mirror of
https://github.com/rust-lang/rust.git
synced 2025-12-02 19:17:55 +00:00
Since PR #69251, the `#[track_caller]` attribute has been supported on traits. However, it only has an effect on direct (monomorphized) method calls. Calling a `#[track_caller]` method on a trait object will *not* propagate caller location information - instead, `Location::caller()` will return the location of the method definition. This PR forwards caller location information when `#[track_caller]` is present on the method definition in the trait. This is possible because `#[track_caller]` in this position is 'inherited' by any impls of that trait, so all implementations will have the same ABI. This PR does *not* change the behavior in the case where `#[track_caller]` is present only on the impl of a trait. While all implementations of the method might have an explicit `#[track_caller]`, we cannot know this at codegen time, since other crates may have impls of the trait. Therefore, we keep the current behavior of not forwarding the caller location, ensuring that all implementations of the trait will have the correct ABI. See the modified test for examples of how this works
685 lines
29 KiB
Rust
685 lines
29 KiB
Rust
use crate::middle::codegen_fn_attrs::CodegenFnAttrFlags;
|
|
use crate::ty::print::{FmtPrinter, Printer};
|
|
use crate::ty::subst::{InternalSubsts, Subst};
|
|
use crate::ty::{self, SubstsRef, Ty, TyCtxt, TypeFoldable};
|
|
use rustc_errors::ErrorReported;
|
|
use rustc_hir::def::Namespace;
|
|
use rustc_hir::def_id::{CrateNum, DefId};
|
|
use rustc_hir::lang_items::LangItem;
|
|
use rustc_macros::HashStable;
|
|
|
|
use std::fmt;
|
|
|
|
/// A monomorphized `InstanceDef`.
|
|
///
|
|
/// Monomorphization happens on-the-fly and no monomorphized MIR is ever created. Instead, this type
|
|
/// simply couples a potentially generic `InstanceDef` with some substs, and codegen and const eval
|
|
/// will do all required substitution as they run.
|
|
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, TyEncodable, TyDecodable)]
|
|
#[derive(HashStable, Lift)]
|
|
pub struct Instance<'tcx> {
|
|
pub def: InstanceDef<'tcx>,
|
|
pub substs: SubstsRef<'tcx>,
|
|
}
|
|
|
|
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
|
|
#[derive(TyEncodable, TyDecodable, HashStable, TypeFoldable)]
|
|
pub enum InstanceDef<'tcx> {
|
|
/// A user-defined callable item.
|
|
///
|
|
/// This includes:
|
|
/// - `fn` items
|
|
/// - closures
|
|
/// - generators
|
|
Item(ty::WithOptConstParam<DefId>),
|
|
|
|
/// An intrinsic `fn` item (with `"rust-intrinsic"` or `"platform-intrinsic"` ABI).
|
|
///
|
|
/// Alongside `Virtual`, this is the only `InstanceDef` that does not have its own callable MIR.
|
|
/// Instead, codegen and const eval "magically" evaluate calls to intrinsics purely in the
|
|
/// caller.
|
|
Intrinsic(DefId),
|
|
|
|
/// `<T as Trait>::method` where `method` receives unsizeable `self: Self` (part of the
|
|
/// `unsized_locals` feature).
|
|
///
|
|
/// The generated shim will take `Self` via `*mut Self` - conceptually this is `&owned Self` -
|
|
/// and dereference the argument to call the original function.
|
|
VtableShim(DefId),
|
|
|
|
/// `fn()` pointer where the function itself cannot be turned into a pointer.
|
|
///
|
|
/// One example is `<dyn Trait as Trait>::fn`, where the shim contains
|
|
/// a virtual call, which codegen supports only via a direct call to the
|
|
/// `<dyn Trait as Trait>::fn` instance (an `InstanceDef::Virtual`).
|
|
///
|
|
/// Another example is functions annotated with `#[track_caller]`, which
|
|
/// must have their implicit caller location argument populated for a call.
|
|
/// Because this is a required part of the function's ABI but can't be tracked
|
|
/// as a property of the function pointer, we use a single "caller location"
|
|
/// (the definition of the function itself).
|
|
ReifyShim(DefId),
|
|
|
|
/// `<fn() as FnTrait>::call_*` (generated `FnTrait` implementation for `fn()` pointers).
|
|
///
|
|
/// `DefId` is `FnTrait::call_*`.
|
|
FnPtrShim(DefId, Ty<'tcx>),
|
|
|
|
/// Dynamic dispatch to `<dyn Trait as Trait>::fn`.
|
|
///
|
|
/// This `InstanceDef` does not have callable MIR. Calls to `Virtual` instances must be
|
|
/// codegen'd as virtual calls through the vtable.
|
|
///
|
|
/// If this is reified to a `fn` pointer, a `ReifyShim` is used (see `ReifyShim` above for more
|
|
/// details on that).
|
|
Virtual(DefId, usize),
|
|
|
|
/// `<[FnMut closure] as FnOnce>::call_once`.
|
|
///
|
|
/// The `DefId` is the ID of the `call_once` method in `FnOnce`.
|
|
ClosureOnceShim { call_once: DefId },
|
|
|
|
/// `core::ptr::drop_in_place::<T>`.
|
|
///
|
|
/// The `DefId` is for `core::ptr::drop_in_place`.
|
|
/// The `Option<Ty<'tcx>>` is either `Some(T)`, or `None` for empty drop
|
|
/// glue.
|
|
DropGlue(DefId, Option<Ty<'tcx>>),
|
|
|
|
/// Compiler-generated `<T as Clone>::clone` implementation.
|
|
///
|
|
/// For all types that automatically implement `Copy`, a trivial `Clone` impl is provided too.
|
|
/// Additionally, arrays, tuples, and closures get a `Clone` shim even if they aren't `Copy`.
|
|
///
|
|
/// The `DefId` is for `Clone::clone`, the `Ty` is the type `T` with the builtin `Clone` impl.
|
|
CloneShim(DefId, Ty<'tcx>),
|
|
}
|
|
|
|
impl<'tcx> Instance<'tcx> {
|
|
/// Returns the `Ty` corresponding to this `Instance`, with generic substitutions applied and
|
|
/// lifetimes erased, allowing a `ParamEnv` to be specified for use during normalization.
|
|
pub fn ty(&self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> Ty<'tcx> {
|
|
let ty = tcx.type_of(self.def.def_id());
|
|
tcx.subst_and_normalize_erasing_regions(self.substs, param_env, &ty)
|
|
}
|
|
|
|
/// Finds a crate that contains a monomorphization of this instance that
|
|
/// can be linked to from the local crate. A return value of `None` means
|
|
/// no upstream crate provides such an exported monomorphization.
|
|
///
|
|
/// This method already takes into account the global `-Zshare-generics`
|
|
/// setting, always returning `None` if `share-generics` is off.
|
|
pub fn upstream_monomorphization(&self, tcx: TyCtxt<'tcx>) -> Option<CrateNum> {
|
|
// If we are not in share generics mode, we don't link to upstream
|
|
// monomorphizations but always instantiate our own internal versions
|
|
// instead.
|
|
if !tcx.sess.opts.share_generics() {
|
|
return None;
|
|
}
|
|
|
|
// If this is an item that is defined in the local crate, no upstream
|
|
// crate can know about it/provide a monomorphization.
|
|
if self.def_id().is_local() {
|
|
return None;
|
|
}
|
|
|
|
// If this a non-generic instance, it cannot be a shared monomorphization.
|
|
self.substs.non_erasable_generics().next()?;
|
|
|
|
match self.def {
|
|
InstanceDef::Item(def) => tcx
|
|
.upstream_monomorphizations_for(def.did)
|
|
.and_then(|monos| monos.get(&self.substs).cloned()),
|
|
InstanceDef::DropGlue(_, Some(_)) => tcx.upstream_drop_glue_for(self.substs),
|
|
_ => None,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'tcx> InstanceDef<'tcx> {
|
|
#[inline]
|
|
pub fn def_id(self) -> DefId {
|
|
match self {
|
|
InstanceDef::Item(def) => def.did,
|
|
InstanceDef::VtableShim(def_id)
|
|
| InstanceDef::ReifyShim(def_id)
|
|
| InstanceDef::FnPtrShim(def_id, _)
|
|
| InstanceDef::Virtual(def_id, _)
|
|
| InstanceDef::Intrinsic(def_id)
|
|
| InstanceDef::ClosureOnceShim { call_once: def_id }
|
|
| InstanceDef::DropGlue(def_id, _)
|
|
| InstanceDef::CloneShim(def_id, _) => def_id,
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
pub fn with_opt_param(self) -> ty::WithOptConstParam<DefId> {
|
|
match self {
|
|
InstanceDef::Item(def) => def,
|
|
InstanceDef::VtableShim(def_id)
|
|
| InstanceDef::ReifyShim(def_id)
|
|
| InstanceDef::FnPtrShim(def_id, _)
|
|
| InstanceDef::Virtual(def_id, _)
|
|
| InstanceDef::Intrinsic(def_id)
|
|
| InstanceDef::ClosureOnceShim { call_once: def_id }
|
|
| InstanceDef::DropGlue(def_id, _)
|
|
| InstanceDef::CloneShim(def_id, _) => ty::WithOptConstParam::unknown(def_id),
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
pub fn attrs(&self, tcx: TyCtxt<'tcx>) -> ty::Attributes<'tcx> {
|
|
tcx.get_attrs(self.def_id())
|
|
}
|
|
|
|
/// Returns `true` if the LLVM version of this instance is unconditionally
|
|
/// marked with `inline`. This implies that a copy of this instance is
|
|
/// generated in every codegen unit.
|
|
/// Note that this is only a hint. See the documentation for
|
|
/// `generates_cgu_internal_copy` for more information.
|
|
pub fn requires_inline(&self, tcx: TyCtxt<'tcx>) -> bool {
|
|
use rustc_hir::definitions::DefPathData;
|
|
let def_id = match *self {
|
|
ty::InstanceDef::Item(def) => def.did,
|
|
ty::InstanceDef::DropGlue(_, Some(_)) => return false,
|
|
_ => return true,
|
|
};
|
|
matches!(
|
|
tcx.def_key(def_id).disambiguated_data.data,
|
|
DefPathData::Ctor | DefPathData::ClosureExpr
|
|
)
|
|
}
|
|
|
|
/// Returns `true` if the machine code for this instance is instantiated in
|
|
/// each codegen unit that references it.
|
|
/// Note that this is only a hint! The compiler can globally decide to *not*
|
|
/// do this in order to speed up compilation. CGU-internal copies are
|
|
/// only exist to enable inlining. If inlining is not performed (e.g. at
|
|
/// `-Copt-level=0`) then the time for generating them is wasted and it's
|
|
/// better to create a single copy with external linkage.
|
|
pub fn generates_cgu_internal_copy(&self, tcx: TyCtxt<'tcx>) -> bool {
|
|
if self.requires_inline(tcx) {
|
|
return true;
|
|
}
|
|
if let ty::InstanceDef::DropGlue(.., Some(ty)) = *self {
|
|
// Drop glue generally wants to be instantiated at every codegen
|
|
// unit, but without an #[inline] hint. We should make this
|
|
// available to normal end-users.
|
|
if tcx.sess.opts.incremental.is_none() {
|
|
return true;
|
|
}
|
|
// When compiling with incremental, we can generate a *lot* of
|
|
// codegen units. Including drop glue into all of them has a
|
|
// considerable compile time cost.
|
|
//
|
|
// We include enums without destructors to allow, say, optimizing
|
|
// drops of `Option::None` before LTO. We also respect the intent of
|
|
// `#[inline]` on `Drop::drop` implementations.
|
|
return ty.ty_adt_def().map_or(true, |adt_def| {
|
|
adt_def.destructor(tcx).map_or_else(
|
|
|| adt_def.is_enum(),
|
|
|dtor| tcx.codegen_fn_attrs(dtor.did).requests_inline(),
|
|
)
|
|
});
|
|
}
|
|
tcx.codegen_fn_attrs(self.def_id()).requests_inline()
|
|
}
|
|
|
|
pub fn requires_caller_location(&self, tcx: TyCtxt<'_>) -> bool {
|
|
match *self {
|
|
InstanceDef::Item(ty::WithOptConstParam { did: def_id, .. })
|
|
| InstanceDef::Virtual(def_id, _) => {
|
|
tcx.codegen_fn_attrs(def_id).flags.contains(CodegenFnAttrFlags::TRACK_CALLER)
|
|
}
|
|
_ => false,
|
|
}
|
|
}
|
|
|
|
/// Returns `true` when the MIR body associated with this instance should be monomorphized
|
|
/// by its users (e.g. codegen or miri) by substituting the `substs` from `Instance` (see
|
|
/// `Instance::substs_for_mir_body`).
|
|
///
|
|
/// Otherwise, returns `false` only for some kinds of shims where the construction of the MIR
|
|
/// body should perform necessary substitutions.
|
|
pub fn has_polymorphic_mir_body(&self) -> bool {
|
|
match *self {
|
|
InstanceDef::CloneShim(..)
|
|
| InstanceDef::FnPtrShim(..)
|
|
| InstanceDef::DropGlue(_, Some(_)) => false,
|
|
InstanceDef::ClosureOnceShim { .. }
|
|
| InstanceDef::DropGlue(..)
|
|
| InstanceDef::Item(_)
|
|
| InstanceDef::Intrinsic(..)
|
|
| InstanceDef::ReifyShim(..)
|
|
| InstanceDef::Virtual(..)
|
|
| InstanceDef::VtableShim(..) => true,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'tcx> fmt::Display for Instance<'tcx> {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
ty::tls::with(|tcx| {
|
|
let substs = tcx.lift(self.substs).expect("could not lift for printing");
|
|
FmtPrinter::new(tcx, &mut *f, Namespace::ValueNS)
|
|
.print_def_path(self.def_id(), substs)?;
|
|
Ok(())
|
|
})?;
|
|
|
|
match self.def {
|
|
InstanceDef::Item(_) => Ok(()),
|
|
InstanceDef::VtableShim(_) => write!(f, " - shim(vtable)"),
|
|
InstanceDef::ReifyShim(_) => write!(f, " - shim(reify)"),
|
|
InstanceDef::Intrinsic(_) => write!(f, " - intrinsic"),
|
|
InstanceDef::Virtual(_, num) => write!(f, " - virtual#{}", num),
|
|
InstanceDef::FnPtrShim(_, ty) => write!(f, " - shim({})", ty),
|
|
InstanceDef::ClosureOnceShim { .. } => write!(f, " - shim"),
|
|
InstanceDef::DropGlue(_, None) => write!(f, " - shim(None)"),
|
|
InstanceDef::DropGlue(_, Some(ty)) => write!(f, " - shim(Some({}))", ty),
|
|
InstanceDef::CloneShim(_, ty) => write!(f, " - shim({})", ty),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'tcx> Instance<'tcx> {
|
|
pub fn new(def_id: DefId, substs: SubstsRef<'tcx>) -> Instance<'tcx> {
|
|
assert!(
|
|
!substs.has_escaping_bound_vars(),
|
|
"substs of instance {:?} not normalized for codegen: {:?}",
|
|
def_id,
|
|
substs
|
|
);
|
|
Instance { def: InstanceDef::Item(ty::WithOptConstParam::unknown(def_id)), substs }
|
|
}
|
|
|
|
pub fn mono(tcx: TyCtxt<'tcx>, def_id: DefId) -> Instance<'tcx> {
|
|
let substs = InternalSubsts::for_item(tcx, def_id, |param, _| match param.kind {
|
|
ty::GenericParamDefKind::Lifetime => tcx.lifetimes.re_erased.into(),
|
|
ty::GenericParamDefKind::Type { .. } => {
|
|
bug!("Instance::mono: {:?} has type parameters", def_id)
|
|
}
|
|
ty::GenericParamDefKind::Const { .. } => {
|
|
bug!("Instance::mono: {:?} has const parameters", def_id)
|
|
}
|
|
});
|
|
|
|
Instance::new(def_id, substs)
|
|
}
|
|
|
|
#[inline]
|
|
pub fn def_id(&self) -> DefId {
|
|
self.def.def_id()
|
|
}
|
|
|
|
/// Resolves a `(def_id, substs)` pair to an (optional) instance -- most commonly,
|
|
/// this is used to find the precise code that will run for a trait method invocation,
|
|
/// if known.
|
|
///
|
|
/// Returns `Ok(None)` if we cannot resolve `Instance` to a specific instance.
|
|
/// For example, in a context like this,
|
|
///
|
|
/// ```
|
|
/// fn foo<T: Debug>(t: T) { ... }
|
|
/// ```
|
|
///
|
|
/// trying to resolve `Debug::fmt` applied to `T` will yield `Ok(None)`, because we do not
|
|
/// know what code ought to run. (Note that this setting is also affected by the
|
|
/// `RevealMode` in the parameter environment.)
|
|
///
|
|
/// Presuming that coherence and type-check have succeeded, if this method is invoked
|
|
/// in a monomorphic context (i.e., like during codegen), then it is guaranteed to return
|
|
/// `Ok(Some(instance))`.
|
|
///
|
|
/// Returns `Err(ErrorReported)` when the `Instance` resolution process
|
|
/// couldn't complete due to errors elsewhere - this is distinct
|
|
/// from `Ok(None)` to avoid misleading diagnostics when an error
|
|
/// has already been/will be emitted, for the original cause
|
|
pub fn resolve(
|
|
tcx: TyCtxt<'tcx>,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
def_id: DefId,
|
|
substs: SubstsRef<'tcx>,
|
|
) -> Result<Option<Instance<'tcx>>, ErrorReported> {
|
|
Instance::resolve_opt_const_arg(
|
|
tcx,
|
|
param_env,
|
|
ty::WithOptConstParam::unknown(def_id),
|
|
substs,
|
|
)
|
|
}
|
|
|
|
// This should be kept up to date with `resolve`.
|
|
#[instrument(level = "debug", skip(tcx))]
|
|
pub fn resolve_opt_const_arg(
|
|
tcx: TyCtxt<'tcx>,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
def: ty::WithOptConstParam<DefId>,
|
|
substs: SubstsRef<'tcx>,
|
|
) -> Result<Option<Instance<'tcx>>, ErrorReported> {
|
|
// All regions in the result of this query are erased, so it's
|
|
// fine to erase all of the input regions.
|
|
|
|
// HACK(eddyb) erase regions in `substs` first, so that `param_env.and(...)`
|
|
// below is more likely to ignore the bounds in scope (e.g. if the only
|
|
// generic parameters mentioned by `substs` were lifetime ones).
|
|
let substs = tcx.erase_regions(substs);
|
|
|
|
// FIXME(eddyb) should this always use `param_env.with_reveal_all()`?
|
|
if let Some((did, param_did)) = def.as_const_arg() {
|
|
tcx.resolve_instance_of_const_arg(
|
|
tcx.erase_regions(param_env.and((did, param_did, substs))),
|
|
)
|
|
} else {
|
|
tcx.resolve_instance(tcx.erase_regions(param_env.and((def.did, substs))))
|
|
}
|
|
}
|
|
|
|
pub fn resolve_for_fn_ptr(
|
|
tcx: TyCtxt<'tcx>,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
def_id: DefId,
|
|
substs: SubstsRef<'tcx>,
|
|
) -> Option<Instance<'tcx>> {
|
|
debug!("resolve(def_id={:?}, substs={:?})", def_id, substs);
|
|
Instance::resolve(tcx, param_env, def_id, substs).ok().flatten().map(|mut resolved| {
|
|
match resolved.def {
|
|
InstanceDef::Item(def) if resolved.def.requires_caller_location(tcx) => {
|
|
debug!(" => fn pointer created for function with #[track_caller]");
|
|
resolved.def = InstanceDef::ReifyShim(def.did);
|
|
}
|
|
InstanceDef::Virtual(def_id, _) => {
|
|
debug!(" => fn pointer created for virtual call");
|
|
resolved.def = InstanceDef::ReifyShim(def_id);
|
|
}
|
|
_ => {}
|
|
}
|
|
|
|
resolved
|
|
})
|
|
}
|
|
|
|
pub fn resolve_for_vtable(
|
|
tcx: TyCtxt<'tcx>,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
def_id: DefId,
|
|
substs: SubstsRef<'tcx>,
|
|
) -> Option<Instance<'tcx>> {
|
|
debug!("resolve_for_vtable(def_id={:?}, substs={:?})", def_id, substs);
|
|
let fn_sig = tcx.fn_sig(def_id);
|
|
let is_vtable_shim = !fn_sig.inputs().skip_binder().is_empty()
|
|
&& fn_sig.input(0).skip_binder().is_param(0)
|
|
&& tcx.generics_of(def_id).has_self;
|
|
if is_vtable_shim {
|
|
debug!(" => associated item with unsizeable self: Self");
|
|
Some(Instance { def: InstanceDef::VtableShim(def_id), substs })
|
|
} else {
|
|
Instance::resolve(tcx, param_env, def_id, substs).ok().flatten().map(|mut resolved| {
|
|
match resolved.def {
|
|
InstanceDef::Item(def) => {
|
|
// We need to generate a shim when we cannot guarantee that
|
|
// the caller of a trait object method will be aware of
|
|
// `#[track_caller]` - this ensures that the caller
|
|
// and callee ABI will always match.
|
|
//
|
|
// The shim is generated when all of these conditions are met:
|
|
//
|
|
// 1) The underlying method expects a caller location parameter
|
|
// in the ABI
|
|
if resolved.def.requires_caller_location(tcx)
|
|
// 2) The caller location parameter comes from having `#[track_caller]`
|
|
// on the implementation, and *not* on the trait method.
|
|
&& !tcx.should_inherit_track_caller(def.did)
|
|
// If the method implementation comes from the trait definition itself
|
|
// (e.g. `trait Foo { #[track_caller] my_fn() { /* impl */ } }`),
|
|
// then we don't need to generate a shim. This check is needed because
|
|
// `should_inherit_track_caller` returns `false` if our method
|
|
// implementation comes from the trait block, and not an impl block
|
|
&& !matches!(
|
|
tcx.opt_associated_item(def.did),
|
|
Some(ty::AssocItem {
|
|
container: ty::AssocItemContainer::TraitContainer(_),
|
|
..
|
|
})
|
|
)
|
|
{
|
|
debug!(
|
|
" => vtable fn pointer created for function with #[track_caller]"
|
|
);
|
|
resolved.def = InstanceDef::ReifyShim(def.did);
|
|
}
|
|
}
|
|
InstanceDef::Virtual(def_id, _) => {
|
|
debug!(" => vtable fn pointer created for virtual call");
|
|
resolved.def = InstanceDef::ReifyShim(def_id);
|
|
}
|
|
_ => {}
|
|
}
|
|
|
|
resolved
|
|
})
|
|
}
|
|
}
|
|
|
|
pub fn resolve_closure(
|
|
tcx: TyCtxt<'tcx>,
|
|
def_id: DefId,
|
|
substs: ty::SubstsRef<'tcx>,
|
|
requested_kind: ty::ClosureKind,
|
|
) -> Instance<'tcx> {
|
|
let actual_kind = substs.as_closure().kind();
|
|
|
|
match needs_fn_once_adapter_shim(actual_kind, requested_kind) {
|
|
Ok(true) => Instance::fn_once_adapter_instance(tcx, def_id, substs),
|
|
_ => Instance::new(def_id, substs),
|
|
}
|
|
}
|
|
|
|
pub fn resolve_drop_in_place(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> ty::Instance<'tcx> {
|
|
let def_id = tcx.require_lang_item(LangItem::DropInPlace, None);
|
|
let substs = tcx.intern_substs(&[ty.into()]);
|
|
Instance::resolve(tcx, ty::ParamEnv::reveal_all(), def_id, substs).unwrap().unwrap()
|
|
}
|
|
|
|
pub fn fn_once_adapter_instance(
|
|
tcx: TyCtxt<'tcx>,
|
|
closure_did: DefId,
|
|
substs: ty::SubstsRef<'tcx>,
|
|
) -> Instance<'tcx> {
|
|
debug!("fn_once_adapter_shim({:?}, {:?})", closure_did, substs);
|
|
let fn_once = tcx.require_lang_item(LangItem::FnOnce, None);
|
|
let call_once = tcx
|
|
.associated_items(fn_once)
|
|
.in_definition_order()
|
|
.find(|it| it.kind == ty::AssocKind::Fn)
|
|
.unwrap()
|
|
.def_id;
|
|
let def = ty::InstanceDef::ClosureOnceShim { call_once };
|
|
|
|
let self_ty = tcx.mk_closure(closure_did, substs);
|
|
|
|
let sig = substs.as_closure().sig();
|
|
let sig = tcx.normalize_erasing_late_bound_regions(ty::ParamEnv::reveal_all(), sig);
|
|
assert_eq!(sig.inputs().len(), 1);
|
|
let substs = tcx.mk_substs_trait(self_ty, &[sig.inputs()[0].into()]);
|
|
|
|
debug!("fn_once_adapter_shim: self_ty={:?} sig={:?}", self_ty, sig);
|
|
Instance { def, substs }
|
|
}
|
|
|
|
/// Depending on the kind of `InstanceDef`, the MIR body associated with an
|
|
/// instance is expressed in terms of the generic parameters of `self.def_id()`, and in other
|
|
/// cases the MIR body is expressed in terms of the types found in the substitution array.
|
|
/// In the former case, we want to substitute those generic types and replace them with the
|
|
/// values from the substs when monomorphizing the function body. But in the latter case, we
|
|
/// don't want to do that substitution, since it has already been done effectively.
|
|
///
|
|
/// This function returns `Some(substs)` in the former case and `None` otherwise -- i.e., if
|
|
/// this function returns `None`, then the MIR body does not require substitution during
|
|
/// codegen.
|
|
fn substs_for_mir_body(&self) -> Option<SubstsRef<'tcx>> {
|
|
if self.def.has_polymorphic_mir_body() { Some(self.substs) } else { None }
|
|
}
|
|
|
|
pub fn subst_mir<T>(&self, tcx: TyCtxt<'tcx>, v: &T) -> T
|
|
where
|
|
T: TypeFoldable<'tcx> + Copy,
|
|
{
|
|
if let Some(substs) = self.substs_for_mir_body() { v.subst(tcx, substs) } else { *v }
|
|
}
|
|
|
|
#[inline(always)]
|
|
pub fn subst_mir_and_normalize_erasing_regions<T>(
|
|
&self,
|
|
tcx: TyCtxt<'tcx>,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
v: T,
|
|
) -> T
|
|
where
|
|
T: TypeFoldable<'tcx> + Clone,
|
|
{
|
|
if let Some(substs) = self.substs_for_mir_body() {
|
|
tcx.subst_and_normalize_erasing_regions(substs, param_env, v)
|
|
} else {
|
|
tcx.normalize_erasing_regions(param_env, v)
|
|
}
|
|
}
|
|
|
|
/// Returns a new `Instance` where generic parameters in `instance.substs` are replaced by
|
|
/// identity parameters if they are determined to be unused in `instance.def`.
|
|
pub fn polymorphize(self, tcx: TyCtxt<'tcx>) -> Self {
|
|
debug!("polymorphize: running polymorphization analysis");
|
|
if !tcx.sess.opts.debugging_opts.polymorphize {
|
|
return self;
|
|
}
|
|
|
|
if let InstanceDef::Item(def) = self.def {
|
|
let polymorphized_substs = polymorphize(tcx, def.did, self.substs);
|
|
debug!("polymorphize: self={:?} polymorphized_substs={:?}", self, polymorphized_substs);
|
|
Self { def: self.def, substs: polymorphized_substs }
|
|
} else {
|
|
self
|
|
}
|
|
}
|
|
}
|
|
|
|
fn polymorphize<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
def_id: DefId,
|
|
substs: SubstsRef<'tcx>,
|
|
) -> SubstsRef<'tcx> {
|
|
debug!("polymorphize({:?}, {:?})", def_id, substs);
|
|
let unused = tcx.unused_generic_params(def_id);
|
|
debug!("polymorphize: unused={:?}", unused);
|
|
|
|
// If this is a closure or generator then we need to handle the case where another closure
|
|
// from the function is captured as an upvar and hasn't been polymorphized. In this case,
|
|
// the unpolymorphized upvar closure would result in a polymorphized closure producing
|
|
// multiple mono items (and eventually symbol clashes).
|
|
let upvars_ty = if tcx.is_closure(def_id) {
|
|
Some(substs.as_closure().tupled_upvars_ty())
|
|
} else if tcx.type_of(def_id).is_generator() {
|
|
Some(substs.as_generator().tupled_upvars_ty())
|
|
} else {
|
|
None
|
|
};
|
|
let has_upvars = upvars_ty.map_or(false, |ty| ty.tuple_fields().count() > 0);
|
|
debug!("polymorphize: upvars_ty={:?} has_upvars={:?}", upvars_ty, has_upvars);
|
|
|
|
struct PolymorphizationFolder<'tcx> {
|
|
tcx: TyCtxt<'tcx>,
|
|
}
|
|
|
|
impl ty::TypeFolder<'tcx> for PolymorphizationFolder<'tcx> {
|
|
fn tcx<'a>(&'a self) -> TyCtxt<'tcx> {
|
|
self.tcx
|
|
}
|
|
|
|
fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
|
|
debug!("fold_ty: ty={:?}", ty);
|
|
match ty.kind {
|
|
ty::Closure(def_id, substs) => {
|
|
let polymorphized_substs = polymorphize(self.tcx, def_id, substs);
|
|
if substs == polymorphized_substs {
|
|
ty
|
|
} else {
|
|
self.tcx.mk_closure(def_id, polymorphized_substs)
|
|
}
|
|
}
|
|
ty::Generator(def_id, substs, movability) => {
|
|
let polymorphized_substs = polymorphize(self.tcx, def_id, substs);
|
|
if substs == polymorphized_substs {
|
|
ty
|
|
} else {
|
|
self.tcx.mk_generator(def_id, polymorphized_substs, movability)
|
|
}
|
|
}
|
|
_ => ty.super_fold_with(self),
|
|
}
|
|
}
|
|
}
|
|
|
|
InternalSubsts::for_item(tcx, def_id, |param, _| {
|
|
let is_unused = unused.contains(param.index).unwrap_or(false);
|
|
debug!("polymorphize: param={:?} is_unused={:?}", param, is_unused);
|
|
match param.kind {
|
|
// Upvar case: If parameter is a type parameter..
|
|
ty::GenericParamDefKind::Type { .. } if
|
|
// ..and has upvars..
|
|
has_upvars &&
|
|
// ..and this param has the same type as the tupled upvars..
|
|
upvars_ty == Some(substs[param.index as usize].expect_ty()) => {
|
|
// ..then double-check that polymorphization marked it used..
|
|
debug_assert!(!is_unused);
|
|
// ..and polymorphize any closures/generators captured as upvars.
|
|
let upvars_ty = upvars_ty.unwrap();
|
|
let polymorphized_upvars_ty = upvars_ty.fold_with(
|
|
&mut PolymorphizationFolder { tcx });
|
|
debug!("polymorphize: polymorphized_upvars_ty={:?}", polymorphized_upvars_ty);
|
|
ty::GenericArg::from(polymorphized_upvars_ty)
|
|
},
|
|
|
|
// Simple case: If parameter is a const or type parameter..
|
|
ty::GenericParamDefKind::Const { .. } | ty::GenericParamDefKind::Type { .. } if
|
|
// ..and is within range and unused..
|
|
unused.contains(param.index).unwrap_or(false) =>
|
|
// ..then use the identity for this parameter.
|
|
tcx.mk_param_from_def(param),
|
|
|
|
// Otherwise, use the parameter as before.
|
|
_ => substs[param.index as usize],
|
|
}
|
|
})
|
|
}
|
|
|
|
fn needs_fn_once_adapter_shim(
|
|
actual_closure_kind: ty::ClosureKind,
|
|
trait_closure_kind: ty::ClosureKind,
|
|
) -> Result<bool, ()> {
|
|
match (actual_closure_kind, trait_closure_kind) {
|
|
(ty::ClosureKind::Fn, ty::ClosureKind::Fn)
|
|
| (ty::ClosureKind::FnMut, ty::ClosureKind::FnMut)
|
|
| (ty::ClosureKind::FnOnce, ty::ClosureKind::FnOnce) => {
|
|
// No adapter needed.
|
|
Ok(false)
|
|
}
|
|
(ty::ClosureKind::Fn, ty::ClosureKind::FnMut) => {
|
|
// The closure fn `llfn` is a `fn(&self, ...)`. We want a
|
|
// `fn(&mut self, ...)`. In fact, at codegen time, these are
|
|
// basically the same thing, so we can just return llfn.
|
|
Ok(false)
|
|
}
|
|
(ty::ClosureKind::Fn | ty::ClosureKind::FnMut, ty::ClosureKind::FnOnce) => {
|
|
// The closure fn `llfn` is a `fn(&self, ...)` or `fn(&mut
|
|
// self, ...)`. We want a `fn(self, ...)`. We can produce
|
|
// this by doing something like:
|
|
//
|
|
// fn call_once(self, ...) { call_mut(&self, ...) }
|
|
// fn call_once(mut self, ...) { call_mut(&mut self, ...) }
|
|
//
|
|
// These are both the same at codegen time.
|
|
Ok(true)
|
|
}
|
|
(ty::ClosureKind::FnMut | ty::ClosureKind::FnOnce, _) => Err(()),
|
|
}
|
|
}
|