mirror of
				https://github.com/rust-lang/rust.git
				synced 2025-10-31 13:04:42 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			689 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			689 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
| //! A number of passes which remove various redundancies in the CFG.
 | |
| //!
 | |
| //! The `SimplifyCfg` pass gets rid of unnecessary blocks in the CFG, whereas the `SimplifyLocals`
 | |
| //! gets rid of all the unnecessary local variable declarations.
 | |
| //!
 | |
| //! The `SimplifyLocals` pass is kinda expensive and therefore not very suitable to be run often.
 | |
| //! Most of the passes should not care or be impacted in meaningful ways due to extra locals
 | |
| //! either, so running the pass once, right before codegen, should suffice.
 | |
| //!
 | |
| //! On the other side of the spectrum, the `SimplifyCfg` pass is considerably cheap to run, thus
 | |
| //! one should run it after every pass which may modify CFG in significant ways. This pass must
 | |
| //! also be run before any analysis passes because it removes dead blocks, and some of these can be
 | |
| //! ill-typed.
 | |
| //!
 | |
| //! The cause of this typing issue is typeck allowing most blocks whose end is not reachable have
 | |
| //! an arbitrary return type, rather than having the usual () return type (as a note, typeck's
 | |
| //! notion of reachability is in fact slightly weaker than MIR CFG reachability - see #31617). A
 | |
| //! standard example of the situation is:
 | |
| //!
 | |
| //! ```rust
 | |
| //!   fn example() {
 | |
| //!       let _a: char = { return; };
 | |
| //!   }
 | |
| //! ```
 | |
| //!
 | |
| //! Here the block (`{ return; }`) has the return type `char`, rather than `()`, but the MIR we
 | |
| //! naively generate still contains the `_a = ()` write in the unreachable block "after" the
 | |
| //! return.
 | |
| 
 | |
| use crate::MirPass;
 | |
| use rustc_data_structures::fx::{FxHashSet, FxIndexSet};
 | |
| use rustc_index::{Idx, IndexSlice, IndexVec};
 | |
| use rustc_middle::mir::coverage::*;
 | |
| use rustc_middle::mir::visit::{MutVisitor, MutatingUseContext, PlaceContext, Visitor};
 | |
| use rustc_middle::mir::*;
 | |
| use rustc_middle::ty::TyCtxt;
 | |
| use smallvec::SmallVec;
 | |
| 
 | |
| pub enum SimplifyCfg {
 | |
|     Initial,
 | |
|     PromoteConsts,
 | |
|     RemoveFalseEdges,
 | |
|     EarlyOpt,
 | |
|     ElaborateDrops,
 | |
|     Final,
 | |
|     MakeShim,
 | |
|     AfterUninhabitedEnumBranching,
 | |
| }
 | |
| 
 | |
| impl SimplifyCfg {
 | |
|     pub fn name(&self) -> &'static str {
 | |
|         match self {
 | |
|             SimplifyCfg::Initial => "SimplifyCfg-initial",
 | |
|             SimplifyCfg::PromoteConsts => "SimplifyCfg-promote-consts",
 | |
|             SimplifyCfg::RemoveFalseEdges => "SimplifyCfg-remove-false-edges",
 | |
|             SimplifyCfg::EarlyOpt => "SimplifyCfg-early-opt",
 | |
|             SimplifyCfg::ElaborateDrops => "SimplifyCfg-elaborate-drops",
 | |
|             SimplifyCfg::Final => "SimplifyCfg-final",
 | |
|             SimplifyCfg::MakeShim => "SimplifyCfg-make_shim",
 | |
|             SimplifyCfg::AfterUninhabitedEnumBranching => {
 | |
|                 "SimplifyCfg-after-uninhabited-enum-branching"
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| pub fn simplify_cfg<'tcx>(tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
 | |
|     CfgSimplifier::new(body).simplify();
 | |
|     remove_duplicate_unreachable_blocks(tcx, body);
 | |
|     remove_dead_blocks(tcx, body);
 | |
| 
 | |
|     // FIXME: Should probably be moved into some kind of pass manager
 | |
|     body.basic_blocks_mut().raw.shrink_to_fit();
 | |
| }
 | |
| 
 | |
| impl<'tcx> MirPass<'tcx> for SimplifyCfg {
 | |
|     fn name(&self) -> &'static str {
 | |
|         &self.name()
 | |
|     }
 | |
| 
 | |
|     fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
 | |
|         debug!("SimplifyCfg({:?}) - simplifying {:?}", self.name(), body.source);
 | |
|         simplify_cfg(tcx, body);
 | |
|     }
 | |
| }
 | |
| 
 | |
| pub struct CfgSimplifier<'a, 'tcx> {
 | |
|     basic_blocks: &'a mut IndexSlice<BasicBlock, BasicBlockData<'tcx>>,
 | |
|     pred_count: IndexVec<BasicBlock, u32>,
 | |
| }
 | |
| 
 | |
| impl<'a, 'tcx> CfgSimplifier<'a, 'tcx> {
 | |
|     pub fn new(body: &'a mut Body<'tcx>) -> Self {
 | |
|         let mut pred_count = IndexVec::from_elem(0u32, &body.basic_blocks);
 | |
| 
 | |
|         // we can't use mir.predecessors() here because that counts
 | |
|         // dead blocks, which we don't want to.
 | |
|         pred_count[START_BLOCK] = 1;
 | |
| 
 | |
|         for (_, data) in traversal::preorder(body) {
 | |
|             if let Some(ref term) = data.terminator {
 | |
|                 for tgt in term.successors() {
 | |
|                     pred_count[tgt] += 1;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         let basic_blocks = body.basic_blocks_mut();
 | |
| 
 | |
|         CfgSimplifier { basic_blocks, pred_count }
 | |
|     }
 | |
| 
 | |
|     pub fn simplify(mut self) {
 | |
|         self.strip_nops();
 | |
| 
 | |
|         // Vec of the blocks that should be merged. We store the indices here, instead of the
 | |
|         // statements itself to avoid moving the (relatively) large statements twice.
 | |
|         // We do not push the statements directly into the target block (`bb`) as that is slower
 | |
|         // due to additional reallocations
 | |
|         let mut merged_blocks = Vec::new();
 | |
|         loop {
 | |
|             let mut changed = false;
 | |
| 
 | |
|             for bb in self.basic_blocks.indices() {
 | |
|                 if self.pred_count[bb] == 0 {
 | |
|                     continue;
 | |
|                 }
 | |
| 
 | |
|                 debug!("simplifying {:?}", bb);
 | |
| 
 | |
|                 let mut terminator =
 | |
|                     self.basic_blocks[bb].terminator.take().expect("invalid terminator state");
 | |
| 
 | |
|                 for successor in terminator.successors_mut() {
 | |
|                     self.collapse_goto_chain(successor, &mut changed);
 | |
|                 }
 | |
| 
 | |
|                 let mut inner_changed = true;
 | |
|                 merged_blocks.clear();
 | |
|                 while inner_changed {
 | |
|                     inner_changed = false;
 | |
|                     inner_changed |= self.simplify_branch(&mut terminator);
 | |
|                     inner_changed |= self.merge_successor(&mut merged_blocks, &mut terminator);
 | |
|                     changed |= inner_changed;
 | |
|                 }
 | |
| 
 | |
|                 let statements_to_merge =
 | |
|                     merged_blocks.iter().map(|&i| self.basic_blocks[i].statements.len()).sum();
 | |
| 
 | |
|                 if statements_to_merge > 0 {
 | |
|                     let mut statements = std::mem::take(&mut self.basic_blocks[bb].statements);
 | |
|                     statements.reserve(statements_to_merge);
 | |
|                     for &from in &merged_blocks {
 | |
|                         statements.append(&mut self.basic_blocks[from].statements);
 | |
|                     }
 | |
|                     self.basic_blocks[bb].statements = statements;
 | |
|                 }
 | |
| 
 | |
|                 self.basic_blocks[bb].terminator = Some(terminator);
 | |
|             }
 | |
| 
 | |
|             if !changed {
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// This function will return `None` if
 | |
|     /// * the block has statements
 | |
|     /// * the block has a terminator other than `goto`
 | |
|     /// * the block has no terminator (meaning some other part of the current optimization stole it)
 | |
|     fn take_terminator_if_simple_goto(&mut self, bb: BasicBlock) -> Option<Terminator<'tcx>> {
 | |
|         match self.basic_blocks[bb] {
 | |
|             BasicBlockData {
 | |
|                 ref statements,
 | |
|                 terminator:
 | |
|                     ref mut terminator @ Some(Terminator { kind: TerminatorKind::Goto { .. }, .. }),
 | |
|                 ..
 | |
|             } if statements.is_empty() => terminator.take(),
 | |
|             // if `terminator` is None, this means we are in a loop. In that
 | |
|             // case, let all the loop collapse to its entry.
 | |
|             _ => None,
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Collapse a goto chain starting from `start`
 | |
|     fn collapse_goto_chain(&mut self, start: &mut BasicBlock, changed: &mut bool) {
 | |
|         // Using `SmallVec` here, because in some logs on libcore oli-obk saw many single-element
 | |
|         // goto chains. We should probably benchmark different sizes.
 | |
|         let mut terminators: SmallVec<[_; 1]> = Default::default();
 | |
|         let mut current = *start;
 | |
|         while let Some(terminator) = self.take_terminator_if_simple_goto(current) {
 | |
|             let Terminator { kind: TerminatorKind::Goto { target }, .. } = terminator else {
 | |
|                 unreachable!();
 | |
|             };
 | |
|             terminators.push((current, terminator));
 | |
|             current = target;
 | |
|         }
 | |
|         let last = current;
 | |
|         *start = last;
 | |
|         while let Some((current, mut terminator)) = terminators.pop() {
 | |
|             let Terminator { kind: TerminatorKind::Goto { ref mut target }, .. } = terminator else {
 | |
|                 unreachable!();
 | |
|             };
 | |
|             *changed |= *target != last;
 | |
|             *target = last;
 | |
|             debug!("collapsing goto chain from {:?} to {:?}", current, target);
 | |
| 
 | |
|             if self.pred_count[current] == 1 {
 | |
|                 // This is the last reference to current, so the pred-count to
 | |
|                 // to target is moved into the current block.
 | |
|                 self.pred_count[current] = 0;
 | |
|             } else {
 | |
|                 self.pred_count[*target] += 1;
 | |
|                 self.pred_count[current] -= 1;
 | |
|             }
 | |
|             self.basic_blocks[current].terminator = Some(terminator);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // merge a block with 1 `goto` predecessor to its parent
 | |
|     fn merge_successor(
 | |
|         &mut self,
 | |
|         merged_blocks: &mut Vec<BasicBlock>,
 | |
|         terminator: &mut Terminator<'tcx>,
 | |
|     ) -> bool {
 | |
|         let target = match terminator.kind {
 | |
|             TerminatorKind::Goto { target } if self.pred_count[target] == 1 => target,
 | |
|             _ => return false,
 | |
|         };
 | |
| 
 | |
|         debug!("merging block {:?} into {:?}", target, terminator);
 | |
|         *terminator = match self.basic_blocks[target].terminator.take() {
 | |
|             Some(terminator) => terminator,
 | |
|             None => {
 | |
|                 // unreachable loop - this should not be possible, as we
 | |
|                 // don't strand blocks, but handle it correctly.
 | |
|                 return false;
 | |
|             }
 | |
|         };
 | |
| 
 | |
|         merged_blocks.push(target);
 | |
|         self.pred_count[target] = 0;
 | |
| 
 | |
|         true
 | |
|     }
 | |
| 
 | |
|     // turn a branch with all successors identical to a goto
 | |
|     fn simplify_branch(&mut self, terminator: &mut Terminator<'tcx>) -> bool {
 | |
|         match terminator.kind {
 | |
|             TerminatorKind::SwitchInt { .. } => {}
 | |
|             _ => return false,
 | |
|         };
 | |
| 
 | |
|         let first_succ = {
 | |
|             if let Some(first_succ) = terminator.successors().next() {
 | |
|                 if terminator.successors().all(|s| s == first_succ) {
 | |
|                     let count = terminator.successors().count();
 | |
|                     self.pred_count[first_succ] -= (count - 1) as u32;
 | |
|                     first_succ
 | |
|                 } else {
 | |
|                     return false;
 | |
|                 }
 | |
|             } else {
 | |
|                 return false;
 | |
|             }
 | |
|         };
 | |
| 
 | |
|         debug!("simplifying branch {:?}", terminator);
 | |
|         terminator.kind = TerminatorKind::Goto { target: first_succ };
 | |
|         true
 | |
|     }
 | |
| 
 | |
|     fn strip_nops(&mut self) {
 | |
|         for blk in self.basic_blocks.iter_mut() {
 | |
|             blk.statements.retain(|stmt| !matches!(stmt.kind, StatementKind::Nop))
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| pub fn simplify_duplicate_switch_targets(terminator: &mut Terminator<'_>) {
 | |
|     if let TerminatorKind::SwitchInt { targets, .. } = &mut terminator.kind {
 | |
|         let otherwise = targets.otherwise();
 | |
|         if targets.iter().any(|t| t.1 == otherwise) {
 | |
|             *targets = SwitchTargets::new(
 | |
|                 targets.iter().filter(|t| t.1 != otherwise),
 | |
|                 targets.otherwise(),
 | |
|             );
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| pub fn remove_duplicate_unreachable_blocks<'tcx>(tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
 | |
|     struct OptApplier<'tcx> {
 | |
|         tcx: TyCtxt<'tcx>,
 | |
|         duplicates: FxIndexSet<BasicBlock>,
 | |
|     }
 | |
| 
 | |
|     impl<'tcx> MutVisitor<'tcx> for OptApplier<'tcx> {
 | |
|         fn tcx(&self) -> TyCtxt<'tcx> {
 | |
|             self.tcx
 | |
|         }
 | |
| 
 | |
|         fn visit_terminator(&mut self, terminator: &mut Terminator<'tcx>, location: Location) {
 | |
|             for target in terminator.successors_mut() {
 | |
|                 // We don't have to check whether `target` is a cleanup block, because have
 | |
|                 // entirely excluded cleanup blocks in building the set of duplicates.
 | |
|                 if self.duplicates.contains(target) {
 | |
|                     *target = self.duplicates[0];
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             simplify_duplicate_switch_targets(terminator);
 | |
| 
 | |
|             self.super_terminator(terminator, location);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     let unreachable_blocks = body
 | |
|         .basic_blocks
 | |
|         .iter_enumerated()
 | |
|         .filter(|(_, bb)| {
 | |
|             // CfgSimplifier::simplify leaves behind some unreachable basic blocks without a
 | |
|             // terminator. Those blocks will be deleted by remove_dead_blocks, but we run just
 | |
|             // before then so we need to handle missing terminators.
 | |
|             // We also need to prevent confusing cleanup and non-cleanup blocks. In practice we
 | |
|             // don't emit empty unreachable cleanup blocks, so this simple check suffices.
 | |
|             bb.terminator.is_some() && bb.is_empty_unreachable() && !bb.is_cleanup
 | |
|         })
 | |
|         .map(|(block, _)| block)
 | |
|         .collect::<FxIndexSet<_>>();
 | |
| 
 | |
|     if unreachable_blocks.len() > 1 {
 | |
|         OptApplier { tcx, duplicates: unreachable_blocks }.visit_body(body);
 | |
|     }
 | |
| }
 | |
| 
 | |
| pub fn remove_dead_blocks<'tcx>(tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
 | |
|     let reachable = traversal::reachable_as_bitset(body);
 | |
|     let num_blocks = body.basic_blocks.len();
 | |
|     if num_blocks == reachable.count() {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     let basic_blocks = body.basic_blocks.as_mut();
 | |
|     let source_scopes = &body.source_scopes;
 | |
|     let mut replacements: Vec<_> = (0..num_blocks).map(BasicBlock::new).collect();
 | |
|     let mut used_blocks = 0;
 | |
|     for alive_index in reachable.iter() {
 | |
|         let alive_index = alive_index.index();
 | |
|         replacements[alive_index] = BasicBlock::new(used_blocks);
 | |
|         if alive_index != used_blocks {
 | |
|             // Swap the next alive block data with the current available slot. Since
 | |
|             // alive_index is non-decreasing this is a valid operation.
 | |
|             basic_blocks.raw.swap(alive_index, used_blocks);
 | |
|         }
 | |
|         used_blocks += 1;
 | |
|     }
 | |
| 
 | |
|     if tcx.sess.instrument_coverage() {
 | |
|         save_unreachable_coverage(basic_blocks, source_scopes, used_blocks);
 | |
|     }
 | |
| 
 | |
|     basic_blocks.raw.truncate(used_blocks);
 | |
| 
 | |
|     for block in basic_blocks {
 | |
|         for target in block.terminator_mut().successors_mut() {
 | |
|             *target = replacements[target.index()];
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// Some MIR transforms can determine at compile time that a sequences of
 | |
| /// statements will never be executed, so they can be dropped from the MIR.
 | |
| /// For example, an `if` or `else` block that is guaranteed to never be executed
 | |
| /// because its condition can be evaluated at compile time, such as by const
 | |
| /// evaluation: `if false { ... }`.
 | |
| ///
 | |
| /// Those statements are bypassed by redirecting paths in the CFG around the
 | |
| /// `dead blocks`; but with `-C instrument-coverage`, the dead blocks usually
 | |
| /// include `Coverage` statements representing the Rust source code regions to
 | |
| /// be counted at runtime. Without these `Coverage` statements, the regions are
 | |
| /// lost, and the Rust source code will show no coverage information.
 | |
| ///
 | |
| /// What we want to show in a coverage report is the dead code with coverage
 | |
| /// counts of `0`. To do this, we need to save the code regions, by injecting
 | |
| /// `Unreachable` coverage statements. These are non-executable statements whose
 | |
| /// code regions are still recorded in the coverage map, representing regions
 | |
| /// with `0` executions.
 | |
| ///
 | |
| /// If there are no live `Counter` `Coverage` statements remaining, we remove
 | |
| /// `Coverage` statements along with the dead blocks. Since at least one
 | |
| /// counter per function is required by LLVM (and necessary, to add the
 | |
| /// `function_hash` to the counter's call to the LLVM intrinsic
 | |
| /// `instrprof.increment()`).
 | |
| ///
 | |
| /// The `generator::StateTransform` MIR pass and MIR inlining can create
 | |
| /// atypical conditions, where all live `Counter`s are dropped from the MIR.
 | |
| ///
 | |
| /// With MIR inlining we can have coverage counters belonging to different
 | |
| /// instances in a single body, so the strategy described above is applied to
 | |
| /// coverage counters from each instance individually.
 | |
| fn save_unreachable_coverage(
 | |
|     basic_blocks: &mut IndexSlice<BasicBlock, BasicBlockData<'_>>,
 | |
|     source_scopes: &IndexSlice<SourceScope, SourceScopeData<'_>>,
 | |
|     first_dead_block: usize,
 | |
| ) {
 | |
|     // Identify instances that still have some live coverage counters left.
 | |
|     let mut live = FxHashSet::default();
 | |
|     for basic_block in &basic_blocks.raw[0..first_dead_block] {
 | |
|         for statement in &basic_block.statements {
 | |
|             let StatementKind::Coverage(coverage) = &statement.kind else { continue };
 | |
|             let CoverageKind::Counter { .. } = coverage.kind else { continue };
 | |
|             let instance = statement.source_info.scope.inlined_instance(source_scopes);
 | |
|             live.insert(instance);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for block in &mut basic_blocks.raw[..first_dead_block] {
 | |
|         for statement in &mut block.statements {
 | |
|             let StatementKind::Coverage(_) = &statement.kind else { continue };
 | |
|             let instance = statement.source_info.scope.inlined_instance(source_scopes);
 | |
|             if !live.contains(&instance) {
 | |
|                 statement.make_nop();
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if live.is_empty() {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // Retain coverage for instances that still have some live counters left.
 | |
|     let mut retained_coverage = Vec::new();
 | |
|     for dead_block in &basic_blocks.raw[first_dead_block..] {
 | |
|         for statement in &dead_block.statements {
 | |
|             let StatementKind::Coverage(coverage) = &statement.kind else { continue };
 | |
|             let Some(code_region) = &coverage.code_region else { continue };
 | |
|             let instance = statement.source_info.scope.inlined_instance(source_scopes);
 | |
|             if live.contains(&instance) {
 | |
|                 retained_coverage.push((statement.source_info, code_region.clone()));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     let start_block = &mut basic_blocks[START_BLOCK];
 | |
|     start_block.statements.extend(retained_coverage.into_iter().map(
 | |
|         |(source_info, code_region)| Statement {
 | |
|             source_info,
 | |
|             kind: StatementKind::Coverage(Box::new(Coverage {
 | |
|                 kind: CoverageKind::Unreachable,
 | |
|                 code_region: Some(code_region),
 | |
|             })),
 | |
|         },
 | |
|     ));
 | |
| }
 | |
| 
 | |
| pub enum SimplifyLocals {
 | |
|     BeforeConstProp,
 | |
|     Final,
 | |
| }
 | |
| 
 | |
| impl<'tcx> MirPass<'tcx> for SimplifyLocals {
 | |
|     fn name(&self) -> &'static str {
 | |
|         match &self {
 | |
|             SimplifyLocals::BeforeConstProp => "SimplifyLocals-before-const-prop",
 | |
|             SimplifyLocals::Final => "SimplifyLocals-final",
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fn is_enabled(&self, sess: &rustc_session::Session) -> bool {
 | |
|         sess.mir_opt_level() > 0
 | |
|     }
 | |
| 
 | |
|     fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
 | |
|         trace!("running SimplifyLocals on {:?}", body.source);
 | |
|         simplify_locals(body, tcx);
 | |
|     }
 | |
| }
 | |
| 
 | |
| pub fn remove_unused_definitions<'tcx>(body: &mut Body<'tcx>) {
 | |
|     // First, we're going to get a count of *actual* uses for every `Local`.
 | |
|     let mut used_locals = UsedLocals::new(body);
 | |
| 
 | |
|     // Next, we're going to remove any `Local` with zero actual uses. When we remove those
 | |
|     // `Locals`, we're also going to subtract any uses of other `Locals` from the `used_locals`
 | |
|     // count. For example, if we removed `_2 = discriminant(_1)`, then we'll subtract one from
 | |
|     // `use_counts[_1]`. That in turn might make `_1` unused, so we loop until we hit a
 | |
|     // fixedpoint where there are no more unused locals.
 | |
|     remove_unused_definitions_helper(&mut used_locals, body);
 | |
| }
 | |
| 
 | |
| pub fn simplify_locals<'tcx>(body: &mut Body<'tcx>, tcx: TyCtxt<'tcx>) {
 | |
|     // First, we're going to get a count of *actual* uses for every `Local`.
 | |
|     let mut used_locals = UsedLocals::new(body);
 | |
| 
 | |
|     // Next, we're going to remove any `Local` with zero actual uses. When we remove those
 | |
|     // `Locals`, we're also going to subtract any uses of other `Locals` from the `used_locals`
 | |
|     // count. For example, if we removed `_2 = discriminant(_1)`, then we'll subtract one from
 | |
|     // `use_counts[_1]`. That in turn might make `_1` unused, so we loop until we hit a
 | |
|     // fixedpoint where there are no more unused locals.
 | |
|     remove_unused_definitions_helper(&mut used_locals, body);
 | |
| 
 | |
|     // Finally, we'll actually do the work of shrinking `body.local_decls` and remapping the `Local`s.
 | |
|     let map = make_local_map(&mut body.local_decls, &used_locals);
 | |
| 
 | |
|     // Only bother running the `LocalUpdater` if we actually found locals to remove.
 | |
|     if map.iter().any(Option::is_none) {
 | |
|         // Update references to all vars and tmps now
 | |
|         let mut updater = LocalUpdater { map, tcx };
 | |
|         updater.visit_body_preserves_cfg(body);
 | |
| 
 | |
|         body.local_decls.shrink_to_fit();
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// Construct the mapping while swapping out unused stuff out from the `vec`.
 | |
| fn make_local_map<V>(
 | |
|     local_decls: &mut IndexVec<Local, V>,
 | |
|     used_locals: &UsedLocals,
 | |
| ) -> IndexVec<Local, Option<Local>> {
 | |
|     let mut map: IndexVec<Local, Option<Local>> = IndexVec::from_elem(None, local_decls);
 | |
|     let mut used = Local::new(0);
 | |
| 
 | |
|     for alive_index in local_decls.indices() {
 | |
|         // `is_used` treats the `RETURN_PLACE` and arguments as used.
 | |
|         if !used_locals.is_used(alive_index) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         map[alive_index] = Some(used);
 | |
|         if alive_index != used {
 | |
|             local_decls.swap(alive_index, used);
 | |
|         }
 | |
|         used.increment_by(1);
 | |
|     }
 | |
|     local_decls.truncate(used.index());
 | |
|     map
 | |
| }
 | |
| 
 | |
| /// Keeps track of used & unused locals.
 | |
| struct UsedLocals {
 | |
|     increment: bool,
 | |
|     arg_count: u32,
 | |
|     use_count: IndexVec<Local, u32>,
 | |
| }
 | |
| 
 | |
| impl UsedLocals {
 | |
|     /// Determines which locals are used & unused in the given body.
 | |
|     fn new(body: &Body<'_>) -> Self {
 | |
|         let mut this = Self {
 | |
|             increment: true,
 | |
|             arg_count: body.arg_count.try_into().unwrap(),
 | |
|             use_count: IndexVec::from_elem(0, &body.local_decls),
 | |
|         };
 | |
|         this.visit_body(body);
 | |
|         this
 | |
|     }
 | |
| 
 | |
|     /// Checks if local is used.
 | |
|     ///
 | |
|     /// Return place and arguments are always considered used.
 | |
|     fn is_used(&self, local: Local) -> bool {
 | |
|         trace!("is_used({:?}): use_count: {:?}", local, self.use_count[local]);
 | |
|         local.as_u32() <= self.arg_count || self.use_count[local] != 0
 | |
|     }
 | |
| 
 | |
|     /// Updates the use counts to reflect the removal of given statement.
 | |
|     fn statement_removed(&mut self, statement: &Statement<'_>) {
 | |
|         self.increment = false;
 | |
| 
 | |
|         // The location of the statement is irrelevant.
 | |
|         let location = Location::START;
 | |
|         self.visit_statement(statement, location);
 | |
|     }
 | |
| 
 | |
|     /// Visits a left-hand side of an assignment.
 | |
|     fn visit_lhs(&mut self, place: &Place<'_>, location: Location) {
 | |
|         if place.is_indirect() {
 | |
|             // A use, not a definition.
 | |
|             self.visit_place(place, PlaceContext::MutatingUse(MutatingUseContext::Store), location);
 | |
|         } else {
 | |
|             // A definition. The base local itself is not visited, so this occurrence is not counted
 | |
|             // toward its use count. There might be other locals still, used in an indexing
 | |
|             // projection.
 | |
|             self.super_projection(
 | |
|                 place.as_ref(),
 | |
|                 PlaceContext::MutatingUse(MutatingUseContext::Projection),
 | |
|                 location,
 | |
|             );
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<'tcx> Visitor<'tcx> for UsedLocals {
 | |
|     fn visit_statement(&mut self, statement: &Statement<'tcx>, location: Location) {
 | |
|         match statement.kind {
 | |
|             StatementKind::Intrinsic(..)
 | |
|             | StatementKind::Retag(..)
 | |
|             | StatementKind::Coverage(..)
 | |
|             | StatementKind::FakeRead(..)
 | |
|             | StatementKind::PlaceMention(..)
 | |
|             | StatementKind::AscribeUserType(..) => {
 | |
|                 self.super_statement(statement, location);
 | |
|             }
 | |
| 
 | |
|             StatementKind::ConstEvalCounter | StatementKind::Nop => {}
 | |
| 
 | |
|             StatementKind::StorageLive(_local) | StatementKind::StorageDead(_local) => {}
 | |
| 
 | |
|             StatementKind::Assign(box (ref place, ref rvalue)) => {
 | |
|                 if rvalue.is_safe_to_remove() {
 | |
|                     self.visit_lhs(place, location);
 | |
|                     self.visit_rvalue(rvalue, location);
 | |
|                 } else {
 | |
|                     self.super_statement(statement, location);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             StatementKind::SetDiscriminant { ref place, variant_index: _ }
 | |
|             | StatementKind::Deinit(ref place) => {
 | |
|                 self.visit_lhs(place, location);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fn visit_local(&mut self, local: Local, _ctx: PlaceContext, _location: Location) {
 | |
|         if self.increment {
 | |
|             self.use_count[local] += 1;
 | |
|         } else {
 | |
|             assert_ne!(self.use_count[local], 0);
 | |
|             self.use_count[local] -= 1;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// Removes unused definitions. Updates the used locals to reflect the changes made.
 | |
| fn remove_unused_definitions_helper(used_locals: &mut UsedLocals, body: &mut Body<'_>) {
 | |
|     // The use counts are updated as we remove the statements. A local might become unused
 | |
|     // during the retain operation, leading to a temporary inconsistency (storage statements or
 | |
|     // definitions referencing the local might remain). For correctness it is crucial that this
 | |
|     // computation reaches a fixed point.
 | |
| 
 | |
|     let mut modified = true;
 | |
|     while modified {
 | |
|         modified = false;
 | |
| 
 | |
|         for data in body.basic_blocks.as_mut_preserves_cfg() {
 | |
|             // Remove unnecessary StorageLive and StorageDead annotations.
 | |
|             data.statements.retain(|statement| {
 | |
|                 let keep = match &statement.kind {
 | |
|                     StatementKind::StorageLive(local) | StatementKind::StorageDead(local) => {
 | |
|                         used_locals.is_used(*local)
 | |
|                     }
 | |
|                     StatementKind::Assign(box (place, _)) => used_locals.is_used(place.local),
 | |
| 
 | |
|                     StatementKind::SetDiscriminant { ref place, .. }
 | |
|                     | StatementKind::Deinit(ref place) => used_locals.is_used(place.local),
 | |
|                     StatementKind::Nop => false,
 | |
|                     _ => true,
 | |
|                 };
 | |
| 
 | |
|                 if !keep {
 | |
|                     trace!("removing statement {:?}", statement);
 | |
|                     modified = true;
 | |
|                     used_locals.statement_removed(statement);
 | |
|                 }
 | |
| 
 | |
|                 keep
 | |
|             });
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| struct LocalUpdater<'tcx> {
 | |
|     map: IndexVec<Local, Option<Local>>,
 | |
|     tcx: TyCtxt<'tcx>,
 | |
| }
 | |
| 
 | |
| impl<'tcx> MutVisitor<'tcx> for LocalUpdater<'tcx> {
 | |
|     fn tcx(&self) -> TyCtxt<'tcx> {
 | |
|         self.tcx
 | |
|     }
 | |
| 
 | |
|     fn visit_local(&mut self, l: &mut Local, _: PlaceContext, _: Location) {
 | |
|         *l = self.map[*l].unwrap();
 | |
|     }
 | |
| }
 | 
