|
|
self.report_error(label.ident.span, error);
|
|
}
|
|
}
|
|
|
|
// visit `break` argument if any
|
|
visit::walk_expr(self, expr);
|
|
}
|
|
|
|
ExprKind::Break(None, Some(ref e)) => {
|
|
// We use this instead of `visit::walk_expr` to keep the parent expr around for
|
|
// better diagnostics.
|
|
self.resolve_expr(e, Some(expr));
|
|
}
|
|
|
|
ExprKind::Let(ref pat, ref scrutinee, _, _) => {
|
|
self.visit_expr(scrutinee);
|
|
self.resolve_pattern_top(pat, PatternSource::Let);
|
|
}
|
|
|
|
ExprKind::If(ref cond, ref then, ref opt_else) => {
|
|
self.with_rib(ValueNS, RibKind::Normal, |this| {
|
|
let old = this.diag_metadata.in_if_condition.replace(cond);
|
|
this.visit_expr(cond);
|
|
this.diag_metadata.in_if_condition = old;
|
|
this.visit_block(then);
|
|
});
|
|
if let Some(expr) = opt_else {
|
|
self.visit_expr(expr);
|
|
}
|
|
}
|
|
|
|
ExprKind::Loop(ref block, label, _) => {
|
|
self.resolve_labeled_block(label, expr.id, block)
|
|
}
|
|
|
|
ExprKind::While(ref cond, ref block, label) => {
|
|
self.with_resolved_label(label, expr.id, |this| {
|
|
this.with_rib(ValueNS, RibKind::Normal, |this| {
|
|
let old = this.diag_metadata.in_if_condition.replace(cond);
|
|
this.visit_expr(cond);
|
|
this.diag_metadata.in_if_condition = old;
|
|
this.visit_block(block);
|
|
})
|
|
});
|
|
}
|
|
|
|
ExprKind::ForLoop { ref pat, ref iter, ref body, label, kind: _ } => {
|
|
self.visit_expr(iter);
|
|
self.with_rib(ValueNS, RibKind::Normal, |this| {
|
|
this.resolve_pattern_top(pat, PatternSource::For);
|
|
this.resolve_labeled_block(label, expr.id, body);
|
|
});
|
|
}
|
|
|
|
ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
|
|
|
|
// Equivalent to `visit::walk_expr` + passing some context to children.
|
|
ExprKind::Field(ref subexpression, _) => {
|
|
self.resolve_expr(subexpression, Some(expr));
|
|
}
|
|
ExprKind::MethodCall(box MethodCall { ref seg, ref receiver, ref args, .. }) => {
|
|
self.resolve_expr(receiver, Some(expr));
|
|
for arg in args {
|
|
self.resolve_expr(arg, None);
|
|
}
|
|
self.visit_path_segment(seg);
|
|
}
|
|
|
|
ExprKind::Call(ref callee, ref arguments) => {
|
|
self.resolve_expr(callee, Some(expr));
|
|
let const_args = self.r.legacy_const_generic_args(callee).unwrap_or_default();
|
|
for (idx, argument) in arguments.iter().enumerate() {
|
|
// Constant arguments need to be treated as AnonConst since
|
|
// that is how they will be later lowered to HIR.
|
|
if const_args.contains(&idx) {
|
|
self.resolve_anon_const_manual(
|
|
argument.is_potential_trivial_const_arg(),
|
|
AnonConstKind::ConstArg(IsRepeatExpr::No),
|
|
|this| this.resolve_expr(argument, None),
|
|
);
|
|
} else {
|
|
self.resolve_expr(argument, None);
|
|
}
|
|
}
|
|
}
|
|
ExprKind::Type(ref _type_expr, ref _ty) => {
|
|
visit::walk_expr(self, expr);
|
|
}
|
|
// For closures, RibKind::FnOrCoroutine is added in visit_fn
|
|
ExprKind::Closure(box ast::Closure {
|
|
binder: ClosureBinder::For { ref generic_params, span },
|
|
..
|
|
}) => {
|
|
self.with_generic_param_rib(
|
|
generic_params,
|
|
RibKind::Normal,
|
|
LifetimeRibKind::Generics {
|
|
binder: expr.id,
|
|
kind: LifetimeBinderKind::Closure,
|
|
span,
|
|
},
|
|
|this| visit::walk_expr(this, expr),
|
|
);
|
|
}
|
|
ExprKind::Closure(..) => visit::walk_expr(self, expr),
|
|
ExprKind::Gen(..) => {
|
|
self.with_label_rib(RibKind::FnOrCoroutine, |this| visit::walk_expr(this, expr));
|
|
}
|
|
ExprKind::Repeat(ref elem, ref ct) => {
|
|
self.visit_expr(elem);
|
|
self.resolve_anon_const(ct, AnonConstKind::ConstArg(IsRepeatExpr::Yes));
|
|
}
|
|
ExprKind::ConstBlock(ref ct) => {
|
|
self.resolve_anon_const(ct, AnonConstKind::InlineConst);
|
|
}
|
|
ExprKind::Index(ref elem, ref idx, _) => {
|
|
self.resolve_expr(elem, Some(expr));
|
|
self.visit_expr(idx);
|
|
}
|
|
ExprKind::Assign(ref lhs, ref rhs, _) => {
|
|
if !self.diag_metadata.is_assign_rhs {
|
|
self.diag_metadata.in_assignment = Some(expr);
|
|
}
|
|
self.visit_expr(lhs);
|
|
self.diag_metadata.is_assign_rhs = true;
|
|
self.diag_metadata.in_assignment = None;
|
|
self.visit_expr(rhs);
|
|
self.diag_metadata.is_assign_rhs = false;
|
|
}
|
|
ExprKind::Range(Some(ref start), Some(ref end), RangeLimits::HalfOpen) => {
|
|
self.diag_metadata.in_range = Some((start, end));
|
|
self.resolve_expr(start, Some(expr));
|
|
self.resolve_expr(end, Some(expr));
|
|
self.diag_metadata.in_range = None;
|
|
}
|
|
_ => {
|
|
visit::walk_expr(self, expr);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &'ast Expr) {
|
|
match expr.kind {
|
|
ExprKind::Field(_, ident) => {
|
|
// #6890: Even though you can't treat a method like a field,
|
|
// we need to add any trait methods we find that match the
|
|
// field name so that we can do some nice error reporting
|
|
// later on in typeck.
|
|
let traits = self.traits_in_scope(ident, ValueNS);
|
|
self.r.trait_map.insert(expr.id, traits);
|
|
}
|
|
ExprKind::MethodCall(ref call) => {
|
|
debug!("(recording candidate traits for expr) recording traits for {}", expr.id);
|
|
let traits = self.traits_in_scope(call.seg.ident, ValueNS);
|
|
self.r.trait_map.insert(expr.id, traits);
|
|
}
|
|
_ => {
|
|
// Nothing to do.
|
|
}
|
|
}
|
|
}
|
|
|
|
fn traits_in_scope(&mut self, ident: Ident, ns: Namespace) -> Vec<TraitCandidate> {
|
|
self.r.traits_in_scope(
|
|
self.current_trait_ref.as_ref().map(|(module, _)| *module),
|
|
&self.parent_scope,
|
|
ident.span.ctxt(),
|
|
Some((ident.name, ns)),
|
|
)
|
|
}
|
|
|
|
/// Construct the list of in-scope lifetime parameters for impl trait lowering.
|
|
/// We include all lifetime parameters, either named or "Fresh".
|
|
/// The order of those parameters does not matter, as long as it is
|
|
/// deterministic.
|
|
fn record_lifetime_params_for_impl_trait(&mut self, impl_trait_node_id: NodeId) {
|
|
let mut extra_lifetime_params = vec![];
|
|
|
|
for rib in self.lifetime_ribs.iter().rev() {
|
|
extra_lifetime_params
|
|
.extend(rib.bindings.iter().map(|(&ident, &(node_id, res))| (ident, node_id, res)));
|
|
match rib.kind {
|
|
LifetimeRibKind::Item => break,
|
|
LifetimeRibKind::AnonymousCreateParameter { binder, .. } => {
|
|
if let Some(earlier_fresh) = self.r.extra_lifetime_params_map.get(&binder) {
|
|
extra_lifetime_params.extend(earlier_fresh);
|
|
}
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
|
|
self.r.extra_lifetime_params_map.insert(impl_trait_node_id, extra_lifetime_params);
|
|
}
|
|
|
|
fn resolve_and_cache_rustdoc_path(&mut self, path_str: &str, ns: Namespace) -> Option<Res> {
|
|
// FIXME: This caching may be incorrect in case of multiple `macro_rules`
|
|
// items with the same name in the same module.
|
|
// Also hygiene is not considered.
|
|
let mut doc_link_resolutions = std::mem::take(&mut self.r.doc_link_resolutions);
|
|
let res = *doc_link_resolutions
|
|
.entry(self.parent_scope.module.nearest_parent_mod().expect_local())
|
|
.or_default()
|
|
.entry((Symbol::intern(path_str), ns))
|
|
.or_insert_with_key(|(path, ns)| {
|
|
let res = self.r.resolve_rustdoc_path(path.as_str(), *ns, self.parent_scope);
|
|
if let Some(res) = res
|
|
&& let Some(def_id) = res.opt_def_id()
|
|
&& !def_id.is_local()
|
|
{
|
|
if self.r.tcx.crate_types().contains(&CrateType::ProcMacro)
|
|
&& matches!(
|
|
self.r.tcx.sess.opts.resolve_doc_links,
|
|
ResolveDocLinks::ExportedMetadata
|
|
)
|
|
{
|
|
// Encoding foreign def ids in proc macro crate metadata will ICE.
|
|
return None;
|
|
}
|
|
}
|
|
res
|
|
});
|
|
self.r.doc_link_resolutions = doc_link_resolutions;
|
|
res
|
|
}
|
|
|
|
fn resolve_doc_links(&mut self, attrs: &[Attribute], maybe_exported: MaybeExported<'_>) {
|
|
match self.r.tcx.sess.opts.resolve_doc_links {
|
|
ResolveDocLinks::None => return,
|
|
ResolveDocLinks::ExportedMetadata
|
|
if !self.r.tcx.crate_types().iter().copied().any(CrateType::has_metadata)
|
|
|| !maybe_exported.eval(self.r) =>
|
|
{
|
|
return;
|
|
}
|
|
ResolveDocLinks::Exported
|
|
if !maybe_exported.eval(self.r)
|
|
&& !rustdoc::has_primitive_or_keyword_docs(attrs) =>
|
|
{
|
|
return;
|
|
}
|
|
ResolveDocLinks::ExportedMetadata
|
|
| ResolveDocLinks::Exported
|
|
| ResolveDocLinks::All => {}
|
|
}
|
|
|
|
if !attrs.iter().any(|attr| attr.may_have_doc_links()) {
|
|
return;
|
|
}
|
|
|
|
let mut need_traits_in_scope = false;
|
|
for path_str in rustdoc::attrs_to_preprocessed_links(attrs) {
|
|
// Resolve all namespaces due to no disambiguator or for diagnostics.
|
|
let mut any_resolved = false;
|
|
let mut need_assoc = false;
|
|
for ns in [TypeNS, ValueNS, MacroNS] {
|
|
if let Some(res) = self.resolve_and_cache_rustdoc_path(&path_str, ns) {
|
|
// Rustdoc ignores tool attribute resolutions and attempts
|
|
// to resolve their prefixes for diagnostics.
|
|
any_resolved = !matches!(res, Res::NonMacroAttr(NonMacroAttrKind::Tool));
|
|
} else if ns != MacroNS {
|
|
need_assoc = true;
|
|
}
|
|
}
|
|
|
|
// Resolve all prefixes for type-relative resolution or for diagnostics.
|
|
if need_assoc || !any_resolved {
|
|
let mut path = &path_str[..];
|
|
while let Some(idx) = path.rfind("::") {
|
|
path = &path[..idx];
|
|
need_traits_in_scope = true;
|
|
for ns in [TypeNS, ValueNS, MacroNS] {
|
|
self.resolve_and_cache_rustdoc_path(path, ns);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if need_traits_in_scope {
|
|
// FIXME: hygiene is not considered.
|
|
let mut doc_link_traits_in_scope = std::mem::take(&mut self.r.doc_link_traits_in_scope);
|
|
doc_link_traits_in_scope
|
|
.entry(self.parent_scope.module.nearest_parent_mod().expect_local())
|
|
.or_insert_with(|| {
|
|
self.r
|
|
.traits_in_scope(None, &self.parent_scope, SyntaxContext::root(), None)
|
|
.into_iter()
|
|
.filter_map(|tr| {
|
|
if !tr.def_id.is_local()
|
|
&& self.r.tcx.crate_types().contains(&CrateType::ProcMacro)
|
|
&& matches!(
|
|
self.r.tcx.sess.opts.resolve_doc_links,
|
|
ResolveDocLinks::ExportedMetadata
|
|
)
|
|
{
|
|
// Encoding foreign def ids in proc macro crate metadata will ICE.
|
|
return None;
|
|
}
|
|
Some(tr.def_id)
|
|
})
|
|
.collect()
|
|
});
|
|
self.r.doc_link_traits_in_scope = doc_link_traits_in_scope;
|
|
}
|
|
}
|
|
|
|
fn lint_unused_qualifications(&mut self, path: &[Segment], ns: Namespace, finalize: Finalize) {
|
|
// Don't lint on global paths because the user explicitly wrote out the full path.
|
|
if let Some(seg) = path.first()
|
|
&& seg.ident.name == kw::PathRoot
|
|
{
|
|
return;
|
|
}
|
|
|
|
if finalize.path_span.from_expansion()
|
|
|| path.iter().any(|seg| seg.ident.span.from_expansion())
|
|
{
|
|
return;
|
|
}
|
|
|
|
let end_pos =
|
|
path.iter().position(|seg| seg.has_generic_args).map_or(path.len(), |pos| pos + 1);
|
|
let unqualified = path[..end_pos].iter().enumerate().skip(1).rev().find_map(|(i, seg)| {
|
|
// Preserve the current namespace for the final path segment, but use the type
|
|
// namespace for all preceding segments
|
|
//
|
|
// e.g. for `std::env::args` check the `ValueNS` for `args` but the `TypeNS` for
|
|
// `std` and `env`
|
|
//
|
|
// If the final path segment is beyond `end_pos` all the segments to check will
|
|
// use the type namespace
|
|
let ns = if i + 1 == path.len() { ns } else { TypeNS };
|
|
let res = self.r.partial_res_map.get(&seg.id?)?.full_res()?;
|
|
let binding = self.resolve_ident_in_lexical_scope(seg.ident, ns, None, None)?;
|
|
(res == binding.res()).then_some((seg, binding))
|
|
});
|
|
|
|
if let Some((seg, binding)) = unqualified {
|
|
self.r.potentially_unnecessary_qualifications.push(UnnecessaryQualification {
|
|
binding,
|
|
node_id: finalize.node_id,
|
|
path_span: finalize.path_span,
|
|
removal_span: path[0].ident.span.until(seg.ident.span),
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Walks the whole crate in DFS order, visiting each item, counting the declared number of
|
|
/// lifetime generic parameters and function parameters.
|
|
struct ItemInfoCollector<'a, 'b, 'tcx> {
|
|
r: &'b mut Resolver<'a, 'tcx>,
|
|
}
|
|
|
|
impl ItemInfoCollector<'_, '_, '_> {
|
|
fn collect_fn_info(&mut self, sig: &FnSig, id: NodeId) {
|
|
let sig = DelegationFnSig {
|
|
header: sig.header,
|
|
param_count: sig.decl.inputs.len(),
|
|
has_self: sig.decl.has_self(),
|
|
c_variadic: sig.decl.c_variadic(),
|
|
};
|
|
self.r.delegation_fn_sigs.insert(self.r.local_def_id(id), sig);
|
|
}
|
|
}
|
|
|
|
impl<'ast> Visitor<'ast> for ItemInfoCollector<'_, '_, '_> {
|
|
fn visit_item(&mut self, item: &'ast Item) {
|
|
match &item.kind {
|
|
ItemKind::TyAlias(box TyAlias { ref generics, .. })
|
|
| ItemKind::Const(box ConstItem { ref generics, .. })
|
|
| ItemKind::Fn(box Fn { ref generics, .. })
|
|
| ItemKind::Enum(_, ref generics)
|
|
| ItemKind::Struct(_, ref generics)
|
|
| ItemKind::Union(_, ref generics)
|
|
| ItemKind::Impl(box Impl { ref generics, .. })
|
|
| ItemKind::Trait(box Trait { ref generics, .. })
|
|
| ItemKind::TraitAlias(ref generics, _) => {
|
|
if let ItemKind::Fn(box Fn { ref sig, .. }) = &item.kind {
|
|
self.collect_fn_info(sig, item.id);
|
|
}
|
|
|
|
let def_id = self.r.local_def_id(item.id);
|
|
let count = generics
|
|
.params
|
|
.iter()
|
|
.filter(|param| matches!(param.kind, ast::GenericParamKind::Lifetime { .. }))
|
|
.count();
|
|
self.r.item_generics_num_lifetimes.insert(def_id, count);
|
|
}
|
|
|
|
ItemKind::Mod(..)
|
|
| ItemKind::ForeignMod(..)
|
|
| ItemKind::Static(..)
|
|
| ItemKind::Use(..)
|
|
| ItemKind::ExternCrate(..)
|
|
| ItemKind::MacroDef(..)
|
|
| ItemKind::GlobalAsm(..)
|
|
| ItemKind::MacCall(..)
|
|
| ItemKind::DelegationMac(..) => {}
|
|
ItemKind::Delegation(..) => {
|
|
// Delegated functions have lifetimes, their count is not necessarily zero.
|
|
// But skipping the delegation items here doesn't mean that the count will be considered zero,
|
|
// it means there will be a panic when retrieving the count,
|
|
// but for delegation items we are never actually retrieving that count in practice.
|
|
}
|
|
}
|
|
visit::walk_item(self, item)
|
|
}
|
|
|
|
fn visit_assoc_item(&mut self, item: &'ast AssocItem, ctxt: AssocCtxt) {
|
|
if let AssocItemKind::Fn(box Fn { ref sig, .. }) = &item.kind {
|
|
self.collect_fn_info(sig, item.id);
|
|
}
|
|
visit::walk_assoc_item(self, item, ctxt);
|
|
}
|
|
}
|
|
|
|
impl<'a, 'tcx> Resolver<'a, 'tcx> {
|
|
pub(crate) fn late_resolve_crate(&mut self, krate: &Crate) {
|
|
visit::walk_crate(&mut ItemInfoCollector { r: self }, krate);
|
|
let mut late_resolution_visitor = LateResolutionVisitor::new(self);
|
|
late_resolution_visitor.resolve_doc_links(&krate.attrs, MaybeExported::Ok(CRATE_NODE_ID));
|
|
visit::walk_crate(&mut late_resolution_visitor, krate);
|
|
for (id, span) in late_resolution_visitor.diag_metadata.unused_labels.iter() {
|
|
self.lint_buffer.buffer_lint(
|
|
lint::builtin::UNUSED_LABELS,
|
|
*id,
|
|
*span,
|
|
BuiltinLintDiag::UnusedLabel,
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Check if definition matches a path
|
|
fn def_id_matches_path(tcx: TyCtxt<'_>, mut def_id: DefId, expected_path: &[&str]) -> bool {
|
|
let mut path = expected_path.iter().rev();
|
|
while let (Some(parent), Some(next_step)) = (tcx.opt_parent(def_id), path.next()) {
|
|
if !tcx.opt_item_name(def_id).map_or(false, |n| n.as_str() == *next_step) {
|
|
return false;
|
|
}
|
|
def_id = parent;
|
|
}
|
|
return true;
|
|
}
|