mirror of
				https://github.com/rust-lang/rust.git
				synced 2025-10-31 04:57:19 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			2441 lines
		
	
	
		
			92 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			2441 lines
		
	
	
		
			92 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
| use crate::abi::{Abi, FnAbi, FnAbiLlvmExt, LlvmType, PassMode};
 | ||
| use crate::builder::Builder;
 | ||
| use crate::context::CodegenCx;
 | ||
| use crate::llvm;
 | ||
| use crate::type_::Type;
 | ||
| use crate::type_of::LayoutLlvmExt;
 | ||
| use crate::va_arg::emit_va_arg;
 | ||
| use crate::value::Value;
 | ||
| 
 | ||
| use rustc_codegen_ssa::base::{compare_simd_types, wants_msvc_seh, wants_wasm_eh};
 | ||
| use rustc_codegen_ssa::common::{IntPredicate, TypeKind};
 | ||
| use rustc_codegen_ssa::errors::{ExpectedPointerMutability, InvalidMonomorphization};
 | ||
| use rustc_codegen_ssa::mir::operand::{OperandRef, OperandValue};
 | ||
| use rustc_codegen_ssa::mir::place::PlaceRef;
 | ||
| use rustc_codegen_ssa::traits::*;
 | ||
| use rustc_hir as hir;
 | ||
| use rustc_middle::ty::layout::{FnAbiOf, HasTyCtxt, LayoutOf};
 | ||
| use rustc_middle::ty::{self, GenericArgsRef, Ty};
 | ||
| use rustc_middle::{bug, span_bug};
 | ||
| use rustc_span::{sym, Span, Symbol};
 | ||
| use rustc_target::abi::{self, Align, HasDataLayout, Primitive};
 | ||
| use rustc_target::spec::{HasTargetSpec, PanicStrategy};
 | ||
| 
 | ||
| use std::cmp::Ordering;
 | ||
| 
 | ||
| fn get_simple_intrinsic<'ll>(
 | ||
|     cx: &CodegenCx<'ll, '_>,
 | ||
|     name: Symbol,
 | ||
| ) -> Option<(&'ll Type, &'ll Value)> {
 | ||
|     let llvm_name = match name {
 | ||
|         sym::sqrtf16 => "llvm.sqrt.f16",
 | ||
|         sym::sqrtf32 => "llvm.sqrt.f32",
 | ||
|         sym::sqrtf64 => "llvm.sqrt.f64",
 | ||
|         sym::sqrtf128 => "llvm.sqrt.f128",
 | ||
| 
 | ||
|         sym::powif16 => "llvm.powi.f16",
 | ||
|         sym::powif32 => "llvm.powi.f32",
 | ||
|         sym::powif64 => "llvm.powi.f64",
 | ||
|         sym::powif128 => "llvm.powi.f128",
 | ||
| 
 | ||
|         sym::sinf16 => "llvm.sin.f16",
 | ||
|         sym::sinf32 => "llvm.sin.f32",
 | ||
|         sym::sinf64 => "llvm.sin.f64",
 | ||
|         sym::sinf128 => "llvm.sin.f128",
 | ||
| 
 | ||
|         sym::cosf16 => "llvm.cos.f16",
 | ||
|         sym::cosf32 => "llvm.cos.f32",
 | ||
|         sym::cosf64 => "llvm.cos.f64",
 | ||
|         sym::cosf128 => "llvm.cos.f128",
 | ||
| 
 | ||
|         sym::powf16 => "llvm.pow.f16",
 | ||
|         sym::powf32 => "llvm.pow.f32",
 | ||
|         sym::powf64 => "llvm.pow.f64",
 | ||
|         sym::powf128 => "llvm.pow.f128",
 | ||
| 
 | ||
|         sym::expf16 => "llvm.exp.f16",
 | ||
|         sym::expf32 => "llvm.exp.f32",
 | ||
|         sym::expf64 => "llvm.exp.f64",
 | ||
|         sym::expf128 => "llvm.exp.f128",
 | ||
| 
 | ||
|         sym::exp2f16 => "llvm.exp2.f16",
 | ||
|         sym::exp2f32 => "llvm.exp2.f32",
 | ||
|         sym::exp2f64 => "llvm.exp2.f64",
 | ||
|         sym::exp2f128 => "llvm.exp2.f128",
 | ||
| 
 | ||
|         sym::logf16 => "llvm.log.f16",
 | ||
|         sym::logf32 => "llvm.log.f32",
 | ||
|         sym::logf64 => "llvm.log.f64",
 | ||
|         sym::logf128 => "llvm.log.f128",
 | ||
| 
 | ||
|         sym::log10f16 => "llvm.log10.f16",
 | ||
|         sym::log10f32 => "llvm.log10.f32",
 | ||
|         sym::log10f64 => "llvm.log10.f64",
 | ||
|         sym::log10f128 => "llvm.log10.f128",
 | ||
| 
 | ||
|         sym::log2f16 => "llvm.log2.f16",
 | ||
|         sym::log2f32 => "llvm.log2.f32",
 | ||
|         sym::log2f64 => "llvm.log2.f64",
 | ||
|         sym::log2f128 => "llvm.log2.f128",
 | ||
| 
 | ||
|         sym::fmaf16 => "llvm.fma.f16",
 | ||
|         sym::fmaf32 => "llvm.fma.f32",
 | ||
|         sym::fmaf64 => "llvm.fma.f64",
 | ||
|         sym::fmaf128 => "llvm.fma.f128",
 | ||
| 
 | ||
|         sym::fabsf16 => "llvm.fabs.f16",
 | ||
|         sym::fabsf32 => "llvm.fabs.f32",
 | ||
|         sym::fabsf64 => "llvm.fabs.f64",
 | ||
|         sym::fabsf128 => "llvm.fabs.f128",
 | ||
| 
 | ||
|         sym::minnumf16 => "llvm.minnum.f16",
 | ||
|         sym::minnumf32 => "llvm.minnum.f32",
 | ||
|         sym::minnumf64 => "llvm.minnum.f64",
 | ||
|         sym::minnumf128 => "llvm.minnum.f128",
 | ||
| 
 | ||
|         sym::maxnumf16 => "llvm.maxnum.f16",
 | ||
|         sym::maxnumf32 => "llvm.maxnum.f32",
 | ||
|         sym::maxnumf64 => "llvm.maxnum.f64",
 | ||
|         sym::maxnumf128 => "llvm.maxnum.f128",
 | ||
| 
 | ||
|         sym::copysignf16 => "llvm.copysign.f16",
 | ||
|         sym::copysignf32 => "llvm.copysign.f32",
 | ||
|         sym::copysignf64 => "llvm.copysign.f64",
 | ||
|         sym::copysignf128 => "llvm.copysign.f128",
 | ||
| 
 | ||
|         sym::floorf16 => "llvm.floor.f16",
 | ||
|         sym::floorf32 => "llvm.floor.f32",
 | ||
|         sym::floorf64 => "llvm.floor.f64",
 | ||
|         sym::floorf128 => "llvm.floor.f128",
 | ||
| 
 | ||
|         sym::ceilf16 => "llvm.ceil.f16",
 | ||
|         sym::ceilf32 => "llvm.ceil.f32",
 | ||
|         sym::ceilf64 => "llvm.ceil.f64",
 | ||
|         sym::ceilf128 => "llvm.ceil.f128",
 | ||
| 
 | ||
|         sym::truncf16 => "llvm.trunc.f16",
 | ||
|         sym::truncf32 => "llvm.trunc.f32",
 | ||
|         sym::truncf64 => "llvm.trunc.f64",
 | ||
|         sym::truncf128 => "llvm.trunc.f128",
 | ||
| 
 | ||
|         sym::rintf16 => "llvm.rint.f16",
 | ||
|         sym::rintf32 => "llvm.rint.f32",
 | ||
|         sym::rintf64 => "llvm.rint.f64",
 | ||
|         sym::rintf128 => "llvm.rint.f128",
 | ||
| 
 | ||
|         sym::nearbyintf16 => "llvm.nearbyint.f16",
 | ||
|         sym::nearbyintf32 => "llvm.nearbyint.f32",
 | ||
|         sym::nearbyintf64 => "llvm.nearbyint.f64",
 | ||
|         sym::nearbyintf128 => "llvm.nearbyint.f128",
 | ||
| 
 | ||
|         sym::roundf16 => "llvm.round.f16",
 | ||
|         sym::roundf32 => "llvm.round.f32",
 | ||
|         sym::roundf64 => "llvm.round.f64",
 | ||
|         sym::roundf128 => "llvm.round.f128",
 | ||
| 
 | ||
|         sym::ptr_mask => "llvm.ptrmask",
 | ||
| 
 | ||
|         sym::roundevenf16 => "llvm.roundeven.f16",
 | ||
|         sym::roundevenf32 => "llvm.roundeven.f32",
 | ||
|         sym::roundevenf64 => "llvm.roundeven.f64",
 | ||
|         sym::roundevenf128 => "llvm.roundeven.f128",
 | ||
| 
 | ||
|         _ => return None,
 | ||
|     };
 | ||
|     Some(cx.get_intrinsic(llvm_name))
 | ||
| }
 | ||
| 
 | ||
| impl<'ll, 'tcx> IntrinsicCallMethods<'tcx> for Builder<'_, 'll, 'tcx> {
 | ||
|     fn codegen_intrinsic_call(
 | ||
|         &mut self,
 | ||
|         instance: ty::Instance<'tcx>,
 | ||
|         fn_abi: &FnAbi<'tcx, Ty<'tcx>>,
 | ||
|         args: &[OperandRef<'tcx, &'ll Value>],
 | ||
|         llresult: &'ll Value,
 | ||
|         span: Span,
 | ||
|     ) -> Result<(), ty::Instance<'tcx>> {
 | ||
|         let tcx = self.tcx;
 | ||
|         let callee_ty = instance.ty(tcx, ty::ParamEnv::reveal_all());
 | ||
| 
 | ||
|         let ty::FnDef(def_id, fn_args) = *callee_ty.kind() else {
 | ||
|             bug!("expected fn item type, found {}", callee_ty);
 | ||
|         };
 | ||
| 
 | ||
|         let sig = callee_ty.fn_sig(tcx);
 | ||
|         let sig = tcx.normalize_erasing_late_bound_regions(ty::ParamEnv::reveal_all(), sig);
 | ||
|         let arg_tys = sig.inputs();
 | ||
|         let ret_ty = sig.output();
 | ||
|         let name = tcx.item_name(def_id);
 | ||
| 
 | ||
|         let llret_ty = self.layout_of(ret_ty).llvm_type(self);
 | ||
|         let result = PlaceRef::new_sized(llresult, fn_abi.ret.layout);
 | ||
| 
 | ||
|         let simple = get_simple_intrinsic(self, name);
 | ||
|         let llval = match name {
 | ||
|             _ if simple.is_some() => {
 | ||
|                 let (simple_ty, simple_fn) = simple.unwrap();
 | ||
|                 self.call(
 | ||
|                     simple_ty,
 | ||
|                     None,
 | ||
|                     None,
 | ||
|                     simple_fn,
 | ||
|                     &args.iter().map(|arg| arg.immediate()).collect::<Vec<_>>(),
 | ||
|                     None,
 | ||
|                     Some(instance),
 | ||
|                 )
 | ||
|             }
 | ||
|             sym::likely => {
 | ||
|                 self.call_intrinsic("llvm.expect.i1", &[args[0].immediate(), self.const_bool(true)])
 | ||
|             }
 | ||
|             sym::is_val_statically_known => {
 | ||
|                 let intrinsic_type = args[0].layout.immediate_llvm_type(self.cx);
 | ||
|                 match self.type_kind(intrinsic_type) {
 | ||
|                     TypeKind::Pointer | TypeKind::Integer | TypeKind::Float | TypeKind::Double => {
 | ||
|                         self.call_intrinsic(
 | ||
|                             &format!("llvm.is.constant.{:?}", intrinsic_type),
 | ||
|                             &[args[0].immediate()],
 | ||
|                         )
 | ||
|                     }
 | ||
|                     _ => self.const_bool(false),
 | ||
|                 }
 | ||
|             }
 | ||
|             sym::unlikely => self
 | ||
|                 .call_intrinsic("llvm.expect.i1", &[args[0].immediate(), self.const_bool(false)]),
 | ||
|             sym::catch_unwind => {
 | ||
|                 catch_unwind_intrinsic(
 | ||
|                     self,
 | ||
|                     args[0].immediate(),
 | ||
|                     args[1].immediate(),
 | ||
|                     args[2].immediate(),
 | ||
|                     llresult,
 | ||
|                 );
 | ||
|                 return Ok(());
 | ||
|             }
 | ||
|             sym::breakpoint => self.call_intrinsic("llvm.debugtrap", &[]),
 | ||
|             sym::va_copy => {
 | ||
|                 self.call_intrinsic("llvm.va_copy", &[args[0].immediate(), args[1].immediate()])
 | ||
|             }
 | ||
|             sym::va_arg => {
 | ||
|                 match fn_abi.ret.layout.abi {
 | ||
|                     abi::Abi::Scalar(scalar) => {
 | ||
|                         match scalar.primitive() {
 | ||
|                             Primitive::Int(..) => {
 | ||
|                                 if self.cx().size_of(ret_ty).bytes() < 4 {
 | ||
|                                     // `va_arg` should not be called on an integer type
 | ||
|                                     // less than 4 bytes in length. If it is, promote
 | ||
|                                     // the integer to an `i32` and truncate the result
 | ||
|                                     // back to the smaller type.
 | ||
|                                     let promoted_result = emit_va_arg(self, args[0], tcx.types.i32);
 | ||
|                                     self.trunc(promoted_result, llret_ty)
 | ||
|                                 } else {
 | ||
|                                     emit_va_arg(self, args[0], ret_ty)
 | ||
|                                 }
 | ||
|                             }
 | ||
|                             Primitive::F16 => bug!("the va_arg intrinsic does not work with `f16`"),
 | ||
|                             Primitive::F64 | Primitive::Pointer(_) => {
 | ||
|                                 emit_va_arg(self, args[0], ret_ty)
 | ||
|                             }
 | ||
|                             // `va_arg` should never be used with the return type f32.
 | ||
|                             Primitive::F32 => bug!("the va_arg intrinsic does not work with `f32`"),
 | ||
|                             Primitive::F128 => {
 | ||
|                                 bug!("the va_arg intrinsic does not work with `f128`")
 | ||
|                             }
 | ||
|                         }
 | ||
|                     }
 | ||
|                     _ => bug!("the va_arg intrinsic does not work with non-scalar types"),
 | ||
|                 }
 | ||
|             }
 | ||
| 
 | ||
|             sym::volatile_load | sym::unaligned_volatile_load => {
 | ||
|                 let tp_ty = fn_args.type_at(0);
 | ||
|                 let ptr = args[0].immediate();
 | ||
|                 let load = if let PassMode::Cast { cast: ty, pad_i32: _ } = &fn_abi.ret.mode {
 | ||
|                     let llty = ty.llvm_type(self);
 | ||
|                     self.volatile_load(llty, ptr)
 | ||
|                 } else {
 | ||
|                     self.volatile_load(self.layout_of(tp_ty).llvm_type(self), ptr)
 | ||
|                 };
 | ||
|                 let align = if name == sym::unaligned_volatile_load {
 | ||
|                     1
 | ||
|                 } else {
 | ||
|                     self.align_of(tp_ty).bytes() as u32
 | ||
|                 };
 | ||
|                 unsafe {
 | ||
|                     llvm::LLVMSetAlignment(load, align);
 | ||
|                 }
 | ||
|                 if !result.layout.is_zst() {
 | ||
|                     self.store_to_place(load, result.val);
 | ||
|                 }
 | ||
|                 return Ok(());
 | ||
|             }
 | ||
|             sym::volatile_store => {
 | ||
|                 let dst = args[0].deref(self.cx());
 | ||
|                 args[1].val.volatile_store(self, dst);
 | ||
|                 return Ok(());
 | ||
|             }
 | ||
|             sym::unaligned_volatile_store => {
 | ||
|                 let dst = args[0].deref(self.cx());
 | ||
|                 args[1].val.unaligned_volatile_store(self, dst);
 | ||
|                 return Ok(());
 | ||
|             }
 | ||
|             sym::prefetch_read_data
 | ||
|             | sym::prefetch_write_data
 | ||
|             | sym::prefetch_read_instruction
 | ||
|             | sym::prefetch_write_instruction => {
 | ||
|                 let (rw, cache_type) = match name {
 | ||
|                     sym::prefetch_read_data => (0, 1),
 | ||
|                     sym::prefetch_write_data => (1, 1),
 | ||
|                     sym::prefetch_read_instruction => (0, 0),
 | ||
|                     sym::prefetch_write_instruction => (1, 0),
 | ||
|                     _ => bug!(),
 | ||
|                 };
 | ||
|                 self.call_intrinsic(
 | ||
|                     "llvm.prefetch",
 | ||
|                     &[
 | ||
|                         args[0].immediate(),
 | ||
|                         self.const_i32(rw),
 | ||
|                         args[1].immediate(),
 | ||
|                         self.const_i32(cache_type),
 | ||
|                     ],
 | ||
|                 )
 | ||
|             }
 | ||
|             sym::ctlz
 | ||
|             | sym::ctlz_nonzero
 | ||
|             | sym::cttz
 | ||
|             | sym::cttz_nonzero
 | ||
|             | sym::ctpop
 | ||
|             | sym::bswap
 | ||
|             | sym::bitreverse
 | ||
|             | sym::rotate_left
 | ||
|             | sym::rotate_right
 | ||
|             | sym::saturating_add
 | ||
|             | sym::saturating_sub => {
 | ||
|                 let ty = arg_tys[0];
 | ||
|                 match int_type_width_signed(ty, self) {
 | ||
|                     Some((width, signed)) => match name {
 | ||
|                         sym::ctlz | sym::cttz => {
 | ||
|                             let y = self.const_bool(false);
 | ||
|                             self.call_intrinsic(
 | ||
|                                 &format!("llvm.{name}.i{width}"),
 | ||
|                                 &[args[0].immediate(), y],
 | ||
|                             )
 | ||
|                         }
 | ||
|                         sym::ctlz_nonzero => {
 | ||
|                             let y = self.const_bool(true);
 | ||
|                             let llvm_name = &format!("llvm.ctlz.i{width}");
 | ||
|                             self.call_intrinsic(llvm_name, &[args[0].immediate(), y])
 | ||
|                         }
 | ||
|                         sym::cttz_nonzero => {
 | ||
|                             let y = self.const_bool(true);
 | ||
|                             let llvm_name = &format!("llvm.cttz.i{width}");
 | ||
|                             self.call_intrinsic(llvm_name, &[args[0].immediate(), y])
 | ||
|                         }
 | ||
|                         sym::ctpop => self.call_intrinsic(
 | ||
|                             &format!("llvm.ctpop.i{width}"),
 | ||
|                             &[args[0].immediate()],
 | ||
|                         ),
 | ||
|                         sym::bswap => {
 | ||
|                             if width == 8 {
 | ||
|                                 args[0].immediate() // byte swap a u8/i8 is just a no-op
 | ||
|                             } else {
 | ||
|                                 self.call_intrinsic(
 | ||
|                                     &format!("llvm.bswap.i{width}"),
 | ||
|                                     &[args[0].immediate()],
 | ||
|                                 )
 | ||
|                             }
 | ||
|                         }
 | ||
|                         sym::bitreverse => self.call_intrinsic(
 | ||
|                             &format!("llvm.bitreverse.i{width}"),
 | ||
|                             &[args[0].immediate()],
 | ||
|                         ),
 | ||
|                         sym::rotate_left | sym::rotate_right => {
 | ||
|                             let is_left = name == sym::rotate_left;
 | ||
|                             let val = args[0].immediate();
 | ||
|                             let raw_shift = args[1].immediate();
 | ||
|                             // rotate = funnel shift with first two args the same
 | ||
|                             let llvm_name =
 | ||
|                                 &format!("llvm.fsh{}.i{}", if is_left { 'l' } else { 'r' }, width);
 | ||
|                             self.call_intrinsic(llvm_name, &[val, val, raw_shift])
 | ||
|                         }
 | ||
|                         sym::saturating_add | sym::saturating_sub => {
 | ||
|                             let is_add = name == sym::saturating_add;
 | ||
|                             let lhs = args[0].immediate();
 | ||
|                             let rhs = args[1].immediate();
 | ||
|                             let llvm_name = &format!(
 | ||
|                                 "llvm.{}{}.sat.i{}",
 | ||
|                                 if signed { 's' } else { 'u' },
 | ||
|                                 if is_add { "add" } else { "sub" },
 | ||
|                                 width
 | ||
|                             );
 | ||
|                             self.call_intrinsic(llvm_name, &[lhs, rhs])
 | ||
|                         }
 | ||
|                         _ => bug!(),
 | ||
|                     },
 | ||
|                     None => {
 | ||
|                         tcx.dcx().emit_err(InvalidMonomorphization::BasicIntegerType {
 | ||
|                             span,
 | ||
|                             name,
 | ||
|                             ty,
 | ||
|                         });
 | ||
|                         return Ok(());
 | ||
|                     }
 | ||
|                 }
 | ||
|             }
 | ||
| 
 | ||
|             sym::raw_eq => {
 | ||
|                 use abi::Abi::*;
 | ||
|                 let tp_ty = fn_args.type_at(0);
 | ||
|                 let layout = self.layout_of(tp_ty).layout;
 | ||
|                 let use_integer_compare = match layout.abi() {
 | ||
|                     Scalar(_) | ScalarPair(_, _) => true,
 | ||
|                     Uninhabited | Vector { .. } => false,
 | ||
|                     Aggregate { .. } => {
 | ||
|                         // For rusty ABIs, small aggregates are actually passed
 | ||
|                         // as `RegKind::Integer` (see `FnAbi::adjust_for_abi`),
 | ||
|                         // so we re-use that same threshold here.
 | ||
|                         layout.size() <= self.data_layout().pointer_size * 2
 | ||
|                     }
 | ||
|                 };
 | ||
| 
 | ||
|                 let a = args[0].immediate();
 | ||
|                 let b = args[1].immediate();
 | ||
|                 if layout.size().bytes() == 0 {
 | ||
|                     self.const_bool(true)
 | ||
|                 } else if use_integer_compare {
 | ||
|                     let integer_ty = self.type_ix(layout.size().bits());
 | ||
|                     let a_val = self.load(integer_ty, a, layout.align().abi);
 | ||
|                     let b_val = self.load(integer_ty, b, layout.align().abi);
 | ||
|                     self.icmp(IntPredicate::IntEQ, a_val, b_val)
 | ||
|                 } else {
 | ||
|                     let n = self.const_usize(layout.size().bytes());
 | ||
|                     let cmp = self.call_intrinsic("memcmp", &[a, b, n]);
 | ||
|                     match self.cx.sess().target.arch.as_ref() {
 | ||
|                         "avr" | "msp430" => self.icmp(IntPredicate::IntEQ, cmp, self.const_i16(0)),
 | ||
|                         _ => self.icmp(IntPredicate::IntEQ, cmp, self.const_i32(0)),
 | ||
|                     }
 | ||
|                 }
 | ||
|             }
 | ||
| 
 | ||
|             sym::compare_bytes => {
 | ||
|                 // Here we assume that the `memcmp` provided by the target is a NOP for size 0.
 | ||
|                 let cmp = self.call_intrinsic(
 | ||
|                     "memcmp",
 | ||
|                     &[args[0].immediate(), args[1].immediate(), args[2].immediate()],
 | ||
|                 );
 | ||
|                 // Some targets have `memcmp` returning `i16`, but the intrinsic is always `i32`.
 | ||
|                 self.sext(cmp, self.type_ix(32))
 | ||
|             }
 | ||
| 
 | ||
|             sym::black_box => {
 | ||
|                 args[0].val.store(self, result);
 | ||
|                 let result_val_span = [result.val.llval];
 | ||
|                 // We need to "use" the argument in some way LLVM can't introspect, and on
 | ||
|                 // targets that support it we can typically leverage inline assembly to do
 | ||
|                 // this. LLVM's interpretation of inline assembly is that it's, well, a black
 | ||
|                 // box. This isn't the greatest implementation since it probably deoptimizes
 | ||
|                 // more than we want, but it's so far good enough.
 | ||
|                 //
 | ||
|                 // For zero-sized types, the location pointed to by the result may be
 | ||
|                 // uninitialized. Do not "use" the result in this case; instead just clobber
 | ||
|                 // the memory.
 | ||
|                 let (constraint, inputs): (&str, &[_]) = if result.layout.is_zst() {
 | ||
|                     ("~{memory}", &[])
 | ||
|                 } else {
 | ||
|                     ("r,~{memory}", &result_val_span)
 | ||
|                 };
 | ||
|                 crate::asm::inline_asm_call(
 | ||
|                     self,
 | ||
|                     "",
 | ||
|                     constraint,
 | ||
|                     inputs,
 | ||
|                     self.type_void(),
 | ||
|                     &[],
 | ||
|                     true,
 | ||
|                     false,
 | ||
|                     llvm::AsmDialect::Att,
 | ||
|                     &[span],
 | ||
|                     false,
 | ||
|                     None,
 | ||
|                     None,
 | ||
|                 )
 | ||
|                 .unwrap_or_else(|| bug!("failed to generate inline asm call for `black_box`"));
 | ||
| 
 | ||
|                 // We have copied the value to `result` already.
 | ||
|                 return Ok(());
 | ||
|             }
 | ||
| 
 | ||
|             _ if name.as_str().starts_with("simd_") => {
 | ||
|                 match generic_simd_intrinsic(
 | ||
|                     self, name, callee_ty, fn_args, args, ret_ty, llret_ty, span,
 | ||
|                 ) {
 | ||
|                     Ok(llval) => llval,
 | ||
|                     Err(()) => return Ok(()),
 | ||
|                 }
 | ||
|             }
 | ||
| 
 | ||
|             _ => {
 | ||
|                 debug!("unknown intrinsic '{}' -- falling back to default body", name);
 | ||
|                 // Call the fallback body instead of generating the intrinsic code
 | ||
|                 return Err(ty::Instance::new(instance.def_id(), instance.args));
 | ||
|             }
 | ||
|         };
 | ||
| 
 | ||
|         if !fn_abi.ret.is_ignore() {
 | ||
|             if let PassMode::Cast { .. } = &fn_abi.ret.mode {
 | ||
|                 self.store(llval, result.val.llval, result.val.align);
 | ||
|             } else {
 | ||
|                 OperandRef::from_immediate_or_packed_pair(self, llval, result.layout)
 | ||
|                     .val
 | ||
|                     .store(self, result);
 | ||
|             }
 | ||
|         }
 | ||
|         Ok(())
 | ||
|     }
 | ||
| 
 | ||
|     fn abort(&mut self) {
 | ||
|         self.call_intrinsic("llvm.trap", &[]);
 | ||
|     }
 | ||
| 
 | ||
|     fn assume(&mut self, val: Self::Value) {
 | ||
|         self.call_intrinsic("llvm.assume", &[val]);
 | ||
|     }
 | ||
| 
 | ||
|     fn expect(&mut self, cond: Self::Value, expected: bool) -> Self::Value {
 | ||
|         self.call_intrinsic("llvm.expect.i1", &[cond, self.const_bool(expected)])
 | ||
|     }
 | ||
| 
 | ||
|     fn type_test(&mut self, pointer: Self::Value, typeid: Self::Value) -> Self::Value {
 | ||
|         // Test the called operand using llvm.type.test intrinsic. The LowerTypeTests link-time
 | ||
|         // optimization pass replaces calls to this intrinsic with code to test type membership.
 | ||
|         self.call_intrinsic("llvm.type.test", &[pointer, typeid])
 | ||
|     }
 | ||
| 
 | ||
|     fn type_checked_load(
 | ||
|         &mut self,
 | ||
|         llvtable: &'ll Value,
 | ||
|         vtable_byte_offset: u64,
 | ||
|         typeid: &'ll Value,
 | ||
|     ) -> Self::Value {
 | ||
|         let vtable_byte_offset = self.const_i32(vtable_byte_offset as i32);
 | ||
|         let type_checked_load =
 | ||
|             self.call_intrinsic("llvm.type.checked.load", &[llvtable, vtable_byte_offset, typeid]);
 | ||
|         self.extract_value(type_checked_load, 0)
 | ||
|     }
 | ||
| 
 | ||
|     fn va_start(&mut self, va_list: &'ll Value) -> &'ll Value {
 | ||
|         self.call_intrinsic("llvm.va_start", &[va_list])
 | ||
|     }
 | ||
| 
 | ||
|     fn va_end(&mut self, va_list: &'ll Value) -> &'ll Value {
 | ||
|         self.call_intrinsic("llvm.va_end", &[va_list])
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| fn catch_unwind_intrinsic<'ll>(
 | ||
|     bx: &mut Builder<'_, 'll, '_>,
 | ||
|     try_func: &'ll Value,
 | ||
|     data: &'ll Value,
 | ||
|     catch_func: &'ll Value,
 | ||
|     dest: &'ll Value,
 | ||
| ) {
 | ||
|     if bx.sess().panic_strategy() == PanicStrategy::Abort {
 | ||
|         let try_func_ty = bx.type_func(&[bx.type_ptr()], bx.type_void());
 | ||
|         bx.call(try_func_ty, None, None, try_func, &[data], None, None);
 | ||
|         // Return 0 unconditionally from the intrinsic call;
 | ||
|         // we can never unwind.
 | ||
|         let ret_align = bx.tcx().data_layout.i32_align.abi;
 | ||
|         bx.store(bx.const_i32(0), dest, ret_align);
 | ||
|     } else if wants_msvc_seh(bx.sess()) {
 | ||
|         codegen_msvc_try(bx, try_func, data, catch_func, dest);
 | ||
|     } else if wants_wasm_eh(bx.sess()) {
 | ||
|         codegen_wasm_try(bx, try_func, data, catch_func, dest);
 | ||
|     } else if bx.sess().target.os == "emscripten" {
 | ||
|         codegen_emcc_try(bx, try_func, data, catch_func, dest);
 | ||
|     } else {
 | ||
|         codegen_gnu_try(bx, try_func, data, catch_func, dest);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| // MSVC's definition of the `rust_try` function.
 | ||
| //
 | ||
| // This implementation uses the new exception handling instructions in LLVM
 | ||
| // which have support in LLVM for SEH on MSVC targets. Although these
 | ||
| // instructions are meant to work for all targets, as of the time of this
 | ||
| // writing, however, LLVM does not recommend the usage of these new instructions
 | ||
| // as the old ones are still more optimized.
 | ||
| fn codegen_msvc_try<'ll>(
 | ||
|     bx: &mut Builder<'_, 'll, '_>,
 | ||
|     try_func: &'ll Value,
 | ||
|     data: &'ll Value,
 | ||
|     catch_func: &'ll Value,
 | ||
|     dest: &'ll Value,
 | ||
| ) {
 | ||
|     let (llty, llfn) = get_rust_try_fn(bx, &mut |mut bx| {
 | ||
|         bx.set_personality_fn(bx.eh_personality());
 | ||
| 
 | ||
|         let normal = bx.append_sibling_block("normal");
 | ||
|         let catchswitch = bx.append_sibling_block("catchswitch");
 | ||
|         let catchpad_rust = bx.append_sibling_block("catchpad_rust");
 | ||
|         let catchpad_foreign = bx.append_sibling_block("catchpad_foreign");
 | ||
|         let caught = bx.append_sibling_block("caught");
 | ||
| 
 | ||
|         let try_func = llvm::get_param(bx.llfn(), 0);
 | ||
|         let data = llvm::get_param(bx.llfn(), 1);
 | ||
|         let catch_func = llvm::get_param(bx.llfn(), 2);
 | ||
| 
 | ||
|         // We're generating an IR snippet that looks like:
 | ||
|         //
 | ||
|         //   declare i32 @rust_try(%try_func, %data, %catch_func) {
 | ||
|         //      %slot = alloca i8*
 | ||
|         //      invoke %try_func(%data) to label %normal unwind label %catchswitch
 | ||
|         //
 | ||
|         //   normal:
 | ||
|         //      ret i32 0
 | ||
|         //
 | ||
|         //   catchswitch:
 | ||
|         //      %cs = catchswitch within none [%catchpad_rust, %catchpad_foreign] unwind to caller
 | ||
|         //
 | ||
|         //   catchpad_rust:
 | ||
|         //      %tok = catchpad within %cs [%type_descriptor, 8, %slot]
 | ||
|         //      %ptr = load %slot
 | ||
|         //      call %catch_func(%data, %ptr)
 | ||
|         //      catchret from %tok to label %caught
 | ||
|         //
 | ||
|         //   catchpad_foreign:
 | ||
|         //      %tok = catchpad within %cs [null, 64, null]
 | ||
|         //      call %catch_func(%data, null)
 | ||
|         //      catchret from %tok to label %caught
 | ||
|         //
 | ||
|         //   caught:
 | ||
|         //      ret i32 1
 | ||
|         //   }
 | ||
|         //
 | ||
|         // This structure follows the basic usage of throw/try/catch in LLVM.
 | ||
|         // For example, compile this C++ snippet to see what LLVM generates:
 | ||
|         //
 | ||
|         //      struct rust_panic {
 | ||
|         //          rust_panic(const rust_panic&);
 | ||
|         //          ~rust_panic();
 | ||
|         //
 | ||
|         //          void* x[2];
 | ||
|         //      };
 | ||
|         //
 | ||
|         //      int __rust_try(
 | ||
|         //          void (*try_func)(void*),
 | ||
|         //          void *data,
 | ||
|         //          void (*catch_func)(void*, void*) noexcept
 | ||
|         //      ) {
 | ||
|         //          try {
 | ||
|         //              try_func(data);
 | ||
|         //              return 0;
 | ||
|         //          } catch(rust_panic& a) {
 | ||
|         //              catch_func(data, &a);
 | ||
|         //              return 1;
 | ||
|         //          } catch(...) {
 | ||
|         //              catch_func(data, NULL);
 | ||
|         //              return 1;
 | ||
|         //          }
 | ||
|         //      }
 | ||
|         //
 | ||
|         // More information can be found in libstd's seh.rs implementation.
 | ||
|         let ptr_align = bx.tcx().data_layout.pointer_align.abi;
 | ||
|         let slot = bx.alloca(bx.type_ptr(), ptr_align);
 | ||
|         let try_func_ty = bx.type_func(&[bx.type_ptr()], bx.type_void());
 | ||
|         bx.invoke(try_func_ty, None, None, try_func, &[data], normal, catchswitch, None, None);
 | ||
| 
 | ||
|         bx.switch_to_block(normal);
 | ||
|         bx.ret(bx.const_i32(0));
 | ||
| 
 | ||
|         bx.switch_to_block(catchswitch);
 | ||
|         let cs = bx.catch_switch(None, None, &[catchpad_rust, catchpad_foreign]);
 | ||
| 
 | ||
|         // We can't use the TypeDescriptor defined in libpanic_unwind because it
 | ||
|         // might be in another DLL and the SEH encoding only supports specifying
 | ||
|         // a TypeDescriptor from the current module.
 | ||
|         //
 | ||
|         // However this isn't an issue since the MSVC runtime uses string
 | ||
|         // comparison on the type name to match TypeDescriptors rather than
 | ||
|         // pointer equality.
 | ||
|         //
 | ||
|         // So instead we generate a new TypeDescriptor in each module that uses
 | ||
|         // `try` and let the linker merge duplicate definitions in the same
 | ||
|         // module.
 | ||
|         //
 | ||
|         // When modifying, make sure that the type_name string exactly matches
 | ||
|         // the one used in library/panic_unwind/src/seh.rs.
 | ||
|         let type_info_vtable = bx.declare_global("??_7type_info@@6B@", bx.type_ptr());
 | ||
|         let type_name = bx.const_bytes(b"rust_panic\0");
 | ||
|         let type_info =
 | ||
|             bx.const_struct(&[type_info_vtable, bx.const_null(bx.type_ptr()), type_name], false);
 | ||
|         let tydesc = bx.declare_global("__rust_panic_type_info", bx.val_ty(type_info));
 | ||
|         unsafe {
 | ||
|             llvm::LLVMRustSetLinkage(tydesc, llvm::Linkage::LinkOnceODRLinkage);
 | ||
|             llvm::SetUniqueComdat(bx.llmod, tydesc);
 | ||
|             llvm::LLVMSetInitializer(tydesc, type_info);
 | ||
|         }
 | ||
| 
 | ||
|         // The flag value of 8 indicates that we are catching the exception by
 | ||
|         // reference instead of by value. We can't use catch by value because
 | ||
|         // that requires copying the exception object, which we don't support
 | ||
|         // since our exception object effectively contains a Box.
 | ||
|         //
 | ||
|         // Source: MicrosoftCXXABI::getAddrOfCXXCatchHandlerType in clang
 | ||
|         bx.switch_to_block(catchpad_rust);
 | ||
|         let flags = bx.const_i32(8);
 | ||
|         let funclet = bx.catch_pad(cs, &[tydesc, flags, slot]);
 | ||
|         let ptr = bx.load(bx.type_ptr(), slot, ptr_align);
 | ||
|         let catch_ty = bx.type_func(&[bx.type_ptr(), bx.type_ptr()], bx.type_void());
 | ||
|         bx.call(catch_ty, None, None, catch_func, &[data, ptr], Some(&funclet), None);
 | ||
|         bx.catch_ret(&funclet, caught);
 | ||
| 
 | ||
|         // The flag value of 64 indicates a "catch-all".
 | ||
|         bx.switch_to_block(catchpad_foreign);
 | ||
|         let flags = bx.const_i32(64);
 | ||
|         let null = bx.const_null(bx.type_ptr());
 | ||
|         let funclet = bx.catch_pad(cs, &[null, flags, null]);
 | ||
|         bx.call(catch_ty, None, None, catch_func, &[data, null], Some(&funclet), None);
 | ||
|         bx.catch_ret(&funclet, caught);
 | ||
| 
 | ||
|         bx.switch_to_block(caught);
 | ||
|         bx.ret(bx.const_i32(1));
 | ||
|     });
 | ||
| 
 | ||
|     // Note that no invoke is used here because by definition this function
 | ||
|     // can't panic (that's what it's catching).
 | ||
|     let ret = bx.call(llty, None, None, llfn, &[try_func, data, catch_func], None, None);
 | ||
|     let i32_align = bx.tcx().data_layout.i32_align.abi;
 | ||
|     bx.store(ret, dest, i32_align);
 | ||
| }
 | ||
| 
 | ||
| // WASM's definition of the `rust_try` function.
 | ||
| fn codegen_wasm_try<'ll>(
 | ||
|     bx: &mut Builder<'_, 'll, '_>,
 | ||
|     try_func: &'ll Value,
 | ||
|     data: &'ll Value,
 | ||
|     catch_func: &'ll Value,
 | ||
|     dest: &'ll Value,
 | ||
| ) {
 | ||
|     let (llty, llfn) = get_rust_try_fn(bx, &mut |mut bx| {
 | ||
|         bx.set_personality_fn(bx.eh_personality());
 | ||
| 
 | ||
|         let normal = bx.append_sibling_block("normal");
 | ||
|         let catchswitch = bx.append_sibling_block("catchswitch");
 | ||
|         let catchpad = bx.append_sibling_block("catchpad");
 | ||
|         let caught = bx.append_sibling_block("caught");
 | ||
| 
 | ||
|         let try_func = llvm::get_param(bx.llfn(), 0);
 | ||
|         let data = llvm::get_param(bx.llfn(), 1);
 | ||
|         let catch_func = llvm::get_param(bx.llfn(), 2);
 | ||
| 
 | ||
|         // We're generating an IR snippet that looks like:
 | ||
|         //
 | ||
|         //   declare i32 @rust_try(%try_func, %data, %catch_func) {
 | ||
|         //      %slot = alloca i8*
 | ||
|         //      invoke %try_func(%data) to label %normal unwind label %catchswitch
 | ||
|         //
 | ||
|         //   normal:
 | ||
|         //      ret i32 0
 | ||
|         //
 | ||
|         //   catchswitch:
 | ||
|         //      %cs = catchswitch within none [%catchpad] unwind to caller
 | ||
|         //
 | ||
|         //   catchpad:
 | ||
|         //      %tok = catchpad within %cs [null]
 | ||
|         //      %ptr = call @llvm.wasm.get.exception(token %tok)
 | ||
|         //      %sel = call @llvm.wasm.get.ehselector(token %tok)
 | ||
|         //      call %catch_func(%data, %ptr)
 | ||
|         //      catchret from %tok to label %caught
 | ||
|         //
 | ||
|         //   caught:
 | ||
|         //      ret i32 1
 | ||
|         //   }
 | ||
|         //
 | ||
|         let try_func_ty = bx.type_func(&[bx.type_ptr()], bx.type_void());
 | ||
|         bx.invoke(try_func_ty, None, None, try_func, &[data], normal, catchswitch, None, None);
 | ||
| 
 | ||
|         bx.switch_to_block(normal);
 | ||
|         bx.ret(bx.const_i32(0));
 | ||
| 
 | ||
|         bx.switch_to_block(catchswitch);
 | ||
|         let cs = bx.catch_switch(None, None, &[catchpad]);
 | ||
| 
 | ||
|         bx.switch_to_block(catchpad);
 | ||
|         let null = bx.const_null(bx.type_ptr());
 | ||
|         let funclet = bx.catch_pad(cs, &[null]);
 | ||
| 
 | ||
|         let ptr = bx.call_intrinsic("llvm.wasm.get.exception", &[funclet.cleanuppad()]);
 | ||
|         let _sel = bx.call_intrinsic("llvm.wasm.get.ehselector", &[funclet.cleanuppad()]);
 | ||
| 
 | ||
|         let catch_ty = bx.type_func(&[bx.type_ptr(), bx.type_ptr()], bx.type_void());
 | ||
|         bx.call(catch_ty, None, None, catch_func, &[data, ptr], Some(&funclet), None);
 | ||
|         bx.catch_ret(&funclet, caught);
 | ||
| 
 | ||
|         bx.switch_to_block(caught);
 | ||
|         bx.ret(bx.const_i32(1));
 | ||
|     });
 | ||
| 
 | ||
|     // Note that no invoke is used here because by definition this function
 | ||
|     // can't panic (that's what it's catching).
 | ||
|     let ret = bx.call(llty, None, None, llfn, &[try_func, data, catch_func], None, None);
 | ||
|     let i32_align = bx.tcx().data_layout.i32_align.abi;
 | ||
|     bx.store(ret, dest, i32_align);
 | ||
| }
 | ||
| 
 | ||
| // Definition of the standard `try` function for Rust using the GNU-like model
 | ||
| // of exceptions (e.g., the normal semantics of LLVM's `landingpad` and `invoke`
 | ||
| // instructions).
 | ||
| //
 | ||
| // This codegen is a little surprising because we always call a shim
 | ||
| // function instead of inlining the call to `invoke` manually here. This is done
 | ||
| // because in LLVM we're only allowed to have one personality per function
 | ||
| // definition. The call to the `try` intrinsic is being inlined into the
 | ||
| // function calling it, and that function may already have other personality
 | ||
| // functions in play. By calling a shim we're guaranteed that our shim will have
 | ||
| // the right personality function.
 | ||
| fn codegen_gnu_try<'ll>(
 | ||
|     bx: &mut Builder<'_, 'll, '_>,
 | ||
|     try_func: &'ll Value,
 | ||
|     data: &'ll Value,
 | ||
|     catch_func: &'ll Value,
 | ||
|     dest: &'ll Value,
 | ||
| ) {
 | ||
|     let (llty, llfn) = get_rust_try_fn(bx, &mut |mut bx| {
 | ||
|         // Codegens the shims described above:
 | ||
|         //
 | ||
|         //   bx:
 | ||
|         //      invoke %try_func(%data) normal %normal unwind %catch
 | ||
|         //
 | ||
|         //   normal:
 | ||
|         //      ret 0
 | ||
|         //
 | ||
|         //   catch:
 | ||
|         //      (%ptr, _) = landingpad
 | ||
|         //      call %catch_func(%data, %ptr)
 | ||
|         //      ret 1
 | ||
|         let then = bx.append_sibling_block("then");
 | ||
|         let catch = bx.append_sibling_block("catch");
 | ||
| 
 | ||
|         let try_func = llvm::get_param(bx.llfn(), 0);
 | ||
|         let data = llvm::get_param(bx.llfn(), 1);
 | ||
|         let catch_func = llvm::get_param(bx.llfn(), 2);
 | ||
|         let try_func_ty = bx.type_func(&[bx.type_ptr()], bx.type_void());
 | ||
|         bx.invoke(try_func_ty, None, None, try_func, &[data], then, catch, None, None);
 | ||
| 
 | ||
|         bx.switch_to_block(then);
 | ||
|         bx.ret(bx.const_i32(0));
 | ||
| 
 | ||
|         // Type indicator for the exception being thrown.
 | ||
|         //
 | ||
|         // The first value in this tuple is a pointer to the exception object
 | ||
|         // being thrown. The second value is a "selector" indicating which of
 | ||
|         // the landing pad clauses the exception's type had been matched to.
 | ||
|         // rust_try ignores the selector.
 | ||
|         bx.switch_to_block(catch);
 | ||
|         let lpad_ty = bx.type_struct(&[bx.type_ptr(), bx.type_i32()], false);
 | ||
|         let vals = bx.landing_pad(lpad_ty, bx.eh_personality(), 1);
 | ||
|         let tydesc = bx.const_null(bx.type_ptr());
 | ||
|         bx.add_clause(vals, tydesc);
 | ||
|         let ptr = bx.extract_value(vals, 0);
 | ||
|         let catch_ty = bx.type_func(&[bx.type_ptr(), bx.type_ptr()], bx.type_void());
 | ||
|         bx.call(catch_ty, None, None, catch_func, &[data, ptr], None, None);
 | ||
|         bx.ret(bx.const_i32(1));
 | ||
|     });
 | ||
| 
 | ||
|     // Note that no invoke is used here because by definition this function
 | ||
|     // can't panic (that's what it's catching).
 | ||
|     let ret = bx.call(llty, None, None, llfn, &[try_func, data, catch_func], None, None);
 | ||
|     let i32_align = bx.tcx().data_layout.i32_align.abi;
 | ||
|     bx.store(ret, dest, i32_align);
 | ||
| }
 | ||
| 
 | ||
| // Variant of codegen_gnu_try used for emscripten where Rust panics are
 | ||
| // implemented using C++ exceptions. Here we use exceptions of a specific type
 | ||
| // (`struct rust_panic`) to represent Rust panics.
 | ||
| fn codegen_emcc_try<'ll>(
 | ||
|     bx: &mut Builder<'_, 'll, '_>,
 | ||
|     try_func: &'ll Value,
 | ||
|     data: &'ll Value,
 | ||
|     catch_func: &'ll Value,
 | ||
|     dest: &'ll Value,
 | ||
| ) {
 | ||
|     let (llty, llfn) = get_rust_try_fn(bx, &mut |mut bx| {
 | ||
|         // Codegens the shims described above:
 | ||
|         //
 | ||
|         //   bx:
 | ||
|         //      invoke %try_func(%data) normal %normal unwind %catch
 | ||
|         //
 | ||
|         //   normal:
 | ||
|         //      ret 0
 | ||
|         //
 | ||
|         //   catch:
 | ||
|         //      (%ptr, %selector) = landingpad
 | ||
|         //      %rust_typeid = @llvm.eh.typeid.for(@_ZTI10rust_panic)
 | ||
|         //      %is_rust_panic = %selector == %rust_typeid
 | ||
|         //      %catch_data = alloca { i8*, i8 }
 | ||
|         //      %catch_data[0] = %ptr
 | ||
|         //      %catch_data[1] = %is_rust_panic
 | ||
|         //      call %catch_func(%data, %catch_data)
 | ||
|         //      ret 1
 | ||
|         let then = bx.append_sibling_block("then");
 | ||
|         let catch = bx.append_sibling_block("catch");
 | ||
| 
 | ||
|         let try_func = llvm::get_param(bx.llfn(), 0);
 | ||
|         let data = llvm::get_param(bx.llfn(), 1);
 | ||
|         let catch_func = llvm::get_param(bx.llfn(), 2);
 | ||
|         let try_func_ty = bx.type_func(&[bx.type_ptr()], bx.type_void());
 | ||
|         bx.invoke(try_func_ty, None, None, try_func, &[data], then, catch, None, None);
 | ||
| 
 | ||
|         bx.switch_to_block(then);
 | ||
|         bx.ret(bx.const_i32(0));
 | ||
| 
 | ||
|         // Type indicator for the exception being thrown.
 | ||
|         //
 | ||
|         // The first value in this tuple is a pointer to the exception object
 | ||
|         // being thrown. The second value is a "selector" indicating which of
 | ||
|         // the landing pad clauses the exception's type had been matched to.
 | ||
|         bx.switch_to_block(catch);
 | ||
|         let tydesc = bx.eh_catch_typeinfo();
 | ||
|         let lpad_ty = bx.type_struct(&[bx.type_ptr(), bx.type_i32()], false);
 | ||
|         let vals = bx.landing_pad(lpad_ty, bx.eh_personality(), 2);
 | ||
|         bx.add_clause(vals, tydesc);
 | ||
|         bx.add_clause(vals, bx.const_null(bx.type_ptr()));
 | ||
|         let ptr = bx.extract_value(vals, 0);
 | ||
|         let selector = bx.extract_value(vals, 1);
 | ||
| 
 | ||
|         // Check if the typeid we got is the one for a Rust panic.
 | ||
|         let rust_typeid = bx.call_intrinsic("llvm.eh.typeid.for", &[tydesc]);
 | ||
|         let is_rust_panic = bx.icmp(IntPredicate::IntEQ, selector, rust_typeid);
 | ||
|         let is_rust_panic = bx.zext(is_rust_panic, bx.type_bool());
 | ||
| 
 | ||
|         // We need to pass two values to catch_func (ptr and is_rust_panic), so
 | ||
|         // create an alloca and pass a pointer to that.
 | ||
|         let ptr_align = bx.tcx().data_layout.pointer_align.abi;
 | ||
|         let i8_align = bx.tcx().data_layout.i8_align.abi;
 | ||
|         let catch_data_type = bx.type_struct(&[bx.type_ptr(), bx.type_bool()], false);
 | ||
|         let catch_data = bx.alloca(catch_data_type, ptr_align);
 | ||
|         let catch_data_0 =
 | ||
|             bx.inbounds_gep(catch_data_type, catch_data, &[bx.const_usize(0), bx.const_usize(0)]);
 | ||
|         bx.store(ptr, catch_data_0, ptr_align);
 | ||
|         let catch_data_1 =
 | ||
|             bx.inbounds_gep(catch_data_type, catch_data, &[bx.const_usize(0), bx.const_usize(1)]);
 | ||
|         bx.store(is_rust_panic, catch_data_1, i8_align);
 | ||
| 
 | ||
|         let catch_ty = bx.type_func(&[bx.type_ptr(), bx.type_ptr()], bx.type_void());
 | ||
|         bx.call(catch_ty, None, None, catch_func, &[data, catch_data], None, None);
 | ||
|         bx.ret(bx.const_i32(1));
 | ||
|     });
 | ||
| 
 | ||
|     // Note that no invoke is used here because by definition this function
 | ||
|     // can't panic (that's what it's catching).
 | ||
|     let ret = bx.call(llty, None, None, llfn, &[try_func, data, catch_func], None, None);
 | ||
|     let i32_align = bx.tcx().data_layout.i32_align.abi;
 | ||
|     bx.store(ret, dest, i32_align);
 | ||
| }
 | ||
| 
 | ||
| // Helper function to give a Block to a closure to codegen a shim function.
 | ||
| // This is currently primarily used for the `try` intrinsic functions above.
 | ||
| fn gen_fn<'ll, 'tcx>(
 | ||
|     cx: &CodegenCx<'ll, 'tcx>,
 | ||
|     name: &str,
 | ||
|     rust_fn_sig: ty::PolyFnSig<'tcx>,
 | ||
|     codegen: &mut dyn FnMut(Builder<'_, 'll, 'tcx>),
 | ||
| ) -> (&'ll Type, &'ll Value) {
 | ||
|     let fn_abi = cx.fn_abi_of_fn_ptr(rust_fn_sig, ty::List::empty());
 | ||
|     let llty = fn_abi.llvm_type(cx);
 | ||
|     let llfn = cx.declare_fn(name, fn_abi, None);
 | ||
|     cx.set_frame_pointer_type(llfn);
 | ||
|     cx.apply_target_cpu_attr(llfn);
 | ||
|     // FIXME(eddyb) find a nicer way to do this.
 | ||
|     unsafe { llvm::LLVMRustSetLinkage(llfn, llvm::Linkage::InternalLinkage) };
 | ||
|     let llbb = Builder::append_block(cx, llfn, "entry-block");
 | ||
|     let bx = Builder::build(cx, llbb);
 | ||
|     codegen(bx);
 | ||
|     (llty, llfn)
 | ||
| }
 | ||
| 
 | ||
| // Helper function used to get a handle to the `__rust_try` function used to
 | ||
| // catch exceptions.
 | ||
| //
 | ||
| // This function is only generated once and is then cached.
 | ||
| fn get_rust_try_fn<'ll, 'tcx>(
 | ||
|     cx: &CodegenCx<'ll, 'tcx>,
 | ||
|     codegen: &mut dyn FnMut(Builder<'_, 'll, 'tcx>),
 | ||
| ) -> (&'ll Type, &'ll Value) {
 | ||
|     if let Some(llfn) = cx.rust_try_fn.get() {
 | ||
|         return llfn;
 | ||
|     }
 | ||
| 
 | ||
|     // Define the type up front for the signature of the rust_try function.
 | ||
|     let tcx = cx.tcx;
 | ||
|     let i8p = Ty::new_mut_ptr(tcx, tcx.types.i8);
 | ||
|     // `unsafe fn(*mut i8) -> ()`
 | ||
|     let try_fn_ty = Ty::new_fn_ptr(
 | ||
|         tcx,
 | ||
|         ty::Binder::dummy(tcx.mk_fn_sig(
 | ||
|             [i8p],
 | ||
|             Ty::new_unit(tcx),
 | ||
|             false,
 | ||
|             hir::Unsafety::Unsafe,
 | ||
|             Abi::Rust,
 | ||
|         )),
 | ||
|     );
 | ||
|     // `unsafe fn(*mut i8, *mut i8) -> ()`
 | ||
|     let catch_fn_ty = Ty::new_fn_ptr(
 | ||
|         tcx,
 | ||
|         ty::Binder::dummy(tcx.mk_fn_sig(
 | ||
|             [i8p, i8p],
 | ||
|             Ty::new_unit(tcx),
 | ||
|             false,
 | ||
|             hir::Unsafety::Unsafe,
 | ||
|             Abi::Rust,
 | ||
|         )),
 | ||
|     );
 | ||
|     // `unsafe fn(unsafe fn(*mut i8) -> (), *mut i8, unsafe fn(*mut i8, *mut i8) -> ()) -> i32`
 | ||
|     let rust_fn_sig = ty::Binder::dummy(cx.tcx.mk_fn_sig(
 | ||
|         [try_fn_ty, i8p, catch_fn_ty],
 | ||
|         tcx.types.i32,
 | ||
|         false,
 | ||
|         hir::Unsafety::Unsafe,
 | ||
|         Abi::Rust,
 | ||
|     ));
 | ||
|     let rust_try = gen_fn(cx, "__rust_try", rust_fn_sig, codegen);
 | ||
|     cx.rust_try_fn.set(Some(rust_try));
 | ||
|     rust_try
 | ||
| }
 | ||
| 
 | ||
| fn generic_simd_intrinsic<'ll, 'tcx>(
 | ||
|     bx: &mut Builder<'_, 'll, 'tcx>,
 | ||
|     name: Symbol,
 | ||
|     callee_ty: Ty<'tcx>,
 | ||
|     fn_args: GenericArgsRef<'tcx>,
 | ||
|     args: &[OperandRef<'tcx, &'ll Value>],
 | ||
|     ret_ty: Ty<'tcx>,
 | ||
|     llret_ty: &'ll Type,
 | ||
|     span: Span,
 | ||
| ) -> Result<&'ll Value, ()> {
 | ||
|     macro_rules! return_error {
 | ||
|         ($diag: expr) => {{
 | ||
|             bx.sess().dcx().emit_err($diag);
 | ||
|             return Err(());
 | ||
|         }};
 | ||
|     }
 | ||
| 
 | ||
|     macro_rules! require {
 | ||
|         ($cond: expr, $diag: expr) => {
 | ||
|             if !$cond {
 | ||
|                 return_error!($diag);
 | ||
|             }
 | ||
|         };
 | ||
|     }
 | ||
| 
 | ||
|     macro_rules! require_simd {
 | ||
|         ($ty: expr, $variant:ident) => {{
 | ||
|             require!($ty.is_simd(), InvalidMonomorphization::$variant { span, name, ty: $ty });
 | ||
|             $ty.simd_size_and_type(bx.tcx())
 | ||
|         }};
 | ||
|     }
 | ||
| 
 | ||
|     let tcx = bx.tcx();
 | ||
|     let sig =
 | ||
|         tcx.normalize_erasing_late_bound_regions(ty::ParamEnv::reveal_all(), callee_ty.fn_sig(tcx));
 | ||
|     let arg_tys = sig.inputs();
 | ||
| 
 | ||
|     // Vectors must be immediates (non-power-of-2 #[repr(packed)] are not)
 | ||
|     for (ty, arg) in arg_tys.iter().zip(args) {
 | ||
|         if ty.is_simd() && !matches!(arg.val, OperandValue::Immediate(_)) {
 | ||
|             return_error!(InvalidMonomorphization::SimdArgument { span, name, ty: *ty });
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     if name == sym::simd_select_bitmask {
 | ||
|         let (len, _) = require_simd!(arg_tys[1], SimdArgument);
 | ||
| 
 | ||
|         let expected_int_bits = (len.max(8) - 1).next_power_of_two();
 | ||
|         let expected_bytes = len / 8 + ((len % 8 > 0) as u64);
 | ||
| 
 | ||
|         let mask_ty = arg_tys[0];
 | ||
|         let mask = match mask_ty.kind() {
 | ||
|             ty::Int(i) if i.bit_width() == Some(expected_int_bits) => args[0].immediate(),
 | ||
|             ty::Uint(i) if i.bit_width() == Some(expected_int_bits) => args[0].immediate(),
 | ||
|             ty::Array(elem, len)
 | ||
|                 if matches!(elem.kind(), ty::Uint(ty::UintTy::U8))
 | ||
|                     && len.try_eval_target_usize(bx.tcx, ty::ParamEnv::reveal_all())
 | ||
|                         == Some(expected_bytes) =>
 | ||
|             {
 | ||
|                 let place = PlaceRef::alloca(bx, args[0].layout);
 | ||
|                 args[0].val.store(bx, place);
 | ||
|                 let int_ty = bx.type_ix(expected_bytes * 8);
 | ||
|                 bx.load(int_ty, place.val.llval, Align::ONE)
 | ||
|             }
 | ||
|             _ => return_error!(InvalidMonomorphization::InvalidBitmask {
 | ||
|                 span,
 | ||
|                 name,
 | ||
|                 mask_ty,
 | ||
|                 expected_int_bits,
 | ||
|                 expected_bytes
 | ||
|             }),
 | ||
|         };
 | ||
| 
 | ||
|         let i1 = bx.type_i1();
 | ||
|         let im = bx.type_ix(len);
 | ||
|         let i1xn = bx.type_vector(i1, len);
 | ||
|         let m_im = bx.trunc(mask, im);
 | ||
|         let m_i1s = bx.bitcast(m_im, i1xn);
 | ||
|         return Ok(bx.select(m_i1s, args[1].immediate(), args[2].immediate()));
 | ||
|     }
 | ||
| 
 | ||
|     // every intrinsic below takes a SIMD vector as its first argument
 | ||
|     let (in_len, in_elem) = require_simd!(arg_tys[0], SimdInput);
 | ||
|     let in_ty = arg_tys[0];
 | ||
| 
 | ||
|     let comparison = match name {
 | ||
|         sym::simd_eq => Some(hir::BinOpKind::Eq),
 | ||
|         sym::simd_ne => Some(hir::BinOpKind::Ne),
 | ||
|         sym::simd_lt => Some(hir::BinOpKind::Lt),
 | ||
|         sym::simd_le => Some(hir::BinOpKind::Le),
 | ||
|         sym::simd_gt => Some(hir::BinOpKind::Gt),
 | ||
|         sym::simd_ge => Some(hir::BinOpKind::Ge),
 | ||
|         _ => None,
 | ||
|     };
 | ||
| 
 | ||
|     if let Some(cmp_op) = comparison {
 | ||
|         let (out_len, out_ty) = require_simd!(ret_ty, SimdReturn);
 | ||
| 
 | ||
|         require!(
 | ||
|             in_len == out_len,
 | ||
|             InvalidMonomorphization::ReturnLengthInputType {
 | ||
|                 span,
 | ||
|                 name,
 | ||
|                 in_len,
 | ||
|                 in_ty,
 | ||
|                 ret_ty,
 | ||
|                 out_len
 | ||
|             }
 | ||
|         );
 | ||
|         require!(
 | ||
|             bx.type_kind(bx.element_type(llret_ty)) == TypeKind::Integer,
 | ||
|             InvalidMonomorphization::ReturnIntegerType { span, name, ret_ty, out_ty }
 | ||
|         );
 | ||
| 
 | ||
|         return Ok(compare_simd_types(
 | ||
|             bx,
 | ||
|             args[0].immediate(),
 | ||
|             args[1].immediate(),
 | ||
|             in_elem,
 | ||
|             llret_ty,
 | ||
|             cmp_op,
 | ||
|         ));
 | ||
|     }
 | ||
| 
 | ||
|     if name == sym::simd_shuffle_generic {
 | ||
|         let idx = fn_args[2]
 | ||
|             .expect_const()
 | ||
|             .eval(tcx, ty::ParamEnv::reveal_all(), span)
 | ||
|             .unwrap()
 | ||
|             .unwrap_branch();
 | ||
|         let n = idx.len() as u64;
 | ||
| 
 | ||
|         let (out_len, out_ty) = require_simd!(ret_ty, SimdReturn);
 | ||
|         require!(
 | ||
|             out_len == n,
 | ||
|             InvalidMonomorphization::ReturnLength { span, name, in_len: n, ret_ty, out_len }
 | ||
|         );
 | ||
|         require!(
 | ||
|             in_elem == out_ty,
 | ||
|             InvalidMonomorphization::ReturnElement { span, name, in_elem, in_ty, ret_ty, out_ty }
 | ||
|         );
 | ||
| 
 | ||
|         let total_len = in_len * 2;
 | ||
| 
 | ||
|         let indices: Option<Vec<_>> = idx
 | ||
|             .iter()
 | ||
|             .enumerate()
 | ||
|             .map(|(arg_idx, val)| {
 | ||
|                 let idx = val.unwrap_leaf().try_to_i32().unwrap();
 | ||
|                 if idx >= i32::try_from(total_len).unwrap() {
 | ||
|                     bx.sess().dcx().emit_err(InvalidMonomorphization::SimdIndexOutOfBounds {
 | ||
|                         span,
 | ||
|                         name,
 | ||
|                         arg_idx: arg_idx as u64,
 | ||
|                         total_len: total_len.into(),
 | ||
|                     });
 | ||
|                     None
 | ||
|                 } else {
 | ||
|                     Some(bx.const_i32(idx))
 | ||
|                 }
 | ||
|             })
 | ||
|             .collect();
 | ||
|         let Some(indices) = indices else {
 | ||
|             return Ok(bx.const_null(llret_ty));
 | ||
|         };
 | ||
| 
 | ||
|         return Ok(bx.shuffle_vector(
 | ||
|             args[0].immediate(),
 | ||
|             args[1].immediate(),
 | ||
|             bx.const_vector(&indices),
 | ||
|         ));
 | ||
|     }
 | ||
| 
 | ||
|     if name == sym::simd_shuffle {
 | ||
|         // Make sure this is actually an array, since typeck only checks the length-suffixed
 | ||
|         // version of this intrinsic.
 | ||
|         let n: u64 = match args[2].layout.ty.kind() {
 | ||
|             ty::Array(ty, len) if matches!(ty.kind(), ty::Uint(ty::UintTy::U32)) => {
 | ||
|                 len.try_eval_target_usize(bx.cx.tcx, ty::ParamEnv::reveal_all()).unwrap_or_else(
 | ||
|                     || span_bug!(span, "could not evaluate shuffle index array length"),
 | ||
|                 )
 | ||
|             }
 | ||
|             _ => return_error!(InvalidMonomorphization::SimdShuffle {
 | ||
|                 span,
 | ||
|                 name,
 | ||
|                 ty: args[2].layout.ty
 | ||
|             }),
 | ||
|         };
 | ||
| 
 | ||
|         let (out_len, out_ty) = require_simd!(ret_ty, SimdReturn);
 | ||
|         require!(
 | ||
|             out_len == n,
 | ||
|             InvalidMonomorphization::ReturnLength { span, name, in_len: n, ret_ty, out_len }
 | ||
|         );
 | ||
|         require!(
 | ||
|             in_elem == out_ty,
 | ||
|             InvalidMonomorphization::ReturnElement { span, name, in_elem, in_ty, ret_ty, out_ty }
 | ||
|         );
 | ||
| 
 | ||
|         let total_len = u128::from(in_len) * 2;
 | ||
| 
 | ||
|         let vector = args[2].immediate();
 | ||
| 
 | ||
|         let indices: Option<Vec<_>> = (0..n)
 | ||
|             .map(|i| {
 | ||
|                 let arg_idx = i;
 | ||
|                 let val = bx.const_get_elt(vector, i as u64);
 | ||
|                 match bx.const_to_opt_u128(val, true) {
 | ||
|                     None => {
 | ||
|                         bug!("typeck should have already ensured that these are const")
 | ||
|                     }
 | ||
|                     Some(idx) if idx >= total_len => {
 | ||
|                         bx.sess().dcx().emit_err(InvalidMonomorphization::SimdIndexOutOfBounds {
 | ||
|                             span,
 | ||
|                             name,
 | ||
|                             arg_idx,
 | ||
|                             total_len,
 | ||
|                         });
 | ||
|                         None
 | ||
|                     }
 | ||
|                     Some(idx) => Some(bx.const_i32(idx as i32)),
 | ||
|                 }
 | ||
|             })
 | ||
|             .collect();
 | ||
|         let Some(indices) = indices else {
 | ||
|             return Ok(bx.const_null(llret_ty));
 | ||
|         };
 | ||
| 
 | ||
|         return Ok(bx.shuffle_vector(
 | ||
|             args[0].immediate(),
 | ||
|             args[1].immediate(),
 | ||
|             bx.const_vector(&indices),
 | ||
|         ));
 | ||
|     }
 | ||
| 
 | ||
|     if name == sym::simd_insert {
 | ||
|         require!(
 | ||
|             in_elem == arg_tys[2],
 | ||
|             InvalidMonomorphization::InsertedType {
 | ||
|                 span,
 | ||
|                 name,
 | ||
|                 in_elem,
 | ||
|                 in_ty,
 | ||
|                 out_ty: arg_tys[2]
 | ||
|             }
 | ||
|         );
 | ||
|         let idx = bx
 | ||
|             .const_to_opt_u128(args[1].immediate(), false)
 | ||
|             .expect("typeck should have ensure that this is a const");
 | ||
|         if idx >= in_len.into() {
 | ||
|             bx.sess().dcx().emit_err(InvalidMonomorphization::SimdIndexOutOfBounds {
 | ||
|                 span,
 | ||
|                 name,
 | ||
|                 arg_idx: 1,
 | ||
|                 total_len: in_len.into(),
 | ||
|             });
 | ||
|             return Ok(bx.const_null(llret_ty));
 | ||
|         }
 | ||
|         return Ok(bx.insert_element(
 | ||
|             args[0].immediate(),
 | ||
|             args[2].immediate(),
 | ||
|             bx.const_i32(idx as i32),
 | ||
|         ));
 | ||
|     }
 | ||
|     if name == sym::simd_extract {
 | ||
|         require!(
 | ||
|             ret_ty == in_elem,
 | ||
|             InvalidMonomorphization::ReturnType { span, name, in_elem, in_ty, ret_ty }
 | ||
|         );
 | ||
|         let idx = bx
 | ||
|             .const_to_opt_u128(args[1].immediate(), false)
 | ||
|             .expect("typeck should have ensure that this is a const");
 | ||
|         if idx >= in_len.into() {
 | ||
|             bx.sess().dcx().emit_err(InvalidMonomorphization::SimdIndexOutOfBounds {
 | ||
|                 span,
 | ||
|                 name,
 | ||
|                 arg_idx: 1,
 | ||
|                 total_len: in_len.into(),
 | ||
|             });
 | ||
|             return Ok(bx.const_null(llret_ty));
 | ||
|         }
 | ||
|         return Ok(bx.extract_element(args[0].immediate(), bx.const_i32(idx as i32)));
 | ||
|     }
 | ||
| 
 | ||
|     if name == sym::simd_select {
 | ||
|         let m_elem_ty = in_elem;
 | ||
|         let m_len = in_len;
 | ||
|         let (v_len, _) = require_simd!(arg_tys[1], SimdArgument);
 | ||
|         require!(
 | ||
|             m_len == v_len,
 | ||
|             InvalidMonomorphization::MismatchedLengths { span, name, m_len, v_len }
 | ||
|         );
 | ||
|         match m_elem_ty.kind() {
 | ||
|             ty::Int(_) => {}
 | ||
|             _ => return_error!(InvalidMonomorphization::MaskType { span, name, ty: m_elem_ty }),
 | ||
|         }
 | ||
|         // truncate the mask to a vector of i1s
 | ||
|         let i1 = bx.type_i1();
 | ||
|         let i1xn = bx.type_vector(i1, m_len as u64);
 | ||
|         let m_i1s = bx.trunc(args[0].immediate(), i1xn);
 | ||
|         return Ok(bx.select(m_i1s, args[1].immediate(), args[2].immediate()));
 | ||
|     }
 | ||
| 
 | ||
|     if name == sym::simd_bitmask {
 | ||
|         // The `fn simd_bitmask(vector) -> unsigned integer` intrinsic takes a
 | ||
|         // vector mask and returns the most significant bit (MSB) of each lane in the form
 | ||
|         // of either:
 | ||
|         // * an unsigned integer
 | ||
|         // * an array of `u8`
 | ||
|         // If the vector has less than 8 lanes, a u8 is returned with zeroed trailing bits.
 | ||
|         //
 | ||
|         // The bit order of the result depends on the byte endianness, LSB-first for little
 | ||
|         // endian and MSB-first for big endian.
 | ||
|         let expected_int_bits = in_len.max(8);
 | ||
|         let expected_bytes = expected_int_bits / 8 + ((expected_int_bits % 8 > 0) as u64);
 | ||
| 
 | ||
|         // Integer vector <i{in_bitwidth} x in_len>:
 | ||
|         let (i_xn, in_elem_bitwidth) = match in_elem.kind() {
 | ||
|             ty::Int(i) => (
 | ||
|                 args[0].immediate(),
 | ||
|                 i.bit_width().unwrap_or_else(|| bx.data_layout().pointer_size.bits()),
 | ||
|             ),
 | ||
|             ty::Uint(i) => (
 | ||
|                 args[0].immediate(),
 | ||
|                 i.bit_width().unwrap_or_else(|| bx.data_layout().pointer_size.bits()),
 | ||
|             ),
 | ||
|             _ => return_error!(InvalidMonomorphization::VectorArgument {
 | ||
|                 span,
 | ||
|                 name,
 | ||
|                 in_ty,
 | ||
|                 in_elem
 | ||
|             }),
 | ||
|         };
 | ||
| 
 | ||
|         // Shift the MSB to the right by "in_elem_bitwidth - 1" into the first bit position.
 | ||
|         let shift_indices =
 | ||
|             vec![
 | ||
|                 bx.cx.const_int(bx.type_ix(in_elem_bitwidth), (in_elem_bitwidth - 1) as _);
 | ||
|                 in_len as _
 | ||
|             ];
 | ||
|         let i_xn_msb = bx.lshr(i_xn, bx.const_vector(shift_indices.as_slice()));
 | ||
|         // Truncate vector to an <i1 x N>
 | ||
|         let i1xn = bx.trunc(i_xn_msb, bx.type_vector(bx.type_i1(), in_len));
 | ||
|         // Bitcast <i1 x N> to iN:
 | ||
|         let i_ = bx.bitcast(i1xn, bx.type_ix(in_len));
 | ||
| 
 | ||
|         match ret_ty.kind() {
 | ||
|             ty::Uint(i) if i.bit_width() == Some(expected_int_bits) => {
 | ||
|                 // Zero-extend iN to the bitmask type:
 | ||
|                 return Ok(bx.zext(i_, bx.type_ix(expected_int_bits)));
 | ||
|             }
 | ||
|             ty::Array(elem, len)
 | ||
|                 if matches!(elem.kind(), ty::Uint(ty::UintTy::U8))
 | ||
|                     && len.try_eval_target_usize(bx.tcx, ty::ParamEnv::reveal_all())
 | ||
|                         == Some(expected_bytes) =>
 | ||
|             {
 | ||
|                 // Zero-extend iN to the array length:
 | ||
|                 let ze = bx.zext(i_, bx.type_ix(expected_bytes * 8));
 | ||
| 
 | ||
|                 // Convert the integer to a byte array
 | ||
|                 let ptr = bx.alloca(bx.type_ix(expected_bytes * 8), Align::ONE);
 | ||
|                 bx.store(ze, ptr, Align::ONE);
 | ||
|                 let array_ty = bx.type_array(bx.type_i8(), expected_bytes);
 | ||
|                 return Ok(bx.load(array_ty, ptr, Align::ONE));
 | ||
|             }
 | ||
|             _ => return_error!(InvalidMonomorphization::CannotReturn {
 | ||
|                 span,
 | ||
|                 name,
 | ||
|                 ret_ty,
 | ||
|                 expected_int_bits,
 | ||
|                 expected_bytes
 | ||
|             }),
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     fn simd_simple_float_intrinsic<'ll, 'tcx>(
 | ||
|         name: Symbol,
 | ||
|         in_elem: Ty<'_>,
 | ||
|         in_ty: Ty<'_>,
 | ||
|         in_len: u64,
 | ||
|         bx: &mut Builder<'_, 'll, 'tcx>,
 | ||
|         span: Span,
 | ||
|         args: &[OperandRef<'tcx, &'ll Value>],
 | ||
|     ) -> Result<&'ll Value, ()> {
 | ||
|         macro_rules! return_error {
 | ||
|             ($diag: expr) => {{
 | ||
|                 bx.sess().dcx().emit_err($diag);
 | ||
|                 return Err(());
 | ||
|             }};
 | ||
|         }
 | ||
| 
 | ||
|         let (elem_ty_str, elem_ty) = if let ty::Float(f) = in_elem.kind() {
 | ||
|             let elem_ty = bx.cx.type_float_from_ty(*f);
 | ||
|             match f.bit_width() {
 | ||
|                 32 => ("f32", elem_ty),
 | ||
|                 64 => ("f64", elem_ty),
 | ||
|                 _ => return_error!(InvalidMonomorphization::FloatingPointVector {
 | ||
|                     span,
 | ||
|                     name,
 | ||
|                     f_ty: *f,
 | ||
|                     in_ty,
 | ||
|                 }),
 | ||
|             }
 | ||
|         } else {
 | ||
|             return_error!(InvalidMonomorphization::FloatingPointType { span, name, in_ty });
 | ||
|         };
 | ||
| 
 | ||
|         let vec_ty = bx.type_vector(elem_ty, in_len);
 | ||
| 
 | ||
|         let (intr_name, fn_ty) = match name {
 | ||
|             sym::simd_ceil => ("ceil", bx.type_func(&[vec_ty], vec_ty)),
 | ||
|             sym::simd_fabs => ("fabs", bx.type_func(&[vec_ty], vec_ty)),
 | ||
|             sym::simd_fcos => ("cos", bx.type_func(&[vec_ty], vec_ty)),
 | ||
|             sym::simd_fexp2 => ("exp2", bx.type_func(&[vec_ty], vec_ty)),
 | ||
|             sym::simd_fexp => ("exp", bx.type_func(&[vec_ty], vec_ty)),
 | ||
|             sym::simd_flog10 => ("log10", bx.type_func(&[vec_ty], vec_ty)),
 | ||
|             sym::simd_flog2 => ("log2", bx.type_func(&[vec_ty], vec_ty)),
 | ||
|             sym::simd_flog => ("log", bx.type_func(&[vec_ty], vec_ty)),
 | ||
|             sym::simd_floor => ("floor", bx.type_func(&[vec_ty], vec_ty)),
 | ||
|             sym::simd_fma => ("fma", bx.type_func(&[vec_ty, vec_ty, vec_ty], vec_ty)),
 | ||
|             sym::simd_fpowi => ("powi", bx.type_func(&[vec_ty, bx.type_i32()], vec_ty)),
 | ||
|             sym::simd_fpow => ("pow", bx.type_func(&[vec_ty, vec_ty], vec_ty)),
 | ||
|             sym::simd_fsin => ("sin", bx.type_func(&[vec_ty], vec_ty)),
 | ||
|             sym::simd_fsqrt => ("sqrt", bx.type_func(&[vec_ty], vec_ty)),
 | ||
|             sym::simd_round => ("round", bx.type_func(&[vec_ty], vec_ty)),
 | ||
|             sym::simd_trunc => ("trunc", bx.type_func(&[vec_ty], vec_ty)),
 | ||
|             _ => return_error!(InvalidMonomorphization::UnrecognizedIntrinsic { span, name }),
 | ||
|         };
 | ||
|         let llvm_name = &format!("llvm.{intr_name}.v{in_len}{elem_ty_str}");
 | ||
|         let f = bx.declare_cfn(llvm_name, llvm::UnnamedAddr::No, fn_ty);
 | ||
|         let c = bx.call(
 | ||
|             fn_ty,
 | ||
|             None,
 | ||
|             None,
 | ||
|             f,
 | ||
|             &args.iter().map(|arg| arg.immediate()).collect::<Vec<_>>(),
 | ||
|             None,
 | ||
|             None,
 | ||
|         );
 | ||
|         Ok(c)
 | ||
|     }
 | ||
| 
 | ||
|     if std::matches!(
 | ||
|         name,
 | ||
|         sym::simd_ceil
 | ||
|             | sym::simd_fabs
 | ||
|             | sym::simd_fcos
 | ||
|             | sym::simd_fexp2
 | ||
|             | sym::simd_fexp
 | ||
|             | sym::simd_flog10
 | ||
|             | sym::simd_flog2
 | ||
|             | sym::simd_flog
 | ||
|             | sym::simd_floor
 | ||
|             | sym::simd_fma
 | ||
|             | sym::simd_fpow
 | ||
|             | sym::simd_fpowi
 | ||
|             | sym::simd_fsin
 | ||
|             | sym::simd_fsqrt
 | ||
|             | sym::simd_round
 | ||
|             | sym::simd_trunc
 | ||
|     ) {
 | ||
|         return simd_simple_float_intrinsic(name, in_elem, in_ty, in_len, bx, span, args);
 | ||
|     }
 | ||
| 
 | ||
|     // FIXME: use:
 | ||
|     //  https://github.com/llvm-mirror/llvm/blob/master/include/llvm/IR/Function.h#L182
 | ||
|     //  https://github.com/llvm-mirror/llvm/blob/master/include/llvm/IR/Intrinsics.h#L81
 | ||
|     fn llvm_vector_str(bx: &Builder<'_, '_, '_>, elem_ty: Ty<'_>, vec_len: u64) -> String {
 | ||
|         match *elem_ty.kind() {
 | ||
|             ty::Int(v) => format!(
 | ||
|                 "v{}i{}",
 | ||
|                 vec_len,
 | ||
|                 // Normalize to prevent crash if v: IntTy::Isize
 | ||
|                 v.normalize(bx.target_spec().pointer_width).bit_width().unwrap()
 | ||
|             ),
 | ||
|             ty::Uint(v) => format!(
 | ||
|                 "v{}i{}",
 | ||
|                 vec_len,
 | ||
|                 // Normalize to prevent crash if v: UIntTy::Usize
 | ||
|                 v.normalize(bx.target_spec().pointer_width).bit_width().unwrap()
 | ||
|             ),
 | ||
|             ty::Float(v) => format!("v{}f{}", vec_len, v.bit_width()),
 | ||
|             ty::RawPtr(_, _) => format!("v{}p0", vec_len),
 | ||
|             _ => unreachable!(),
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     fn llvm_vector_ty<'ll>(cx: &CodegenCx<'ll, '_>, elem_ty: Ty<'_>, vec_len: u64) -> &'ll Type {
 | ||
|         let elem_ty = match *elem_ty.kind() {
 | ||
|             ty::Int(v) => cx.type_int_from_ty(v),
 | ||
|             ty::Uint(v) => cx.type_uint_from_ty(v),
 | ||
|             ty::Float(v) => cx.type_float_from_ty(v),
 | ||
|             ty::RawPtr(_, _) => cx.type_ptr(),
 | ||
|             _ => unreachable!(),
 | ||
|         };
 | ||
|         cx.type_vector(elem_ty, vec_len)
 | ||
|     }
 | ||
| 
 | ||
|     if name == sym::simd_gather {
 | ||
|         // simd_gather(values: <N x T>, pointers: <N x *_ T>,
 | ||
|         //             mask: <N x i{M}>) -> <N x T>
 | ||
|         // * N: number of elements in the input vectors
 | ||
|         // * T: type of the element to load
 | ||
|         // * M: any integer width is supported, will be truncated to i1
 | ||
| 
 | ||
|         // All types must be simd vector types
 | ||
| 
 | ||
|         // The second argument must be a simd vector with an element type that's a pointer
 | ||
|         // to the element type of the first argument
 | ||
|         let (_, element_ty0) = require_simd!(in_ty, SimdFirst);
 | ||
|         let (out_len, element_ty1) = require_simd!(arg_tys[1], SimdSecond);
 | ||
|         // The element type of the third argument must be a signed integer type of any width:
 | ||
|         let (out_len2, element_ty2) = require_simd!(arg_tys[2], SimdThird);
 | ||
|         require_simd!(ret_ty, SimdReturn);
 | ||
| 
 | ||
|         // Of the same length:
 | ||
|         require!(
 | ||
|             in_len == out_len,
 | ||
|             InvalidMonomorphization::SecondArgumentLength {
 | ||
|                 span,
 | ||
|                 name,
 | ||
|                 in_len,
 | ||
|                 in_ty,
 | ||
|                 arg_ty: arg_tys[1],
 | ||
|                 out_len
 | ||
|             }
 | ||
|         );
 | ||
|         require!(
 | ||
|             in_len == out_len2,
 | ||
|             InvalidMonomorphization::ThirdArgumentLength {
 | ||
|                 span,
 | ||
|                 name,
 | ||
|                 in_len,
 | ||
|                 in_ty,
 | ||
|                 arg_ty: arg_tys[2],
 | ||
|                 out_len: out_len2
 | ||
|             }
 | ||
|         );
 | ||
| 
 | ||
|         // The return type must match the first argument type
 | ||
|         require!(
 | ||
|             ret_ty == in_ty,
 | ||
|             InvalidMonomorphization::ExpectedReturnType { span, name, in_ty, ret_ty }
 | ||
|         );
 | ||
| 
 | ||
|         require!(
 | ||
|             matches!(
 | ||
|                 *element_ty1.kind(),
 | ||
|                 ty::RawPtr(p_ty, _) if p_ty == in_elem && p_ty.kind() == element_ty0.kind()
 | ||
|             ),
 | ||
|             InvalidMonomorphization::ExpectedElementType {
 | ||
|                 span,
 | ||
|                 name,
 | ||
|                 expected_element: element_ty1,
 | ||
|                 second_arg: arg_tys[1],
 | ||
|                 in_elem,
 | ||
|                 in_ty,
 | ||
|                 mutability: ExpectedPointerMutability::Not,
 | ||
|             }
 | ||
|         );
 | ||
| 
 | ||
|         match element_ty2.kind() {
 | ||
|             ty::Int(_) => (),
 | ||
|             _ => {
 | ||
|                 return_error!(InvalidMonomorphization::ThirdArgElementType {
 | ||
|                     span,
 | ||
|                     name,
 | ||
|                     expected_element: element_ty2,
 | ||
|                     third_arg: arg_tys[2]
 | ||
|                 });
 | ||
|             }
 | ||
|         }
 | ||
| 
 | ||
|         // Alignment of T, must be a constant integer value:
 | ||
|         let alignment_ty = bx.type_i32();
 | ||
|         let alignment = bx.const_i32(bx.align_of(in_elem).bytes() as i32);
 | ||
| 
 | ||
|         // Truncate the mask vector to a vector of i1s:
 | ||
|         let (mask, mask_ty) = {
 | ||
|             let i1 = bx.type_i1();
 | ||
|             let i1xn = bx.type_vector(i1, in_len);
 | ||
|             (bx.trunc(args[2].immediate(), i1xn), i1xn)
 | ||
|         };
 | ||
| 
 | ||
|         // Type of the vector of pointers:
 | ||
|         let llvm_pointer_vec_ty = llvm_vector_ty(bx, element_ty1, in_len);
 | ||
|         let llvm_pointer_vec_str = llvm_vector_str(bx, element_ty1, in_len);
 | ||
| 
 | ||
|         // Type of the vector of elements:
 | ||
|         let llvm_elem_vec_ty = llvm_vector_ty(bx, element_ty0, in_len);
 | ||
|         let llvm_elem_vec_str = llvm_vector_str(bx, element_ty0, in_len);
 | ||
| 
 | ||
|         let llvm_intrinsic =
 | ||
|             format!("llvm.masked.gather.{llvm_elem_vec_str}.{llvm_pointer_vec_str}");
 | ||
|         let fn_ty = bx.type_func(
 | ||
|             &[llvm_pointer_vec_ty, alignment_ty, mask_ty, llvm_elem_vec_ty],
 | ||
|             llvm_elem_vec_ty,
 | ||
|         );
 | ||
|         let f = bx.declare_cfn(&llvm_intrinsic, llvm::UnnamedAddr::No, fn_ty);
 | ||
|         let v = bx.call(
 | ||
|             fn_ty,
 | ||
|             None,
 | ||
|             None,
 | ||
|             f,
 | ||
|             &[args[1].immediate(), alignment, mask, args[0].immediate()],
 | ||
|             None,
 | ||
|             None,
 | ||
|         );
 | ||
|         return Ok(v);
 | ||
|     }
 | ||
| 
 | ||
|     if name == sym::simd_masked_load {
 | ||
|         // simd_masked_load(mask: <N x i{M}>, pointer: *_ T, values: <N x T>) -> <N x T>
 | ||
|         // * N: number of elements in the input vectors
 | ||
|         // * T: type of the element to load
 | ||
|         // * M: any integer width is supported, will be truncated to i1
 | ||
|         // Loads contiguous elements from memory behind `pointer`, but only for
 | ||
|         // those lanes whose `mask` bit is enabled.
 | ||
|         // The memory addresses corresponding to the “off” lanes are not accessed.
 | ||
| 
 | ||
|         // The element type of the "mask" argument must be a signed integer type of any width
 | ||
|         let mask_ty = in_ty;
 | ||
|         let (mask_len, mask_elem) = (in_len, in_elem);
 | ||
| 
 | ||
|         // The second argument must be a pointer matching the element type
 | ||
|         let pointer_ty = arg_tys[1];
 | ||
| 
 | ||
|         // The last argument is a passthrough vector providing values for disabled lanes
 | ||
|         let values_ty = arg_tys[2];
 | ||
|         let (values_len, values_elem) = require_simd!(values_ty, SimdThird);
 | ||
| 
 | ||
|         require_simd!(ret_ty, SimdReturn);
 | ||
| 
 | ||
|         // Of the same length:
 | ||
|         require!(
 | ||
|             values_len == mask_len,
 | ||
|             InvalidMonomorphization::ThirdArgumentLength {
 | ||
|                 span,
 | ||
|                 name,
 | ||
|                 in_len: mask_len,
 | ||
|                 in_ty: mask_ty,
 | ||
|                 arg_ty: values_ty,
 | ||
|                 out_len: values_len
 | ||
|             }
 | ||
|         );
 | ||
| 
 | ||
|         // The return type must match the last argument type
 | ||
|         require!(
 | ||
|             ret_ty == values_ty,
 | ||
|             InvalidMonomorphization::ExpectedReturnType { span, name, in_ty: values_ty, ret_ty }
 | ||
|         );
 | ||
| 
 | ||
|         require!(
 | ||
|             matches!(
 | ||
|                 *pointer_ty.kind(),
 | ||
|                 ty::RawPtr(p_ty, _) if p_ty == values_elem && p_ty.kind() == values_elem.kind()
 | ||
|             ),
 | ||
|             InvalidMonomorphization::ExpectedElementType {
 | ||
|                 span,
 | ||
|                 name,
 | ||
|                 expected_element: values_elem,
 | ||
|                 second_arg: pointer_ty,
 | ||
|                 in_elem: values_elem,
 | ||
|                 in_ty: values_ty,
 | ||
|                 mutability: ExpectedPointerMutability::Not,
 | ||
|             }
 | ||
|         );
 | ||
| 
 | ||
|         require!(
 | ||
|             matches!(mask_elem.kind(), ty::Int(_)),
 | ||
|             InvalidMonomorphization::ThirdArgElementType {
 | ||
|                 span,
 | ||
|                 name,
 | ||
|                 expected_element: values_elem,
 | ||
|                 third_arg: mask_ty,
 | ||
|             }
 | ||
|         );
 | ||
| 
 | ||
|         // Alignment of T, must be a constant integer value:
 | ||
|         let alignment_ty = bx.type_i32();
 | ||
|         let alignment = bx.const_i32(bx.align_of(values_elem).bytes() as i32);
 | ||
| 
 | ||
|         // Truncate the mask vector to a vector of i1s:
 | ||
|         let (mask, mask_ty) = {
 | ||
|             let i1 = bx.type_i1();
 | ||
|             let i1xn = bx.type_vector(i1, mask_len);
 | ||
|             (bx.trunc(args[0].immediate(), i1xn), i1xn)
 | ||
|         };
 | ||
| 
 | ||
|         let llvm_pointer = bx.type_ptr();
 | ||
| 
 | ||
|         // Type of the vector of elements:
 | ||
|         let llvm_elem_vec_ty = llvm_vector_ty(bx, values_elem, values_len);
 | ||
|         let llvm_elem_vec_str = llvm_vector_str(bx, values_elem, values_len);
 | ||
| 
 | ||
|         let llvm_intrinsic = format!("llvm.masked.load.{llvm_elem_vec_str}.p0");
 | ||
|         let fn_ty = bx
 | ||
|             .type_func(&[llvm_pointer, alignment_ty, mask_ty, llvm_elem_vec_ty], llvm_elem_vec_ty);
 | ||
|         let f = bx.declare_cfn(&llvm_intrinsic, llvm::UnnamedAddr::No, fn_ty);
 | ||
|         let v = bx.call(
 | ||
|             fn_ty,
 | ||
|             None,
 | ||
|             None,
 | ||
|             f,
 | ||
|             &[args[1].immediate(), alignment, mask, args[2].immediate()],
 | ||
|             None,
 | ||
|             None,
 | ||
|         );
 | ||
|         return Ok(v);
 | ||
|     }
 | ||
| 
 | ||
|     if name == sym::simd_masked_store {
 | ||
|         // simd_masked_store(mask: <N x i{M}>, pointer: *mut T, values: <N x T>) -> ()
 | ||
|         // * N: number of elements in the input vectors
 | ||
|         // * T: type of the element to load
 | ||
|         // * M: any integer width is supported, will be truncated to i1
 | ||
|         // Stores contiguous elements to memory behind `pointer`, but only for
 | ||
|         // those lanes whose `mask` bit is enabled.
 | ||
|         // The memory addresses corresponding to the “off” lanes are not accessed.
 | ||
| 
 | ||
|         // The element type of the "mask" argument must be a signed integer type of any width
 | ||
|         let mask_ty = in_ty;
 | ||
|         let (mask_len, mask_elem) = (in_len, in_elem);
 | ||
| 
 | ||
|         // The second argument must be a pointer matching the element type
 | ||
|         let pointer_ty = arg_tys[1];
 | ||
| 
 | ||
|         // The last argument specifies the values to store to memory
 | ||
|         let values_ty = arg_tys[2];
 | ||
|         let (values_len, values_elem) = require_simd!(values_ty, SimdThird);
 | ||
| 
 | ||
|         // Of the same length:
 | ||
|         require!(
 | ||
|             values_len == mask_len,
 | ||
|             InvalidMonomorphization::ThirdArgumentLength {
 | ||
|                 span,
 | ||
|                 name,
 | ||
|                 in_len: mask_len,
 | ||
|                 in_ty: mask_ty,
 | ||
|                 arg_ty: values_ty,
 | ||
|                 out_len: values_len
 | ||
|             }
 | ||
|         );
 | ||
| 
 | ||
|         // The second argument must be a mutable pointer type matching the element type
 | ||
|         require!(
 | ||
|             matches!(
 | ||
|                 *pointer_ty.kind(),
 | ||
|                 ty::RawPtr(p_ty, p_mutbl) if p_ty == values_elem && p_ty.kind() == values_elem.kind() && p_mutbl.is_mut()
 | ||
|             ),
 | ||
|             InvalidMonomorphization::ExpectedElementType {
 | ||
|                 span,
 | ||
|                 name,
 | ||
|                 expected_element: values_elem,
 | ||
|                 second_arg: pointer_ty,
 | ||
|                 in_elem: values_elem,
 | ||
|                 in_ty: values_ty,
 | ||
|                 mutability: ExpectedPointerMutability::Mut,
 | ||
|             }
 | ||
|         );
 | ||
| 
 | ||
|         require!(
 | ||
|             matches!(mask_elem.kind(), ty::Int(_)),
 | ||
|             InvalidMonomorphization::ThirdArgElementType {
 | ||
|                 span,
 | ||
|                 name,
 | ||
|                 expected_element: values_elem,
 | ||
|                 third_arg: mask_ty,
 | ||
|             }
 | ||
|         );
 | ||
| 
 | ||
|         // Alignment of T, must be a constant integer value:
 | ||
|         let alignment_ty = bx.type_i32();
 | ||
|         let alignment = bx.const_i32(bx.align_of(values_elem).bytes() as i32);
 | ||
| 
 | ||
|         // Truncate the mask vector to a vector of i1s:
 | ||
|         let (mask, mask_ty) = {
 | ||
|             let i1 = bx.type_i1();
 | ||
|             let i1xn = bx.type_vector(i1, in_len);
 | ||
|             (bx.trunc(args[0].immediate(), i1xn), i1xn)
 | ||
|         };
 | ||
| 
 | ||
|         let ret_t = bx.type_void();
 | ||
| 
 | ||
|         let llvm_pointer = bx.type_ptr();
 | ||
| 
 | ||
|         // Type of the vector of elements:
 | ||
|         let llvm_elem_vec_ty = llvm_vector_ty(bx, values_elem, values_len);
 | ||
|         let llvm_elem_vec_str = llvm_vector_str(bx, values_elem, values_len);
 | ||
| 
 | ||
|         let llvm_intrinsic = format!("llvm.masked.store.{llvm_elem_vec_str}.p0");
 | ||
|         let fn_ty = bx.type_func(&[llvm_elem_vec_ty, llvm_pointer, alignment_ty, mask_ty], ret_t);
 | ||
|         let f = bx.declare_cfn(&llvm_intrinsic, llvm::UnnamedAddr::No, fn_ty);
 | ||
|         let v = bx.call(
 | ||
|             fn_ty,
 | ||
|             None,
 | ||
|             None,
 | ||
|             f,
 | ||
|             &[args[2].immediate(), args[1].immediate(), alignment, mask],
 | ||
|             None,
 | ||
|             None,
 | ||
|         );
 | ||
|         return Ok(v);
 | ||
|     }
 | ||
| 
 | ||
|     if name == sym::simd_scatter {
 | ||
|         // simd_scatter(values: <N x T>, pointers: <N x *mut T>,
 | ||
|         //             mask: <N x i{M}>) -> ()
 | ||
|         // * N: number of elements in the input vectors
 | ||
|         // * T: type of the element to load
 | ||
|         // * M: any integer width is supported, will be truncated to i1
 | ||
| 
 | ||
|         // All types must be simd vector types
 | ||
|         // The second argument must be a simd vector with an element type that's a pointer
 | ||
|         // to the element type of the first argument
 | ||
|         let (_, element_ty0) = require_simd!(in_ty, SimdFirst);
 | ||
|         let (element_len1, element_ty1) = require_simd!(arg_tys[1], SimdSecond);
 | ||
|         let (element_len2, element_ty2) = require_simd!(arg_tys[2], SimdThird);
 | ||
| 
 | ||
|         // Of the same length:
 | ||
|         require!(
 | ||
|             in_len == element_len1,
 | ||
|             InvalidMonomorphization::SecondArgumentLength {
 | ||
|                 span,
 | ||
|                 name,
 | ||
|                 in_len,
 | ||
|                 in_ty,
 | ||
|                 arg_ty: arg_tys[1],
 | ||
|                 out_len: element_len1
 | ||
|             }
 | ||
|         );
 | ||
|         require!(
 | ||
|             in_len == element_len2,
 | ||
|             InvalidMonomorphization::ThirdArgumentLength {
 | ||
|                 span,
 | ||
|                 name,
 | ||
|                 in_len,
 | ||
|                 in_ty,
 | ||
|                 arg_ty: arg_tys[2],
 | ||
|                 out_len: element_len2
 | ||
|             }
 | ||
|         );
 | ||
| 
 | ||
|         require!(
 | ||
|             matches!(
 | ||
|                 *element_ty1.kind(),
 | ||
|                 ty::RawPtr(p_ty, p_mutbl)
 | ||
|                     if p_ty == in_elem && p_mutbl.is_mut() && p_ty.kind() == element_ty0.kind()
 | ||
|             ),
 | ||
|             InvalidMonomorphization::ExpectedElementType {
 | ||
|                 span,
 | ||
|                 name,
 | ||
|                 expected_element: element_ty1,
 | ||
|                 second_arg: arg_tys[1],
 | ||
|                 in_elem,
 | ||
|                 in_ty,
 | ||
|                 mutability: ExpectedPointerMutability::Mut,
 | ||
|             }
 | ||
|         );
 | ||
| 
 | ||
|         // The element type of the third argument must be a signed integer type of any width:
 | ||
|         match element_ty2.kind() {
 | ||
|             ty::Int(_) => (),
 | ||
|             _ => {
 | ||
|                 return_error!(InvalidMonomorphization::ThirdArgElementType {
 | ||
|                     span,
 | ||
|                     name,
 | ||
|                     expected_element: element_ty2,
 | ||
|                     third_arg: arg_tys[2]
 | ||
|                 });
 | ||
|             }
 | ||
|         }
 | ||
| 
 | ||
|         // Alignment of T, must be a constant integer value:
 | ||
|         let alignment_ty = bx.type_i32();
 | ||
|         let alignment = bx.const_i32(bx.align_of(in_elem).bytes() as i32);
 | ||
| 
 | ||
|         // Truncate the mask vector to a vector of i1s:
 | ||
|         let (mask, mask_ty) = {
 | ||
|             let i1 = bx.type_i1();
 | ||
|             let i1xn = bx.type_vector(i1, in_len);
 | ||
|             (bx.trunc(args[2].immediate(), i1xn), i1xn)
 | ||
|         };
 | ||
| 
 | ||
|         let ret_t = bx.type_void();
 | ||
| 
 | ||
|         // Type of the vector of pointers:
 | ||
|         let llvm_pointer_vec_ty = llvm_vector_ty(bx, element_ty1, in_len);
 | ||
|         let llvm_pointer_vec_str = llvm_vector_str(bx, element_ty1, in_len);
 | ||
| 
 | ||
|         // Type of the vector of elements:
 | ||
|         let llvm_elem_vec_ty = llvm_vector_ty(bx, element_ty0, in_len);
 | ||
|         let llvm_elem_vec_str = llvm_vector_str(bx, element_ty0, in_len);
 | ||
| 
 | ||
|         let llvm_intrinsic =
 | ||
|             format!("llvm.masked.scatter.{llvm_elem_vec_str}.{llvm_pointer_vec_str}");
 | ||
|         let fn_ty =
 | ||
|             bx.type_func(&[llvm_elem_vec_ty, llvm_pointer_vec_ty, alignment_ty, mask_ty], ret_t);
 | ||
|         let f = bx.declare_cfn(&llvm_intrinsic, llvm::UnnamedAddr::No, fn_ty);
 | ||
|         let v = bx.call(
 | ||
|             fn_ty,
 | ||
|             None,
 | ||
|             None,
 | ||
|             f,
 | ||
|             &[args[0].immediate(), args[1].immediate(), alignment, mask],
 | ||
|             None,
 | ||
|             None,
 | ||
|         );
 | ||
|         return Ok(v);
 | ||
|     }
 | ||
| 
 | ||
|     macro_rules! arith_red {
 | ||
|         ($name:ident : $integer_reduce:ident, $float_reduce:ident, $ordered:expr, $op:ident,
 | ||
|          $identity:expr) => {
 | ||
|             if name == sym::$name {
 | ||
|                 require!(
 | ||
|                     ret_ty == in_elem,
 | ||
|                     InvalidMonomorphization::ReturnType { span, name, in_elem, in_ty, ret_ty }
 | ||
|                 );
 | ||
|                 return match in_elem.kind() {
 | ||
|                     ty::Int(_) | ty::Uint(_) => {
 | ||
|                         let r = bx.$integer_reduce(args[0].immediate());
 | ||
|                         if $ordered {
 | ||
|                             // if overflow occurs, the result is the
 | ||
|                             // mathematical result modulo 2^n:
 | ||
|                             Ok(bx.$op(args[1].immediate(), r))
 | ||
|                         } else {
 | ||
|                             Ok(bx.$integer_reduce(args[0].immediate()))
 | ||
|                         }
 | ||
|                     }
 | ||
|                     ty::Float(f) => {
 | ||
|                         let acc = if $ordered {
 | ||
|                             // ordered arithmetic reductions take an accumulator
 | ||
|                             args[1].immediate()
 | ||
|                         } else {
 | ||
|                             // unordered arithmetic reductions use the identity accumulator
 | ||
|                             match f.bit_width() {
 | ||
|                                 32 => bx.const_real(bx.type_f32(), $identity),
 | ||
|                                 64 => bx.const_real(bx.type_f64(), $identity),
 | ||
|                                 v => return_error!(
 | ||
|                                     InvalidMonomorphization::UnsupportedSymbolOfSize {
 | ||
|                                         span,
 | ||
|                                         name,
 | ||
|                                         symbol: sym::$name,
 | ||
|                                         in_ty,
 | ||
|                                         in_elem,
 | ||
|                                         size: v,
 | ||
|                                         ret_ty
 | ||
|                                     }
 | ||
|                                 ),
 | ||
|                             }
 | ||
|                         };
 | ||
|                         Ok(bx.$float_reduce(acc, args[0].immediate()))
 | ||
|                     }
 | ||
|                     _ => return_error!(InvalidMonomorphization::UnsupportedSymbol {
 | ||
|                         span,
 | ||
|                         name,
 | ||
|                         symbol: sym::$name,
 | ||
|                         in_ty,
 | ||
|                         in_elem,
 | ||
|                         ret_ty
 | ||
|                     }),
 | ||
|                 };
 | ||
|             }
 | ||
|         };
 | ||
|     }
 | ||
| 
 | ||
|     arith_red!(simd_reduce_add_ordered: vector_reduce_add, vector_reduce_fadd, true, add, 0.0);
 | ||
|     arith_red!(simd_reduce_mul_ordered: vector_reduce_mul, vector_reduce_fmul, true, mul, 1.0);
 | ||
|     arith_red!(
 | ||
|         simd_reduce_add_unordered: vector_reduce_add,
 | ||
|         vector_reduce_fadd_reassoc,
 | ||
|         false,
 | ||
|         add,
 | ||
|         0.0
 | ||
|     );
 | ||
|     arith_red!(
 | ||
|         simd_reduce_mul_unordered: vector_reduce_mul,
 | ||
|         vector_reduce_fmul_reassoc,
 | ||
|         false,
 | ||
|         mul,
 | ||
|         1.0
 | ||
|     );
 | ||
| 
 | ||
|     macro_rules! minmax_red {
 | ||
|         ($name:ident: $int_red:ident, $float_red:ident) => {
 | ||
|             if name == sym::$name {
 | ||
|                 require!(
 | ||
|                     ret_ty == in_elem,
 | ||
|                     InvalidMonomorphization::ReturnType { span, name, in_elem, in_ty, ret_ty }
 | ||
|                 );
 | ||
|                 return match in_elem.kind() {
 | ||
|                     ty::Int(_i) => Ok(bx.$int_red(args[0].immediate(), true)),
 | ||
|                     ty::Uint(_u) => Ok(bx.$int_red(args[0].immediate(), false)),
 | ||
|                     ty::Float(_f) => Ok(bx.$float_red(args[0].immediate())),
 | ||
|                     _ => return_error!(InvalidMonomorphization::UnsupportedSymbol {
 | ||
|                         span,
 | ||
|                         name,
 | ||
|                         symbol: sym::$name,
 | ||
|                         in_ty,
 | ||
|                         in_elem,
 | ||
|                         ret_ty
 | ||
|                     }),
 | ||
|                 };
 | ||
|             }
 | ||
|         };
 | ||
|     }
 | ||
| 
 | ||
|     minmax_red!(simd_reduce_min: vector_reduce_min, vector_reduce_fmin);
 | ||
|     minmax_red!(simd_reduce_max: vector_reduce_max, vector_reduce_fmax);
 | ||
| 
 | ||
|     macro_rules! bitwise_red {
 | ||
|         ($name:ident : $red:ident, $boolean:expr) => {
 | ||
|             if name == sym::$name {
 | ||
|                 let input = if !$boolean {
 | ||
|                     require!(
 | ||
|                         ret_ty == in_elem,
 | ||
|                         InvalidMonomorphization::ReturnType { span, name, in_elem, in_ty, ret_ty }
 | ||
|                     );
 | ||
|                     args[0].immediate()
 | ||
|                 } else {
 | ||
|                     match in_elem.kind() {
 | ||
|                         ty::Int(_) | ty::Uint(_) => {}
 | ||
|                         _ => return_error!(InvalidMonomorphization::UnsupportedSymbol {
 | ||
|                             span,
 | ||
|                             name,
 | ||
|                             symbol: sym::$name,
 | ||
|                             in_ty,
 | ||
|                             in_elem,
 | ||
|                             ret_ty
 | ||
|                         }),
 | ||
|                     }
 | ||
| 
 | ||
|                     // boolean reductions operate on vectors of i1s:
 | ||
|                     let i1 = bx.type_i1();
 | ||
|                     let i1xn = bx.type_vector(i1, in_len as u64);
 | ||
|                     bx.trunc(args[0].immediate(), i1xn)
 | ||
|                 };
 | ||
|                 return match in_elem.kind() {
 | ||
|                     ty::Int(_) | ty::Uint(_) => {
 | ||
|                         let r = bx.$red(input);
 | ||
|                         Ok(if !$boolean { r } else { bx.zext(r, bx.type_bool()) })
 | ||
|                     }
 | ||
|                     _ => return_error!(InvalidMonomorphization::UnsupportedSymbol {
 | ||
|                         span,
 | ||
|                         name,
 | ||
|                         symbol: sym::$name,
 | ||
|                         in_ty,
 | ||
|                         in_elem,
 | ||
|                         ret_ty
 | ||
|                     }),
 | ||
|                 };
 | ||
|             }
 | ||
|         };
 | ||
|     }
 | ||
| 
 | ||
|     bitwise_red!(simd_reduce_and: vector_reduce_and, false);
 | ||
|     bitwise_red!(simd_reduce_or: vector_reduce_or, false);
 | ||
|     bitwise_red!(simd_reduce_xor: vector_reduce_xor, false);
 | ||
|     bitwise_red!(simd_reduce_all: vector_reduce_and, true);
 | ||
|     bitwise_red!(simd_reduce_any: vector_reduce_or, true);
 | ||
| 
 | ||
|     if name == sym::simd_cast_ptr {
 | ||
|         let (out_len, out_elem) = require_simd!(ret_ty, SimdReturn);
 | ||
|         require!(
 | ||
|             in_len == out_len,
 | ||
|             InvalidMonomorphization::ReturnLengthInputType {
 | ||
|                 span,
 | ||
|                 name,
 | ||
|                 in_len,
 | ||
|                 in_ty,
 | ||
|                 ret_ty,
 | ||
|                 out_len
 | ||
|             }
 | ||
|         );
 | ||
| 
 | ||
|         match in_elem.kind() {
 | ||
|             ty::RawPtr(p_ty, _) => {
 | ||
|                 let metadata = p_ty.ptr_metadata_ty(bx.tcx, |ty| {
 | ||
|                     bx.tcx.normalize_erasing_regions(ty::ParamEnv::reveal_all(), ty)
 | ||
|                 });
 | ||
|                 require!(
 | ||
|                     metadata.is_unit(),
 | ||
|                     InvalidMonomorphization::CastFatPointer { span, name, ty: in_elem }
 | ||
|                 );
 | ||
|             }
 | ||
|             _ => {
 | ||
|                 return_error!(InvalidMonomorphization::ExpectedPointer { span, name, ty: in_elem })
 | ||
|             }
 | ||
|         }
 | ||
|         match out_elem.kind() {
 | ||
|             ty::RawPtr(p_ty, _) => {
 | ||
|                 let metadata = p_ty.ptr_metadata_ty(bx.tcx, |ty| {
 | ||
|                     bx.tcx.normalize_erasing_regions(ty::ParamEnv::reveal_all(), ty)
 | ||
|                 });
 | ||
|                 require!(
 | ||
|                     metadata.is_unit(),
 | ||
|                     InvalidMonomorphization::CastFatPointer { span, name, ty: out_elem }
 | ||
|                 );
 | ||
|             }
 | ||
|             _ => {
 | ||
|                 return_error!(InvalidMonomorphization::ExpectedPointer { span, name, ty: out_elem })
 | ||
|             }
 | ||
|         }
 | ||
| 
 | ||
|         return Ok(args[0].immediate());
 | ||
|     }
 | ||
| 
 | ||
|     if name == sym::simd_expose_provenance {
 | ||
|         let (out_len, out_elem) = require_simd!(ret_ty, SimdReturn);
 | ||
|         require!(
 | ||
|             in_len == out_len,
 | ||
|             InvalidMonomorphization::ReturnLengthInputType {
 | ||
|                 span,
 | ||
|                 name,
 | ||
|                 in_len,
 | ||
|                 in_ty,
 | ||
|                 ret_ty,
 | ||
|                 out_len
 | ||
|             }
 | ||
|         );
 | ||
| 
 | ||
|         match in_elem.kind() {
 | ||
|             ty::RawPtr(_, _) => {}
 | ||
|             _ => {
 | ||
|                 return_error!(InvalidMonomorphization::ExpectedPointer { span, name, ty: in_elem })
 | ||
|             }
 | ||
|         }
 | ||
|         match out_elem.kind() {
 | ||
|             ty::Uint(ty::UintTy::Usize) => {}
 | ||
|             _ => return_error!(InvalidMonomorphization::ExpectedUsize { span, name, ty: out_elem }),
 | ||
|         }
 | ||
| 
 | ||
|         return Ok(bx.ptrtoint(args[0].immediate(), llret_ty));
 | ||
|     }
 | ||
| 
 | ||
|     if name == sym::simd_with_exposed_provenance {
 | ||
|         let (out_len, out_elem) = require_simd!(ret_ty, SimdReturn);
 | ||
|         require!(
 | ||
|             in_len == out_len,
 | ||
|             InvalidMonomorphization::ReturnLengthInputType {
 | ||
|                 span,
 | ||
|                 name,
 | ||
|                 in_len,
 | ||
|                 in_ty,
 | ||
|                 ret_ty,
 | ||
|                 out_len
 | ||
|             }
 | ||
|         );
 | ||
| 
 | ||
|         match in_elem.kind() {
 | ||
|             ty::Uint(ty::UintTy::Usize) => {}
 | ||
|             _ => return_error!(InvalidMonomorphization::ExpectedUsize { span, name, ty: in_elem }),
 | ||
|         }
 | ||
|         match out_elem.kind() {
 | ||
|             ty::RawPtr(_, _) => {}
 | ||
|             _ => {
 | ||
|                 return_error!(InvalidMonomorphization::ExpectedPointer { span, name, ty: out_elem })
 | ||
|             }
 | ||
|         }
 | ||
| 
 | ||
|         return Ok(bx.inttoptr(args[0].immediate(), llret_ty));
 | ||
|     }
 | ||
| 
 | ||
|     if name == sym::simd_cast || name == sym::simd_as {
 | ||
|         let (out_len, out_elem) = require_simd!(ret_ty, SimdReturn);
 | ||
|         require!(
 | ||
|             in_len == out_len,
 | ||
|             InvalidMonomorphization::ReturnLengthInputType {
 | ||
|                 span,
 | ||
|                 name,
 | ||
|                 in_len,
 | ||
|                 in_ty,
 | ||
|                 ret_ty,
 | ||
|                 out_len
 | ||
|             }
 | ||
|         );
 | ||
|         // casting cares about nominal type, not just structural type
 | ||
|         if in_elem == out_elem {
 | ||
|             return Ok(args[0].immediate());
 | ||
|         }
 | ||
| 
 | ||
|         #[derive(Copy, Clone)]
 | ||
|         enum Sign {
 | ||
|             Unsigned,
 | ||
|             Signed,
 | ||
|         }
 | ||
|         use Sign::*;
 | ||
| 
 | ||
|         enum Style {
 | ||
|             Float,
 | ||
|             Int(Sign),
 | ||
|             Unsupported,
 | ||
|         }
 | ||
| 
 | ||
|         let (in_style, in_width) = match in_elem.kind() {
 | ||
|             // vectors of pointer-sized integers should've been
 | ||
|             // disallowed before here, so this unwrap is safe.
 | ||
|             ty::Int(i) => (
 | ||
|                 Style::Int(Signed),
 | ||
|                 i.normalize(bx.tcx().sess.target.pointer_width).bit_width().unwrap(),
 | ||
|             ),
 | ||
|             ty::Uint(u) => (
 | ||
|                 Style::Int(Unsigned),
 | ||
|                 u.normalize(bx.tcx().sess.target.pointer_width).bit_width().unwrap(),
 | ||
|             ),
 | ||
|             ty::Float(f) => (Style::Float, f.bit_width()),
 | ||
|             _ => (Style::Unsupported, 0),
 | ||
|         };
 | ||
|         let (out_style, out_width) = match out_elem.kind() {
 | ||
|             ty::Int(i) => (
 | ||
|                 Style::Int(Signed),
 | ||
|                 i.normalize(bx.tcx().sess.target.pointer_width).bit_width().unwrap(),
 | ||
|             ),
 | ||
|             ty::Uint(u) => (
 | ||
|                 Style::Int(Unsigned),
 | ||
|                 u.normalize(bx.tcx().sess.target.pointer_width).bit_width().unwrap(),
 | ||
|             ),
 | ||
|             ty::Float(f) => (Style::Float, f.bit_width()),
 | ||
|             _ => (Style::Unsupported, 0),
 | ||
|         };
 | ||
| 
 | ||
|         match (in_style, out_style) {
 | ||
|             (Style::Int(sign), Style::Int(_)) => {
 | ||
|                 return Ok(match in_width.cmp(&out_width) {
 | ||
|                     Ordering::Greater => bx.trunc(args[0].immediate(), llret_ty),
 | ||
|                     Ordering::Equal => args[0].immediate(),
 | ||
|                     Ordering::Less => match sign {
 | ||
|                         Sign::Signed => bx.sext(args[0].immediate(), llret_ty),
 | ||
|                         Sign::Unsigned => bx.zext(args[0].immediate(), llret_ty),
 | ||
|                     },
 | ||
|                 });
 | ||
|             }
 | ||
|             (Style::Int(Sign::Signed), Style::Float) => {
 | ||
|                 return Ok(bx.sitofp(args[0].immediate(), llret_ty));
 | ||
|             }
 | ||
|             (Style::Int(Sign::Unsigned), Style::Float) => {
 | ||
|                 return Ok(bx.uitofp(args[0].immediate(), llret_ty));
 | ||
|             }
 | ||
|             (Style::Float, Style::Int(sign)) => {
 | ||
|                 return Ok(match (sign, name == sym::simd_as) {
 | ||
|                     (Sign::Unsigned, false) => bx.fptoui(args[0].immediate(), llret_ty),
 | ||
|                     (Sign::Signed, false) => bx.fptosi(args[0].immediate(), llret_ty),
 | ||
|                     (_, true) => bx.cast_float_to_int(
 | ||
|                         matches!(sign, Sign::Signed),
 | ||
|                         args[0].immediate(),
 | ||
|                         llret_ty,
 | ||
|                     ),
 | ||
|                 });
 | ||
|             }
 | ||
|             (Style::Float, Style::Float) => {
 | ||
|                 return Ok(match in_width.cmp(&out_width) {
 | ||
|                     Ordering::Greater => bx.fptrunc(args[0].immediate(), llret_ty),
 | ||
|                     Ordering::Equal => args[0].immediate(),
 | ||
|                     Ordering::Less => bx.fpext(args[0].immediate(), llret_ty),
 | ||
|                 });
 | ||
|             }
 | ||
|             _ => { /* Unsupported. Fallthrough. */ }
 | ||
|         }
 | ||
|         return_error!(InvalidMonomorphization::UnsupportedCast {
 | ||
|             span,
 | ||
|             name,
 | ||
|             in_ty,
 | ||
|             in_elem,
 | ||
|             ret_ty,
 | ||
|             out_elem
 | ||
|         });
 | ||
|     }
 | ||
|     macro_rules! arith_binary {
 | ||
|         ($($name: ident: $($($p: ident),* => $call: ident),*;)*) => {
 | ||
|             $(if name == sym::$name {
 | ||
|                 match in_elem.kind() {
 | ||
|                     $($(ty::$p(_))|* => {
 | ||
|                         return Ok(bx.$call(args[0].immediate(), args[1].immediate()))
 | ||
|                     })*
 | ||
|                     _ => {},
 | ||
|                 }
 | ||
|                 return_error!(
 | ||
|                     InvalidMonomorphization::UnsupportedOperation { span, name, in_ty, in_elem }
 | ||
|                 );
 | ||
|             })*
 | ||
|         }
 | ||
|     }
 | ||
|     arith_binary! {
 | ||
|         simd_add: Uint, Int => add, Float => fadd;
 | ||
|         simd_sub: Uint, Int => sub, Float => fsub;
 | ||
|         simd_mul: Uint, Int => mul, Float => fmul;
 | ||
|         simd_div: Uint => udiv, Int => sdiv, Float => fdiv;
 | ||
|         simd_rem: Uint => urem, Int => srem, Float => frem;
 | ||
|         simd_shl: Uint, Int => shl;
 | ||
|         simd_shr: Uint => lshr, Int => ashr;
 | ||
|         simd_and: Uint, Int => and;
 | ||
|         simd_or: Uint, Int => or;
 | ||
|         simd_xor: Uint, Int => xor;
 | ||
|         simd_fmax: Float => maxnum;
 | ||
|         simd_fmin: Float => minnum;
 | ||
| 
 | ||
|     }
 | ||
|     macro_rules! arith_unary {
 | ||
|         ($($name: ident: $($($p: ident),* => $call: ident),*;)*) => {
 | ||
|             $(if name == sym::$name {
 | ||
|                 match in_elem.kind() {
 | ||
|                     $($(ty::$p(_))|* => {
 | ||
|                         return Ok(bx.$call(args[0].immediate()))
 | ||
|                     })*
 | ||
|                     _ => {},
 | ||
|                 }
 | ||
|                 return_error!(
 | ||
|                     InvalidMonomorphization::UnsupportedOperation { span, name, in_ty, in_elem }
 | ||
|                 );
 | ||
|             })*
 | ||
|         }
 | ||
|     }
 | ||
|     arith_unary! {
 | ||
|         simd_neg: Int => neg, Float => fneg;
 | ||
|     }
 | ||
| 
 | ||
|     // Unary integer intrinsics
 | ||
|     if matches!(name, sym::simd_bswap | sym::simd_bitreverse | sym::simd_ctlz | sym::simd_cttz) {
 | ||
|         let vec_ty = bx.cx.type_vector(
 | ||
|             match *in_elem.kind() {
 | ||
|                 ty::Int(i) => bx.cx.type_int_from_ty(i),
 | ||
|                 ty::Uint(i) => bx.cx.type_uint_from_ty(i),
 | ||
|                 _ => return_error!(InvalidMonomorphization::UnsupportedOperation {
 | ||
|                     span,
 | ||
|                     name,
 | ||
|                     in_ty,
 | ||
|                     in_elem
 | ||
|                 }),
 | ||
|             },
 | ||
|             in_len as u64,
 | ||
|         );
 | ||
|         let intrinsic_name = match name {
 | ||
|             sym::simd_bswap => "bswap",
 | ||
|             sym::simd_bitreverse => "bitreverse",
 | ||
|             sym::simd_ctlz => "ctlz",
 | ||
|             sym::simd_cttz => "cttz",
 | ||
|             _ => unreachable!(),
 | ||
|         };
 | ||
|         let int_size = in_elem.int_size_and_signed(bx.tcx()).0.bits();
 | ||
|         let llvm_intrinsic = &format!("llvm.{}.v{}i{}", intrinsic_name, in_len, int_size,);
 | ||
| 
 | ||
|         return if name == sym::simd_bswap && int_size == 8 {
 | ||
|             // byte swap is no-op for i8/u8
 | ||
|             Ok(args[0].immediate())
 | ||
|         } else if matches!(name, sym::simd_ctlz | sym::simd_cttz) {
 | ||
|             let fn_ty = bx.type_func(&[vec_ty, bx.type_i1()], vec_ty);
 | ||
|             let f = bx.declare_cfn(llvm_intrinsic, llvm::UnnamedAddr::No, fn_ty);
 | ||
|             Ok(bx.call(
 | ||
|                 fn_ty,
 | ||
|                 None,
 | ||
|                 None,
 | ||
|                 f,
 | ||
|                 &[args[0].immediate(), bx.const_int(bx.type_i1(), 0)],
 | ||
|                 None,
 | ||
|                 None,
 | ||
|             ))
 | ||
|         } else {
 | ||
|             let fn_ty = bx.type_func(&[vec_ty], vec_ty);
 | ||
|             let f = bx.declare_cfn(llvm_intrinsic, llvm::UnnamedAddr::No, fn_ty);
 | ||
|             Ok(bx.call(fn_ty, None, None, f, &[args[0].immediate()], None, None))
 | ||
|         };
 | ||
|     }
 | ||
| 
 | ||
|     if name == sym::simd_arith_offset {
 | ||
|         // This also checks that the first operand is a ptr type.
 | ||
|         let pointee = in_elem.builtin_deref(true).unwrap_or_else(|| {
 | ||
|             span_bug!(span, "must be called with a vector of pointer types as first argument")
 | ||
|         });
 | ||
|         let layout = bx.layout_of(pointee.ty);
 | ||
|         let ptrs = args[0].immediate();
 | ||
|         // The second argument must be a ptr-sized integer.
 | ||
|         // (We don't care about the signedness, this is wrapping anyway.)
 | ||
|         let (_offsets_len, offsets_elem) = arg_tys[1].simd_size_and_type(bx.tcx());
 | ||
|         if !matches!(offsets_elem.kind(), ty::Int(ty::IntTy::Isize) | ty::Uint(ty::UintTy::Usize)) {
 | ||
|             span_bug!(
 | ||
|                 span,
 | ||
|                 "must be called with a vector of pointer-sized integers as second argument"
 | ||
|             );
 | ||
|         }
 | ||
|         let offsets = args[1].immediate();
 | ||
| 
 | ||
|         return Ok(bx.gep(bx.backend_type(layout), ptrs, &[offsets]));
 | ||
|     }
 | ||
| 
 | ||
|     if name == sym::simd_saturating_add || name == sym::simd_saturating_sub {
 | ||
|         let lhs = args[0].immediate();
 | ||
|         let rhs = args[1].immediate();
 | ||
|         let is_add = name == sym::simd_saturating_add;
 | ||
|         let ptr_bits = bx.tcx().data_layout.pointer_size.bits() as _;
 | ||
|         let (signed, elem_width, elem_ty) = match *in_elem.kind() {
 | ||
|             ty::Int(i) => (true, i.bit_width().unwrap_or(ptr_bits), bx.cx.type_int_from_ty(i)),
 | ||
|             ty::Uint(i) => (false, i.bit_width().unwrap_or(ptr_bits), bx.cx.type_uint_from_ty(i)),
 | ||
|             _ => {
 | ||
|                 return_error!(InvalidMonomorphization::ExpectedVectorElementType {
 | ||
|                     span,
 | ||
|                     name,
 | ||
|                     expected_element: arg_tys[0].simd_size_and_type(bx.tcx()).1,
 | ||
|                     vector_type: arg_tys[0]
 | ||
|                 });
 | ||
|             }
 | ||
|         };
 | ||
|         let llvm_intrinsic = &format!(
 | ||
|             "llvm.{}{}.sat.v{}i{}",
 | ||
|             if signed { 's' } else { 'u' },
 | ||
|             if is_add { "add" } else { "sub" },
 | ||
|             in_len,
 | ||
|             elem_width
 | ||
|         );
 | ||
|         let vec_ty = bx.cx.type_vector(elem_ty, in_len as u64);
 | ||
| 
 | ||
|         let fn_ty = bx.type_func(&[vec_ty, vec_ty], vec_ty);
 | ||
|         let f = bx.declare_cfn(llvm_intrinsic, llvm::UnnamedAddr::No, fn_ty);
 | ||
|         let v = bx.call(fn_ty, None, None, f, &[lhs, rhs], None, None);
 | ||
|         return Ok(v);
 | ||
|     }
 | ||
| 
 | ||
|     span_bug!(span, "unknown SIMD intrinsic");
 | ||
| }
 | ||
| 
 | ||
| // Returns the width of an int Ty, and if it's signed or not
 | ||
| // Returns None if the type is not an integer
 | ||
| // FIXME: there’s multiple of this functions, investigate using some of the already existing
 | ||
| // stuffs.
 | ||
| fn int_type_width_signed(ty: Ty<'_>, cx: &CodegenCx<'_, '_>) -> Option<(u64, bool)> {
 | ||
|     match ty.kind() {
 | ||
|         ty::Int(t) => {
 | ||
|             Some((t.bit_width().unwrap_or(u64::from(cx.tcx.sess.target.pointer_width)), true))
 | ||
|         }
 | ||
|         ty::Uint(t) => {
 | ||
|             Some((t.bit_width().unwrap_or(u64::from(cx.tcx.sess.target.pointer_width)), false))
 | ||
|         }
 | ||
|         _ => None,
 | ||
|     }
 | ||
| }
 | 
